Strain/Species Identification in Metagenomes Using Genome-Specific Markers Qichao Tu1, Zhili He1,* and Jizhong Zhou1,2,3,*
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression. -
Doctoral Dissertation Template
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE METAGENOMIC INSIGHTS INTO MICROBIAL COMMUNITY RESPONSES TO LONG-TERM ELEVATED CO2 A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By QICHAO TU Norman, Oklahoma 2014 METAGENOMIC INSIGHTS INTO MICROBIAL COMMUNITY RESPONSES TO LONG-TERM ELEVATED CO2 A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Jizhong Zhou, Chair ______________________________ Dr. Meijun Zhu ______________________________ Dr. Fengxia (Felicia) Qi ______________________________ Dr. Michael McInerney ______________________________ Dr. Bradley Stevenson © Copyright by QICHAO TU 2014 All Rights Reserved. Acknowledgements At this special moment approaching the last stage for this degree, I would like to express my gratitude to all the people who encouraged me and helped me out through the past years. Dr. Jizhong Zhou, my advisor, is no doubt the most influential and helpful person in pursuing my academic goals. In addition to continuous financial support for the past six years, he is the person who led me into the field of environmental microbiology, from a background of bioinformatics and plant molecular biology. I really appreciated the vast training I received from the many interesting projects I got involved in, without which I would hardly develop my broad experienced background from pure culture microbial genomics to complex metagenomics. Dr. Zhili He, who played a role as my second advisor, is also the person I would like to thank most. Without his help, I could be still struggling working on those manuscripts lying in my hard drive. I definitely learned a lot from him in organizing massed results into logical scientific work—skills that will benefit me for life. -
Shotgun Metagenomics of 361 Elderly Women Reveals Gut Microbiome
bioRxiv preprint doi: https://doi.org/10.1101/679985; this version posted June 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Shotgun Metagenomics of 361 elderly women reveals gut microbiome change in bone mass loss Qi Wang1,2,3,4, *, Hui Zhao1,2,3,4, *, Qiang Sun2,5, *, Xiaoping Li3,4, *, Juanjuan Chen3,4, Zhefeng Wang6, Yanmei Ju2,3,4, Zhuye Jie3,4, Ruijin Guo3,4,7,8, Yuhu Liang2, Xiaohuan Sun3,4, Haotian Zheng3,4, Tao Zhang3,4, Liang Xiao3,4, Xun Xu3,4, Huanming Yang3,9, Songlin Peng6, †, Huijue Jia3,4,7,8, †. 1. School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China. 2. BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; 3. BGI-Shenzhen, Shenzhen 518083, China; 4. China National Genebank, Shenzhen 518120, China; 5. Department of Statistical Sciences, University of Toronto, Toronto, Canada; 6. Department of Spine Surgery, Shenzhen People's Hospital, Ji Nan University Second College of Medicine, 518020, Shenzhen, China. 7. Macau University of Science and Technology, Taipa, Macau 999078, China; 8. Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China; 9. James D. Watson Institute of Genome Sciences, 310058 Hangzhou, China; * These authors have contributed equally to this study †Corresponding authors: S.P., [email protected]; H.J., [email protected]; bioRxiv preprint doi: https://doi.org/10.1101/679985; this version posted June 23, 2019. -
A Metagenomic Study of the Oral and Gut Microbiome in Crohn’S Disease Shijia Hu1* , Eileen Png2, Michelle Gowans3, David E
Hu et al. Gut Pathog (2021) 13:13 https://doi.org/10.1186/s13099-021-00409-5 Gut Pathogens RESEARCH Open Access Ectopic gut colonization: a metagenomic study of the oral and gut microbiome in Crohn’s disease Shijia Hu1* , Eileen Png2, Michelle Gowans3, David E. H. Ong3, Paola Florez de Sessions2, Jie Song2 and Niranjan Nagarajan2,4 Abstract Background: This study aims to characterize, the gut and oral microbiome in Asian subjects with Crohn’s disease (CD) using whole genome shotgun sequencing, thereby allowing for strain-level comparison. Methods: A case–control study with age, sex and ethnicity matched healthy controls was conducted. CD subjects were limited to well-controlled patients without oral manifestations. Fecal and saliva samples were collected for char- acterization of gut and oral microbiome respectively. Microbial DNA were extracted, libraries prepared and sequenced reads profled. Taxonomic diversity, taxonomic association, strain typing and microbial gene pathway analyses were conducted. Results: The study recruited 25 subjects with CD and 25 healthy controls. The oral microbe Streptococcus salivarius was found to be enriched and of concordant strains in the gut and oral microbiome of Crohn’s disease subjects. This was more likely in CD subjects with higher Crohn’s Disease Activity Index (184.3 2.9 vs 67.1 82.5, p 0.012) and active disease status (Diarrhoea/abdominal pain/blood-in-stool/fever and fatigue)± (p 0.016).± Gut species= found to be signifcantly depleted in CD compared to control (Relative abundance: Median[Range])= include: Faecalibacterium prausnitzii (0.03[0.00–4.56] vs 13.69[5.32–18.71], p 0.010), Roseburia inulinivorans (0.00[0.00–0.03] vs 0.21[0.01–0.53], p 0.010) and Alistipes senegalensis (0.00[0.00–0.00]= vs 0.00[0.00–0.02], p 0.029). -
Clostridium Amazonitimonense, Clostridium Me
ORIGINAL ARTICLE Taxonogenomic description of four new Clostridium species isolated from human gut: ‘Clostridium amazonitimonense’, ‘Clostridium merdae’, ‘Clostridium massilidielmoense’ and ‘Clostridium nigeriense’ M. T. Alou1, S. Ndongo1, L. Frégère1, N. Labas1, C. Andrieu1, M. Richez1, C. Couderc1, J.-P. Baudoin1, J. Abrahão2, S. Brah3, A. Diallo1,4, C. Sokhna1,4, N. Cassir1, B. La Scola1, F. Cadoret1 and D. Raoult1,5 1) Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France, 2) Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 3) Hopital National de Niamey, BP 247, Niamey, Niger, 4) Campus Commun UCAD-IRD of Hann, Route des pères Maristes, Hann Maristes, BP 1386, CP 18524, Dakar, Senegal and 5) Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Abstract Culturomics investigates microbial diversity of the human microbiome by combining diversified culture conditions, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene identification. The present study allowed identification of four putative new Clostridium sensu stricto species: ‘Clostridium amazonitimonense’ strain LF2T, ‘Clostridium massilidielmoense’ strain MT26T, ‘Clostridium nigeriense’ strain Marseille-P2414T and ‘Clostridium merdae’ strain Marseille-P2953T, which we describe using the concept of taxonogenomics. We describe the main characteristics of each bacterium and present their complete genome sequence and annotation. © 2017 Published by Elsevier Ltd. Keywords: ‘Clostridium amazonitimonense’, ‘Clostridium massilidielmoense’, ‘Clostridium merdae’, ‘Clostridium nigeriense’, culturomics, emerging bacteria, human microbiota, taxonogenomics Original Submission: 18 August 2017; Revised Submission: 9 November 2017; Accepted: 16 November 2017 Article published online: 22 November 2017 intestine [1,4–6]. -
Specific Substrate-Driven Changes in Human Faecal Microbiota Composition Contrast with Functional Redundancy in Short-Chain Fatty Acid Production
The ISME Journal (2018) 12, 610–622 © 2018 International Society for Microbial Ecology All rights reserved 1751-7362/18 www.nature.com/ismej ORIGINAL ARTICLE Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production Nicole Reichardt1,2, Maren Vollmer1, Grietje Holtrop3, Freda M Farquharson1, Daniel Wefers4, Mirko Bunzel4, Sylvia H Duncan1, Janice E Drew1, Lynda M Williams1, Graeme Milligan2, Thomas Preston5, Douglas Morrison5, Harry J Flint1 and Petra Louis1 1The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK; 2Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; 3Biomathematics and Statistics Scotland, Foresterhill, Aberdeen, UK; 4Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, Karlsruhe, Germany and 5Scottish Universities Environmental Research Centre, University of Glasgow, Rankine Avenue, East Kilbride, UK The diet provides carbohydrates that are non-digestible in the upper gut and are major carbon and energy sources for the microbial community in the lower intestine, supporting a complex metabolic network. Fermentation produces the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, which have health-promoting effects for the human host. Here we investigated microbial community changes and SCFA production during in vitro batch incubations of 15 different non-digestible carbohydrates, at two initial pH values with faecal microbiota from three different human donors. To investigate temporal stability and reproducibility, a further experiment was performed 1 year later with four of the carbohydrates. The lower pH (5.5) led to higher butyrate and the higher pH (6.5) to more propionate production. -
Crowdsourced Study of Children with Autism and Their Typically
bioRxiv preprint doi: https://doi.org/10.1101/319236; this version posted May 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Crowdsourced study of children with autism and their typically 2 developing siblings identifies differences in taxonomic and predicted 3 function for stool-associated microbes using exact sequence variant 4 analysis. 5 Maude M David1,2, Christine Tataru1, Jena Daniels1, Jessey Schwartz1, Jessica Keating1, Jarrad Hampton-Marcell3, Neil 6 Gottel4, Jack A. Gilbert3,4, Dennis P. Wall1,5* 7 1 Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA, USA 8 2 Department of Microbiology, Oregon State University, Corvallis, OR, USA 9 3 Bioscience Division, The Microbiome Center, Argonne National Laboratory, Argonne, Illinois, USA 10 4 Department of Surgery, The Microbiome Center, University of Chicago, Chicago, Illinois, USA 11 5 Department of Biomedical Data Science, Stanford University, Stanford, CA, USA 12 *Corresponding Author: 13 Dennis P. Wall, Ph.D. 14 Department of Pediatrics, Division of Systems Medicine 15 Stanford University 16 1265 Welch Rd, Suite X141, Stanford, CA 94305 17 P: 650-497-0921 18 E: [email protected] 19 20 Keywords 21 Autism spectrum disorder, microbiome, crowdsource, 16S ribosomal sequencing, Clostridiales, Lachnospiraceae, butyrate 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/319236; this version posted May 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Interactions Between Host Genetics and Gut Microbiota Determine Susceptibility to CNS Autoimmunity
Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity Theresa L. Montgomerya,1, Axel Künstnerb,c,1, Josephine J. Kennedya, Qian Fangd, Lori Asariand, Rachel Culp-Hille, Angelo D’Alessandroe, Cory Teuscherd, Hauke Buschb,c, and Dimitry N. Krementsova,2 aDepartment of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05401; bMedical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; cInstitute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; dDepartment of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05401; and eDepartment of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045 Edited by Dennis L. Kasper, Harvard Medical School, Boston, MA, and approved August 26, 2020 (received for review February 23, 2020) Multiple sclerosis (MS) is an autoimmune disease of the central circulation to directly impact distal sites, including the brain (11, nervous system. The etiology of MS is multifactorial, with disease 12). With regard to MS, a number of recent case-control studies risk determined by genetics and environmental factors. An emerg- have demonstrated that the gut microbiome of MS patients differs ing risk factor for immune-mediated diseases is an imbalance from that of their healthy control counterparts. Some broad fea- in the gut microbiome. However, the identity of gut microbes as- tures, such as decreased abundance of putative short-chain fatty sociated with disease risk, their mechanisms of action, and the acid (SCFA)-producing bacteria and expansion of Akkermansia, interactions with host genetics remain obscure. To address these have been observed consistently across several studies (13–19). -
Innate and Adaptive Immunity Interact to Quench Microbiome Flagellar Motility in the Gut
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell Host & Microbe Article Innate and Adaptive Immunity Interact to Quench Microbiome Flagellar Motility in the Gut Tyler C. Cullender,1,2 Benoit Chassaing,3 Anders Janzon,1,2 Krithika Kumar,1,2 Catherine E. Muller,4 Jeffrey J. Werner,5,7 Largus T. Angenent,5 M. Elizabeth Bell,1,2 Anthony G. Hay,1 Daniel A. Peterson,6 Jens Walter,4 Matam Vijay-Kumar,3,8 Andrew T. Gewirtz,3 and Ruth E. Ley1,2,* 1Department of Microbiology, Cornell University, Ithaca, NY 14853, USA 2Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA 3Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, USA 4Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68583, USA 5Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA 6Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA 7Present address: Department of Chemistry, SUNY Cortland, Cortland, NY 13045, USA 8Present address: Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.chom.2013.10.009 SUMMARY IgA’s role in barrier defense is generally assumed to be immune exclusion, in which the IgA binds microbial surface antigens and Gut mucosal barrier breakdown and inflammation promotes the agglutination of microbial cells and their entrap- have been associated with high levels of flagellin, ment in mucus and physical clearance (Hooper and Macpher- the principal bacterial flagellar protein. -
The Human Gut Firmicute Roseburia Intestinalis Is a Primary Degrader of Dietary - Mannans
Downloaded from orbit.dtu.dk on: Oct 04, 2021 The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary - mannans La Rosa, Sabina Leanti; Leth, Maria Louise; Michalak, Leszek; Hansen, Morten Ejby; Pudlo, Nicholas A.; Glowacki, Robert; Pereira, Gabriel; Workman, Christopher T.; Arntzen, Magnus; Pope, Phillip B. Total number of authors: 13 Published in: Nature Communications Link to article, DOI: 10.1038/s41467-019-08812-y Publication date: 2019 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): La Rosa, S. L., Leth, M. L., Michalak, L., Hansen, M. E., Pudlo, N. A., Glowacki, R., Pereira, G., Workman, C. T., Arntzen, M., Pope, P. B., Martens, E. C., Hachem, M. A., & Westereng, B. (2019). The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary -mannans. Nature Communications, 10(1), [905]. https://doi.org/10.1038/s41467-019-08812-y General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
Widespread Protein Lysine Acetylation in Gut Microbiome and Its Alterations in Patients with Crohn’S Disease
ARTICLE https://doi.org/10.1038/s41467-020-17916-9 OPEN Widespread protein lysine acetylation in gut microbiome and its alterations in patients with Crohn’s disease Xu Zhang 1,2, Zhibin Ning1,2, Janice Mayne1,2, Yidai Yang1,2, Shelley A. Deeke1,2, Krystal Walker1,2, ✉ Charles L. Farnsworth3, Matthew P. Stokes3, Jean-François Couture1,2, David Mack4, Alain Stintzi 1,2 & ✉ Daniel Figeys 1,2 1234567890():,; Lysine acetylation (Kac), an abundant post-translational modification (PTM) in prokaryotes, regulates various microbial metabolic pathways. However, no studies have examined protein Kac at the microbiome level, and it remains unknown whether Kac level is altered in patient microbiomes. Herein, we use a peptide immuno-affinity enrichment strategy coupled with mass spectrometry to characterize protein Kac in the microbiome, which successfully identifies 35,200 Kac peptides from microbial or human proteins in gut microbiome samples. We demonstrate that Kac is widely distributed in gut microbial metabolic pathways, including anaerobic fermentation to generate short-chain fatty acids. Applying to the analyses of microbiomes of patients with Crohn’s disease identifies 52 host and 136 microbial protein Kac sites that are differentially abundant in disease versus controls. This microbiome-wide acetylomic approach aids in advancing functional microbiome research. 1 Shanghai Institute of Materia Medica-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada. 2 Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada. 3 Cell Signaling Technology Inc., Danvers, MA 01923, USA. -
MICRO-ORGANISMS and RUMINANT DIGESTION: STATE of KNOWLEDGE, TRENDS and FUTURE PROSPECTS Chris Mcsweeney1 and Rod Mackie2
BACKGROUND STUDY PAPER NO. 61 September 2012 E Organización Food and Organisation des Продовольственная и cельскохозяйственная de las Agriculture Nations Unies Naciones Unidas Organization pour организация para la of the l'alimentation Объединенных Alimentación y la United Nations et l'agriculture Наций Agricultura COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE MICRO-ORGANISMS AND RUMINANT DIGESTION: STATE OF KNOWLEDGE, TRENDS AND FUTURE PROSPECTS Chris McSweeney1 and Rod Mackie2 The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO or its Members. 1 Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, 306 Carmody Road, St Lucia Qld 4067, Australia. 2 University of Illinois, Urbana, Illinois, United States of America. This document is printed in limited numbers to minimize the environmental impact of FAO's processes and contribute to climate neutrality. Delegates and observers are kindly requested to bring their copies to meetings and to avoid asking for additional copies. Most FAO meeting documents are available on the Internet at www.fao.org ME992 BACKGROUND STUDY PAPER NO.61 2 Table of Contents Pages I EXECUTIVE SUMMARY .............................................................................................. 5 II INTRODUCTION ............................................................................................................ 7 Scope of the Study ...........................................................................................................