Theory of Lewis Acid Zeolite Catalysis for the Conversion of Biomass-Derived Furanics : on the Effect of Multi-Site Cooperativity and Confinement

Total Page:16

File Type:pdf, Size:1020Kb

Theory of Lewis Acid Zeolite Catalysis for the Conversion of Biomass-Derived Furanics : on the Effect of Multi-Site Cooperativity and Confinement Theory of Lewis acid zeolite catalysis for the conversion of biomass-derived furanics : on the effect of multi-site cooperativity and confinement Citation for published version (APA): Rohling, R. (2019). Theory of Lewis acid zeolite catalysis for the conversion of biomass-derived furanics : on the effect of multi-site cooperativity and confinement. Technische Universiteit Eindhoven. Document status and date: Published: 23/01/2019 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 10. Oct. 2021 Theory of Lewis Acid Zeolite Catalysis for the Conversion of Biomass-Derived Furanics On the Effect of Multi-Site Cooperativity and Confinement PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus prof.dr.ir F.P.T. Baaijens, voor een commissie aangewezen door het College voor Promoties, in het openbaar te verdedigen op woensdag 23 januari 2019 om 16:00 uur door Roderigh-IJsbrand Rohling geboren te Goes Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotiecommissie is als volgt: voorzitter: prof.dr.ir. D.C. Nijmeijer 1e promotor: prof.dr.ir. E.J.M. Hensen copromotor: dr. E.A. Pidko leden: prof.dr. R.A. Van Santen prof.dr. P.C.A. Bruijnincx (Universiteit Utrecht) prof.dr. E.J. Meijer (Universiteit van Amsterdam) dr.ir. A. Palmans adviseur: dr. R.E. Bulo (Universiteit Utrecht) Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening. II Opgedragen aan mijn broer, Rowin-Xandrijn Rohling III Roderigh-IJsbrand Rohling Theory of Lewis Acid Zeolite Catalysis for the Conversion of Biomass-Derived Furanics - On the Effect of Multi-Site Cooperativity and Confinement A catalogue record is available from the Eindhoven University of Technology Library ISBN: 978-90-386-4680-0 The work described in this thesis has been carried out at the Inorganic Materials and Catalysis group, Eindhoven University of Technology, The Netherlands. We acknowledge the Multiscale Catalytic Energy Conversion (MCEC) consortium for financial support and the Netherlands Organization for Scientific Research (NWO) for providing access to the supercomputer facilities. Printed by: Gildeprint – Enschede, The Netherlands Cover design: Roderigh-IJsbrand Rohling Copyright © 2018 by Roderigh-IJsbrand Rohling IV Contents Chapter 1 Introduction 1 Chapter 2 Theory and Methods 19 Chapter 3 An Active Alkali-Exchanged Faujasite Catalyst for 33 Para-Xylene Production via the One-Pot Diels- Alder Cycloaddition/Dehydration Reaction of 2,5- Dimethylfuran with Ethylene Chapter 4 Multi-Site Cooperativity in Alkali-Exchanged 57 Faujasites for the Production of Biomass-Derived Aromatics Chapter 5 Electronic Structure Analysis of the Diels-Alder 77 Cycloaddition Catalyzed by Alkali-Exchanged Faujasites Chapter 6 Mechanistic Insight into the [4+2] Diels-Alder 93 Cycloaddition over First Row d-Block Cation- Exchanged Faujasites Chapter 7 Evaluation of Real Space Bond Orders (DDEC6) 119 and Orbital Based Bond Strengths (COHP) for Chemical Bonding Analysis: Correlations, Applications and Limitations Chapter 8 Effect of Reactant Confinement in Zeolites on the 141 Reaction and Activation Entropy Chapter 9 Summary and Outlook 159 Appendices Supporting Information for Chapter 7 165 Acknowledgement 176 List of publications 179 Curriculum Vitae 181 V VI Chapter 1 Introduction Section 1.4. has been published in G. Li, C. Liu, R. Rohling, E.J.M. Hensen, E.A. Pidko, Lewis acid catalysis by Zeolites in C.R.A. Catlow, V. van Speybroeck & Rutger van Santen (Eds.), Modelling and Simulation in the Science of Micro- and Mesoporous Materials (p. 229-263). UK: Elsevier Ltd. 1 1.1. Zeolites Zeolites are crystalline aluminosilicates which are highly ordered, three- dimensional networks of molecular sized micropores. Zeolites were discovered in 1756 by the Swedish mineralogist Axel Fredrik Cronstedt. 1 He noticed that some minerals started moving upon heating due to the release of gas bubbles. He called these materials ‘boiling stones’ or ‘zeolites’, derived from the Greek words ζέω (zéō, to boil) and λίθος (líthos, stone). The material that he discovered, would gain significant importance in our society. For instance, zeolites are currently applied in the petrochemical industry for oil-processing, gas phase separation processes and even in household applications as water softeners in detergents. Over 225 topologically different natural and synthetic zeolites are known, of which three examples are shown in Figure 1.1a-c. 2 Figure 1.1a depicts part of the sodalite (SOD) zeolite, characterized by a regular stacking of spherical sodalite cages. Each sodalite cage consists of four- and six-membered rings (MR). In Figure 1.1b, the Faujasite (FAU) zeolite is shown, made up of sodalite-cages interconnected by double six-membered rings. Yet another example is given in Figure 1.1c. This depicts part of the silicalite-1 zeolite with MFI framework type. It is characterized by straight 10-MR intersecting with sinusoidal 10-MR channels. All zeolites consist - of [SiO 4] silicon- and [AlO 4] aluminum tetroxides which are the smallest building blocks. These species polymerize, crystallize and form pores and cages of molecular - dimensions. During the formation of these aluminosilicates, no two [AlO 4] can be neighbors. At least one [SiO 4] unit has to separate them. This is known as the Löwenstein rule of ‘aluminum avoidance’. 3 Consequently, the Si/Al-ratio of zeolites can never be lower than unity. Figure 1.1. The framework of SOD, FAU and MFI are shown in (a), (b) and (c), respectively. An acid site is schematically depicted in (d). The active site concentration depends on the aluminum-content, with in (e) a high-silica faujasite zeolite (Si/Al = 47) with an isolated site and in (f) a high active site density due to the aluminum-rich framework (Si/Al = 2.4). 2 The characteristic shape of the molecular sized cages and pores enable shape- selective chemical transformations of adsorbed guest molecules. Three types of shape-selectivity are distinguished, being reactant, transition state and product selectivity. 4 The first type of selectivity has a sieving effect: reactants with sizes exceeding those of the micropores and cages are not able to enter the zeolite. Transition state selectivity results in a specific reaction path being blocked due to geometrical constraints imposed by the framework around the active site on the transition state of that particular pathway. Product selectivity is based on specific products being trapped within the zeolite such that these compounds have to isomerize before they can leave the microporous host. The catalytic activity of aluminosilicates arises from their acidic properties. This is caused by the substitution of Si 4+ with Al 3+ , giving rise to a net negative charge. This net negative charge has to be compensated. Such charge compensation can be achieved by protons, alkali or d-block metal cations, or organic cations, Figure 1.1d. The amount of Al 3+ substitutions affects the framework basicity and the active site density (Figure 1.1e and Figure 1.1f). 5 If protons counterbalance the negative charge, the material acts as a strong Brønsted acid. When the charge is compensated by electrophilic cations capable of accepting electron density, such as alkali cations, the material acts as a Lewis acid. The advantage of zeolites holding either of the two types of sites, is that they become catalytically active. 1.2. Lignocellulosic Biomass for the Production of Aromatics Environmental and political concerns initiated research on the use of sustainable alternatives to the current fossil-based technologies for the production of chemicals, fuels and energy. Biomass-based resources, solar and wind power are examples of such sustainable resources. 6–11 The use of biomass for the production of chemicals is seen as a promising route for the replacement of current fossil-based resources. Biomass consists of ca. 40-80, 15-30 and 10-25 % percent of cellulose, hemicellulose and lignin, respectively. The exact distribution varies from source to source. 6,12 Cellulose is a crystalline polymer consisting of glucose monomers and provides structural rigidity to the plant cell walls. Hemicellulose is an amorphous polymer consisting of a wide variety of pentoses (xylose, arabinose) and hexoses (mannose, glucose) holding the cellulose fibers in place.
Recommended publications
  • Recent Advances in Titanium Radical Redox Catalysis
    JOCSynopsis Cite This: J. Org. Chem. 2019, 84, 14369−14380 pubs.acs.org/joc Recent Advances in Titanium Radical Redox Catalysis Terry McCallum, Xiangyu Wu, and Song Lin* Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States ABSTRACT: New catalytic strategies that leverage single-electron redox events have provided chemists with useful tools for solving synthetic problems. In this context, Ti offers opportunities that are complementary to late transition metals for reaction discovery. Following foundational work on epoxide reductive functionalization, recent methodological advances have significantly expanded the repertoire of Ti radical chemistry. This Synopsis summarizes recent developments in the burgeoning area of Ti radical catalysis with a focus on innovative catalytic strategies such as radical redox-relay and dual catalysis. 1. INTRODUCTION a green chemistry perspective, the abundance and low toxicity of Ti make its complexes highly attractive as reagents and Radical-based chemistry has long been a cornerstone of 5 1 catalysts in organic synthesis. synthetic organic chemistry. The high reactivity of organic IV/III radicals has made possible myriad new reactions that cannot be A classic example of Ti -mediated reactivity is the reductive ring opening of epoxides. This process preferentially readily achieved using two-electron chemistry. However, the − high reactivity of organic radicals is a double-edged sword, as cleaves and functionalizes the more substituted C O bond, the selectivity of these fleeting intermediates can be difficult to providing complementary regioselectivity to Lewis acid control in the presence of multiple chemotypes. In addition, promoted epoxide reactions. The synthetic value of Ti redox catalysis has been highlighted by their many uses in total catalyst-controlled regio- and stereoselective reactions involv- 6−10 ing free-radical intermediates remain limited,2 and the synthesis (Scheme 1).
    [Show full text]
  • Asymmetric Lewis Acid Catalysis Directed by Octahedral Rhodium Centrochirality† Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Asymmetric Lewis acid catalysis directed by octahedral rhodium centrochirality† Cite this: Chem. Sci.,2015,6,1094 Chuanyong Wang,‡a Liang-An Chen,‡b Haohua Huo,a Xiaodong Shen,a Klaus Harms,a Lei Gongb and Eric Meggers*ab A rhodium-based asymmetric catalyst is introduced which derives its optical activity from octahedral centrochirality. Besides providing the exclusive source of chirality, the rhodium center serves as a Lewis acid by activating 2-acyl imidazoles through two point binding and enabling a very effective asymmetric induction mediated by the propeller-like C2-symmetrical ligand sphere. Applications to asymmetric Michael additions (electrophile activation) as well as asymmetric a-aminations (nucleophile activation) Received 9th October 2014 are disclosed, for which the rhodium catalyst is found to be overall superior to its iridium congener. Due Accepted 7th November 2014 to its straightforward proline-mediated synthesis, high catalytic activity (catalyst loadings down to 0.1 DOI: 10.1039/c4sc03101f mol%), and tolerance towards moisture and air, this novel class of chiral-at-rhodium catalysts will likely www.rsc.org/chemicalscience to become of widespread use as chiral Lewis acid catalysts for a large variety of asymmetric transformations. Creative Commons Attribution 3.0 Unported Licence. Lewis acids are capable of activating a large variety of carbon- now wish to report for the rst time that rhodium can also serve heteroatom and carbon–carbon bond forming reactions and as the combined source of centrochirality and Lewis acidity in chiral Lewis acids have therefore become indispensable tools substitutionally labile octahedral metal complexes.
    [Show full text]
  • Research in the Department of Homogeneous Catalysis
    Homogeneous Catalysis – Overview Research in the Department of Homogeneous Catalysis Researchers in our department continue focusing on the development of new catalysis concepts within the areas of organocatalysis and transition metal catalysis. We explore new catalysts, expand the substrate scope of certain catalytic reactions, apply asymmetric catalysis in natural product and pharmaceutical synthesis, and study mechanisms of homogenous catalytic reactions (B. List, K.-R. Pörschke, M. Klußmann, N. Maulide). Since leadership of the department of homogenous catalysis was taken over by Professor Benjamin List in 2005, it has grown significantly from ca. 15 members to currently > 50 members, including the groups of Professor K.-R. Pörschke, who has been a group leader at the institute since two decades now, Dr. M. Klußmann (group leader since 2007), and now also of Dr. N. Maulide, who has joined the department in 2009. The group of Professor List primarily advances enantioselective organocatalysis as a fundamental approach complementing the already more advanced fields of biocatalysis and transition metal catalysis. The List group has a profound interest in developing “new reactions”, designs and identifies new principles for the development of organocatalysts, expands the scope of already developed catalysts such as proline, uses organocatalysis in the synthesis of natural products and pharmaceuticals, and also investigates the mechanism by which organocatalysts activate their substrates. Furthermore, in 2005 the group has first conceptualized and then significantly advanced another approach to asymmetric catalysis, asymmetric counteranion directed catalysis (ACDC). Initially, merely an idea, this approach has progressed within the department but now also at other institutions around the globe, into a truly general strategy for asymmetric synthesis and has found utility in organocatalysis but also in transition metal catalysis and Lewis acid catalysis.
    [Show full text]
  • L. Lewis Acid Catalysis
    L. LEWIS ACID CATALYSIS Background Twenty amino acids is not enough. The breadth of chemistry handled by enzymes requires that additional chemical species be employed in catalysis. So-called cofactors are non-amino acid components of enzymes that may be either associated or bonded to proteins and contribute to rate acceleration. Roughly one-third of all enzymes studied to date employ metal ion cofactors. Metal cations can play one of two roles; they may act as Lewis acids or as redox reagents. As Lewis acids, they function in a role similar to general acids, stabilizing negative charge in the enzyme active site. This chapter will focus on Lewis acid catalysis in reactions that employ water as a nucleophile. Lewis acid catalysis can be observed to play a role in either (a) activating water as a nucleophile or (b) activating the electrophile for nucleophilic attack. Activation of Water as a Nucleophile As noted earlier, water is a poor nucleophile due to the build up of positive charge on the oxygen that accompanies attack upon an electrophile. General base catalysis overcomes that issue by promoting deprotonation of the water molecule as it attacks. Another approach is to stabilize the hydroxide ion within the enzyme active site. While the metal ion itself is a Lewis acid (electron pair acceptor), the hydrated metal ion is a Bronsted acid (a proton donor) according to Equation L.1. n+ (n-1)+ + M(H2O)6 ⇔ M(H2O)5(OH) + H Eq L.1 In this instance Lewis acidity and Bronsted acidity are linked. The capacity of the metal cation to stabilize negative charge from a hydroxide (hydroxo in inorganic-speak) ligand is a reflection of the Lewis acidity of the cation.
    [Show full text]
  • Bulky Aluminum Lewis Acids As Novel Efficient and Chemoselective
    Erschienen in: Synlett ; 1999 (1999), 5. - S. 584-586 https://dx.doi.org/10.1055/s-1999-2667 584 Bulky Aluminum Lewis Acids as Novel Efficient and Chemoselective Catalysts for the Allylation of Aldehydes Andreas Marx, Hisashi Yamamoto* Graduate School of Engineering, Nagoya University, CREST, Chikusa, Nagoya 464-8603, Japan Fax +81(52)789-3222; E-mail: [email protected] position of the bulky phenol ligands resulted in further ac- Abstract: Bulky aluminum Lewis acids such as MAD and MABR celeration of the rate. Thus, methylaluminum bis(4-bro- are introduced as new efficient catalysts in substoichiometric 8,9 amounts for the allylation of aldehydes with allyltributylstannane. mo-2,6-di-tert-butyl-phenoxide) (MABR) performed In addition, chemoselective allylation of a less hindered or aromatic the reaction between 1 and 2 to yield the desired product aldehyde was achieved with catalytic amounts of the carbonyl re- 3 in excellent yield (93%) within 1 h at -20 °C (Table 1, ceptor aluminum tris(2,6-diphenyl-phenoxide) (ATPH). Entry 5). It turned out that MABR is the reagent of choice Keywords: allylation, allyltributylstannane, Lewis acid catalysis, for the catalytic allylation of aldehydes with allyltributyl- MABR, ATPH stannane. It is noteworthy that aluminum tris(2,6-diphe- nylphenoxide) (ATPH)8,9 which is known to complex carbonyl functionalities very tightly due to its bowl-like The Lewis acid promoted allylation of aldehydes using shape11 is capable of promoting catalytic allylation of ben- allystannanes or their less reactive counterparts allylsi- zaldehyde as well (Table 1, Entry 6). Bulkiness of the phe- lanes is a versatile synthetic tool.1 Numerous Lewis acids noxide ligands in the organoaluminum Lewis acids seems ◊ to be a prerequisite for catalytic activity and efficiency.
    [Show full text]
  • Lecture 13 Electrophilic Aromatic Substitution I 5.1 Principles
    NPTEL – Chemistry – Principles of Organic Synthesis Lecture 13 Electrophilic Aromatic Substitution I 5.1 Principles The reaction occurs in two stages: the electrophile adds to one carbon atom of the aromatic ring, yielding a carbocation in which the positive charge is delocalized, and a proton is then eliminated from the adduct. H E H E H E E -H E 5.2 Formation of Carbon-Carbon Bonds 5.2.1 Friedel-Crafts Acylation Acylation of aromatic rings is generally peroformed using acid chloride or acid anhydride as an acylating agent in the presence of Lewis acid. O Z RCOCl, AlCl Z 3 R H2O Mechanism AlCl3 RCOCl RC=O + AlCl4 H H RC=O COR Z Z COR Z Joint initiative of IITs and IISc – Funded by MHRD Page 1 of 26 NPTEL – Chemistry – Principles of Organic Synthesis In some circumstances, carboxylic acid is used as an acylating agent in the presence of a proton acid. HO OH O 2 PhOH, H2SO4 O O -H2O O O Phenolphthalein Indicator Intramolecular reactions are of particular value to construct cyclic systems. These reactions are usually carried out using dibasic acid anhydrides. For example, the synthesis -tetralone has been accomplished from benzene and succinic anhydride using AlCl3 in 80% yield. O O OH OH AlCl3 reduction + O O O O SOCl2 Cl AlCl3 O O Joint initiative of IITs and IISc – Funded by MHRD Page 2 of 26 NPTEL – Chemistry – Principles of Organic Synthesis Examples: 5 mol% Tb(OTf)3 CO H 2 PhCl O D.-M. Cui, C. Zhang, M. Kawamura, S.
    [Show full text]
  • Template for Electronic Submission to ACS Journals
    Max-Planck-Institut für Kohlenforschung Journal Article published in: J. Am. Chem. Soc., 2018, 140, 12671–12676, ACS Publications https://doi.org/10.1021/jacs.8b07092 This article may be used for non-commercial purposes. Scalable and Highly Diastereo- and Enantioselective Catalytic Diels−Alder Reaction of α,β-Unsaturated Methyl Esters Tim Gatzenmeier, Mathias Turberg, Diana Yepes, Youwei Xie, Frank Neese, Giovanni Bistoni and Benjamin List* Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany *Correspondence to: [email protected] ABSTRACT: Despite tremendous advances in enantiose- unsaturated N-acyl oxazolidinones, aldehydes, ketones, lective catalysis of the Diels–Alder reaction, the use of sim- and trifluoroethyl esters as dienophiles. Also some simple, ple α,β-unsaturated esters, one of the most abundant and unactivated α,β-unsaturated esters, such as methyl or ethyl useful class of dienophiles, is still severely limited in scope acrylate and crotonate, in combination with cyclopentadiene due to their low reactivity. We report here a catalytic asym- can engage in highly enantioselective Diels–Alder reactions metric Diels–Alder methodology for a large variety of α,β- catalyzed either by chiral alkyldichloroboranes introduced unsaturated methyl esters and different dienes based on by Hawkins6 or Corey’s cationic oxazaborolidines (CBS),5c,7 extremely reactive silylium imidodiphosphorimidate (IDPi) which undoubtedly represent the most versatile family of Lewis acids. Mechanistic insights from accurate domain- chiral Lewis acids to date. In addition, various organocata- based local pair natural orbital coupled-cluster (DLPNO- lytic approaches have been described for α,β-unsaturated CCSD(T)) calculations rationalize the catalyst control and aldehydes and ketones via asymmetric iminium ion or stereochemical outcome.
    [Show full text]
  • Studies of the Catalytic Activity of Iron (III) Porphyrins for the Protection of Carbonyl Groups in Homogeneous Media
    catalysts Article Studies of the Catalytic Activity of Iron (III) Porphyrins for the Protection of Carbonyl Groups in Homogeneous Media Gabriel Kaetan Baio Ferreira, Charles Carvalho and Shirley Nakagaki * Laboratório de Bioinorgânica e Catálise, Departamento de Química—Centro Politécnico, Universidade Federal do Paraná (UFPR), Curitiba PR 81531980, Brazil; [email protected] (G.K.B.F.); [email protected] (C.C.) * Correspondence: [email protected]; Tel.: +55-41-3361-3180 Received: 8 March 2019; Accepted: 31 March 2019; Published: 4 April 2019 Abstract: The protection of carbonyl groups that produce acetal products is a key reaction in fine chemistry due to the high reactivity of aldehydes and ketones in certain media. This process can be catalyzed by protic or Lewis acids. Since metalloporphyrins often possess free axial positions in the central metal, they can be applied as Lewis acid catalysts, allowing the additional coordination of substrates. Therefore, three ferric complexes were selected to be evaluated as catalysts for the acetalization of benzaldehyde with ethanol and triethyl orthoformate (TEOF) in the homogeneous phase: (i) 5,10,15,20-tetrakis(phenylporphyrin) iron (III) chloride (Fe0F); (ii) 5,10,15,20-tetrakis(2,6-difluorphenylporphyrin) iron (III) chloride (Fe2F); and (iii) 5,10,15,20-tetrakis (pentafluorphenylporphyrin) iron (III) chloride (Fe5F). The complex Fe5F showed the highest catalytic activity, and kinetic parameters were evaluated for this reaction, exhibiting an increasing rate of reaction of about 550-fold in comparison with the non-catalyzed reaction. The reaction scope was also investigated, and Fe5F was found to be active for the acetalization of benzaldehyde and acetophenone, with different protective agents such as alcohols, glycols, glycerol, and epoxide being selective for the formation of cyclic acetals.
    [Show full text]
  • New Conceptual Understanding of Lewis Acidity, Coordinate Covalent Bonding, and Catalysis Joshua A
    Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations Summer 2009 New Conceptual Understanding of Lewis Acidity, Coordinate Covalent Bonding, and Catalysis Joshua A. Plumley Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Plumley, J. (2009). New Conceptual Understanding of Lewis Acidity, Coordinate Covalent Bonding, and Catalysis (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/1052 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. NEW CONCEPTUAL UNDERSTANDING OF LEWIS ACIDITY, COORDINATE COVALENT BONDING, AND CATALYSIS A Dissertation Submitted to the Bayer School of Natural and Environmental Sciences Duquesne University In partial fulfillment of the requirements for the degree of Doctor of Philosophy By Joshua A. Plumley August 2009 NEW CONCEPTUAL UNDERSTANDING OF LEWIS ACIDITY, COORDINATE COVALENT BONDING, AND CATALYSIS By Joshua A. Plumley Approved August 2009 __________________________________ __________________________________ Jeffrey D. Evanseck Ellen Gawalt Professor of Chemistry and Biochemistry Assistant Professor of Chemistry and Dissertation Director Biochemistry Committee Member Committee Member __________________________________ __________________________________ Douglas J. Fox
    [Show full text]
  • Novel Lewis Acidic Zeolites As Heterogeneous Catalysts for Liquid Phase Chemistry
    Novel Lewis acidic zeolites as heterogeneous catalysts for liquid phase chemistry By Abbas Al-Nayili Submitted to the Department of Chemistry In Partial Fulfilment of the Requirements for the Degree of Doctor Philosophy in Chemistry at the Cardiff Catalysis Institute (CCI) Supervisor: Dr. CERI HAMMOND 2017 Declaration This work has not been submitted in substance for any other degree or award at ths or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed …………………………… (candidate) Date …………………..... Statement 1 This thesis is being submitted in partial fulfilment of the requirements for the degre of ……PhD……….. (insert MCh, MD, MPhil, PhD, etc, as appropriate). Signed …………………………… (candidate) Date …………………..... Statement 2 This thesis is the result of my own independent work/investigation, except where otherwise stated, and the thesis has not been edited by a third party beyond what is permitted by Cardiff University’s Policy on the Use of Third Party Editors by Research Degree Students. Other sources are acknowledged by explicit references. The views expressed are my own. Signed …………………………… (candidate) Date …………………..... Statement 3 I hereby give consent for my thesis, if accepted, to be available online in the University’s Open Access repository and for inter -library loan, and for the title and summary to be made available to outside organisations. Signed …………………………… (candidate) Date …………………..... Statement 4: Previously Approved Bar on Access. I hereby give consent for my thesis, if accepted, to be available online in the Univers ity’s Open Access repository and for inter -library loans after expiry of a bar on access previously approved by the Academic Standards and Quality Committee.
    [Show full text]
  • Cornerstone Works for Catalytic 1,3-Dipolar Cycloaddition Reactions
    HETEROCYCLES, Vol. 82, No. 1, 2010 87 HETEROCYCLES, Vol. 82, No. 1, 2010, pp. 87 - 200. © The Japan Institute of Heterocyclic Chemistry Received, 27th January, 2010, Accepted, 3rd August, 2010, Published online, 10th August, 2010 DOI: 10.3987/REV-10-666 CORNERSTONE WORKS FOR CATALYTIC 1,3-DIPOLAR CYCLOADDITION REACTIONS Shuji Kanemasa* Institute for Materials Chemistry and Engineering, Advanced Education in Utilization of Fossil Resources, Kyushu University, 6-1 Kasugakoen, Kasuga 816-8580, [email protected]) Abstract – This review covers the following subjects: (1) The chemistry of N-metalated azomethine ylide as a new 1,3-dipole containing a metal atom is studied. This 1,3-dipole, generated from (N-alkylideneamino)alkanoates upon treatment with a Lewis acid and amine base, undergoes rapid 1,3-dipolar cyclo- additions toward electron-deficient alkenes. Especially, !,"-unsaturated carbonyl substrates show high rate acceleration to give pyrrolidine-2,4-dicarboxylates in a highly regio- and endo-selective manner. (2) This 1,3-dipolar cycloaddition reaction of (N-alkylideneamino)acetate can be switched into anti-selective Michael addition reaction by modification of substrate structures as well as reaction conditions. (3) Two types of heterocyclic chiral auxiliaries are demonstrated for the asymmetric 1,3-dipolar cycloadditions. One types are attached at the "-position of !,"-unsaturated esters. The resulting chiral !,"-unsaturated esters are successfully applied to the stereoselective asymmetric cycloadditions of N-metalated azomethine ylides. The other types include 4-benzyl-2,2,5,5-tetramethyloxazolidine-3-acrylamides which are based on the conformational control of the acrylamide reaction site and that of steric shielding of 4-benzyl amoiety.
    [Show full text]
  • Asymmetric Catalysis in Aqueous Media*
    Pure Appl. Chem., Vol. 79, No. 2, pp. 235–245, 2007. doi:10.1351/pac200779020235 © 2007 IUPAC Asymmetric catalysis in aqueous media* Shu– Kobayashi Graduate School of Pharmaceutical Sciences, The University of Tokyo, The HFRE Division, ERATO, Japan Science and Technology Agency (JST), Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Abstract: Lewis acid catalysis has attracted much attention in organic synthesis because of unique reactivity and selectivity attained under mild conditions. Although various kinds of Lewis acids have been developed and applied in industry, these Lewis acids must be gener- ally used under strictly anhydrous conditions. The presence of even a small amount of water handles the reactions owing to preferential reactions of the Lewis acids with water rather than the substrates. In contrast, rare earth and other metal complexes have been found to be water- compatible. Several catalytic asymmetric reactions in aqueous media, including hydroxy- methylation of silicon enolates with an aqueous solution of formaldehyde in the presence of Sc(OTf)3–chiral bipyridine ligand or Bi(OTf)3–chiral bipyridine ligand, Sc- or Bi-catalyzed asymmetric meso-epoxide ring-opening reactions with amines, and asymmetric Mannich- type reactions of silicon enolates with N-acylhydrazones in the presence of a chiral Zn cata- lyst have been developed. Water plays key roles in these asymmetric reactions. Keywords: reactions in aqueous media; Lewis acids; catalytic asymmetric reactions; hydroxymethylation of silicon enolates; Sc(OTf)3–chiral bipyridine ligand. INTRODUCTION Organic reactions in aqueous media are of current interest owing to the key role played by water as a solvent for green chemistry [1].
    [Show full text]