The Use of Camera Trapping to Monitor Threatened Forest Antelope Species

Total Page:16

File Type:pdf, Size:1020Kb

The Use of Camera Trapping to Monitor Threatened Forest Antelope Species 11 The Use of Camera‐Traps to Monitor Forest Antelope Species Rajan Amin1, Andrew E. Bowkett2, and Tim Wacher1 1Conservation Programmes, Zoological Society of London, United Kingdom 2Field Conservation and Research Department, Whitley Wildlife Conservation Trust, Paignton Zoo, United Kingdom Introduction Antelopes and other artiodactyl species constitute a significant component of forest and woodland ecosystems both in terms of biomass (White, 1994) and ecological services (Feer, 1995). Many species are increasingly threatened by habitat loss and hunting for bushmeat (East, 1999). Forest antelopes are primary targets for the trade in bushmeat (Wilkie & Carpenter, 1999; Fa et al., 2005) and have undergone major local and regional declines as a result (e.g., van Vliet et al., 2007). Therefore, understanding the ecology of forest antelopes and monitoring their populations are critical conservation needs. However, forest antelopes are difficult to monitor using traditional methods for forest mammals as many species are solitary and inactive during the day, while all species are shy and spend long periods concealed in dense vegetation. In addressing these challenges, biologists have started to employ modern popula- tion sampling methods. In this chapter, we provide a brief summary of conventional methods, and their limitations, for studying forest antelopes. We then discuss the use of remote photographic sampling techniques that are increasingly being employed in studies of forest antelopes. We conclude with two case studies involving camera‐traps. The first case study involves the critically endangered Aders’ duiker (Cephalophus adersi) where camera‐trapping has led directly to further research and advocacy for improved conservation of their habitats while also providing a tool for long‐term population monitoring. The second Antelope Conservation: From Diagnosis to Action, First Edition. Edited by Jakob Bro-Jørgensen and David P. Mallon. © 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd. Camera-Trapping in Forest Antelope Management 191 case study is in a montane forest ear‐marked for mining development in West Africa. It uses camera‐traps to establish a baseline on medium-to-large mammal diversity, of which antelopes form a significant component. Sampling forest antelopes using conventional methods Standard methods for monitoring antelope populations in savanna habitats, such as aerial or road counts, are clearly not applicable in dense forests. Much useful information on forest antelope taxonomy, physiology, and feeding ecology has been obtained through examination of hunted or culled specimens (e.g., Hofman & Roth, 2003), and in cases where the number of animals removed by hunting is known, removal methods to monitor population size can be used, such as catch‐per‐unit‐effort (Lancia & Bishir, 1996). However, such informa- tion requires close cooperation with hunters, which may not be feasible or legal, and such sampling is not suitable for threatened species. Behavioural sampling of forest antelope under natural conditions is also difficult. Whereas captive studies have helped provide insights into behaviour (Bowman & Plowman, 2002) and diet (Plowman, 2002), such studies are limit ed by the constraints imposed by captivity and few forest antelope species are currently kept in viable numbers for long‐term management (Rohr & Pfefferkorn, 2003). Accurate species identification is a critical requirement for surveys, and yet even this can be difficult when sightings are rare, or typically brief, as with forest antelope. Field signs, such as spoor and faecal deposits, can provide an indirect measure of presence or relative abundance, but identification to species still needs to be reliable. Dung counts are the most commonly employed indirect measure of forest antelope abundance (e.g., Koster & Hart, 1988; Plumptre & Harris, 1995; Nielsen, 2006), but identification of dung to species has proven to be inaccurate when tested genetically (van Vliet et al., 2008; Bowkett et al., 2009; Faria et al., 2011), even when based on statistical analysis of pellet measurements (Bowkett et al., 2013). Extrapolating absolute abundance estimates from records/counts of animals or field signs requires a statistical framework to incorporate the probability of detection (Mills, 2013). Such frameworks typically require animals to be iden- tifiable as individuals, for instance, capture‐recapture methods (Nichols & Dickman, 1996), or be reliably detected when close to a sampling point, for instance, distance‐sampling (Buckland et al., 2001). As noted above, neither of these conditions is easily met for forest antelope. Documented approaches to estimating forest antelope abundance include line transect surveys (Struhsaker, 1997; Rovero & Marshall, 2004; Viquerat et al., 2012), drive counts (Bowland, 1990; Noss, 1999), territory mapping (Bowland & Perrin, 1994), and extrapo- lation from dung counts (Schmidt, 1983; Plumptre & Harris, 1995). 192 Rajan Amin et al. All these survey methods have limitations for long‐term monitoring. Line transect methods require sufficient sightings for accurate density estimates and are difficult to conduct at night when many forest antelope are most active (although see Waltert et al., 2006). Forest antelope are also likely to violate the distance‐sampling assumption that animals located at zero distance from the transect line are always detected before being disturbed (Buckland et al., 2001). Drive counts risk injury to the animals and may be expensive to conduct, as they require multiple skilled people to mind the nets. Territory mapping usually involves radio‐collaring and is therefore more applicable to research than moni- toring. Extrapolation from dung counts requires accurate faecal deposition and decomposition rates amongst other assumptions (Lunt et al., 2007). An innovative potential survey tool is the use of fake alarm calls to attract duikers, as used by traditional hunters in some areas (van Vliet et al., 2009). Validation of this method requires data on how far individuals travel to inves- tigate such calls and how consistent is their response, as has been investigated in playback survey methods for birds (e.g., Ratcliffe et al., 1998). The modern development of non‐invasive genetics, the analysis of DNA from materials such as saliva or dung (Taberlet et al., 1999), has numerous potential applications to forest antelope monitoring (see also Chapter 9). Amplification of species‐specific mitochondrial DNA fragments allows species identification from dung or bushmeat samples (Eaton et al., 2010; Ntie et al., 2010a). Such an approach is analogous to DNA barcoding (Hebert et al., 2003), although the standard universal barcoding gene (COX1) does not dif- ferentiate some duikers from their sister species (Johnston et al., 2011), so an alternative genetic marker has to be used (e.g., Ntie et al., 2010a). Genetic identification of dung allows accurate distribution mapping and validation of field identification used for abundance estimates (van Vliet et al., 2008; Bowkett et al., 2013). Identification of individual animals from faecal DNA is possible using nuclear microsatellite markers (Ntie et al., 2010b; Akomo‐Okoue et al., 2013). For forest antelope, this would allow abundance to be estimated by territory mapping or through a capture‐recapture framework wherein samples from the same individual collected in different sessions are treated as recaptures (e.g., Zhan et al., 2006). Variable genetic markers can also be used to monitor effec- tive population size (Schwartz et al., 1998) as well as to study many aspects of forest antelope biology including genetic diversity, parentage, and pedigree (Beja‐Pereira et al., 2009). Despite their many advantages, very few wildlife authorities or land managers have the resources to employ non‐invasive genetics as part of rou- tine monitoring programs. Even though the cost of genetic studies continues to fall ov erall (Hall, 2013) and there is increasing expertise in conservation genetics in Africa (Anthony et al., 2012), conservation managers are often vastly under‐resourced (Bruner et al., 2004). Therefore, while non‐invasive Camera-Trapping in Forest Antelope Management 193 genetic research on forest antelope will hopefully expand rapidly to provide new records and answer key questions, regular genetic monitoring does not appear feasible in the short term. Sampling forest antelopes using camera‐traps The use of camera‐trapping as a survey tool for medium‐to‐large terrestrial mammals has become increasingly common over recent years (Ahumada et al., 2011; O’Connell et al., 2011) and is a particularly suitable technique for longer‐term monitoring in forest habitats (Wacher & Amin, 2015; Gompper et al., 2006; Lyra‐Jorge et al., 2008; Roberts, 2011; Silveira et al., 2003). The survey method consists of remotely stationed heat‐and‐motion sensitive cameras that take photographs or videos of passing animals. Digital cameras operating 24‐hours a day are the standard (O’Connell et al., 2011). At night, infrared flash photography that is not visible to animals can be used to minimise disturbance to the animals. The strengths and also limitations of camera‐traps for sampling forest antelopes are summarised in Table 1. Table 1 Strengths and limitations of camera‐traps for sampling forest antelopes. Strengths Limitations Cost‐effective in consideration of Initial high cost of purchasing equipment effort vs. data generation (although this cost is offset over time) Operates
Recommended publications
  • Standards for Ruminant Sanctuaries
    Global Federation of Animal Sanctuaries Standards For Ruminant Sanctuaries Version: April 2019 ©2012 Global Federation of Animal Sanctuaries Global Federation of Animal Sanctuaries – Standards for Ruminant Sanctuaries Table of Contents INTRODUCTION...................................................................................................................................... 1 GFAS PRINCIPLES ................................................................................................................................................... 1 ANIMALS COVERED BY THESE STANDARDS ............................................................................................................ 1 STANDARDS UPDATES ........................................................................................................................................... 2 RUMINANT STANDARDS ........................................................................................................................................ 2 RUMINANT HOUSING ........................................................................................................................... 2 H-1. Types of Space and Size ..................................................................................................................................... 2 H-2. Containment ...................................................................................................................................................... 5 H-3. Ground and Plantings ........................................................................................................................................
    [Show full text]
  • Fitzhenry Yields 2016.Pdf
    Stellenbosch University https://scholar.sun.ac.za ii DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: March 2016 Copyright © 2016 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za iii GENERAL ABSTRACT Fallow deer (Dama dama), although not native to South Africa, are abundant in the country and could contribute to domestic food security and economic stability. Nonetheless, this wild ungulate remains overlooked as a protein source and no information exists on their production potential and meat quality in South Africa. The aim of this study was thus to determine the carcass characteristics, meat- and offal-yields, and the physical- and chemical-meat quality attributes of wild fallow deer harvested in South Africa. Gender was considered as a main effect when determining carcass characteristics and yields, while both gender and muscle were considered as main effects in the determination of physical and chemical meat quality attributes. Live weights, warm carcass weights and cold carcass weights were higher (p < 0.05) in male fallow deer (47.4 kg, 29.6 kg, 29.2 kg, respectively) compared with females (41.9 kg, 25.2 kg, 24.7 kg, respectively), as well as in pregnant females (47.5 kg, 28.7 kg, 28.2 kg, respectively) compared with non- pregnant females (32.5 kg, 19.7 kg, 19.3 kg, respectively).
    [Show full text]
  • Survey Captures First-Ever Photos of Endangered Jentink's Duiker In
    GNUSLETTER VOL. 30 NO. 1 ANTELOPELOPE SPECIALIST GRGROUP Volume 30 Number 2 September 2012 FROM THE EDITOR... The Antelope Specialist Group is pleased to present GNUSLETTER Volume 30 #2. This edition includes some incredibly positive news In this Issue... for antelopes and conservation in Africa includ- ing John Newby’s letter announcing the Termit From the ASG Chairs . and Tin Toumma National Nature and Cultural Reserve in Niger, and the inauguration of the From the Gnusletter editor . Boma National Park headquarters in South Su- dan from the Wildlife Conservation Society press This issue: Mai Mai Rebels Overun Okapi Wildlife Reserve Headquarters, S. Shurter release. Conversely the report of the sacking of Epulu and the destruction of the headquarters of Recent Reports the Okapi Wildlife Reserve by elephant poach- ers in the DR Congo poignantly illustrates the • Tin Toumma National Nature and Cultural Reserve, J. Newby, Sahara Conservation dangerous war for control of wildlife and natural Fund resources in Africa. • Boma National Park Headquarters inauguration, WCS press release Also included in this volume are some reports • Antelopes in S. Somalia, 1975-1975, ASG report Summary (N.A.O. Abel from Sierre Leone on Jentink’s duiker and & M.E. Kille) gazelles in Iraq. Two very nice historic reviews (Paul Evangelista in Ethiopia and Abel and Kille • The Natural and Unnatural History of the Mountain Nyala, P. Evangelista in Somalia) were submitted concerning antelopes • Jentink’s Duiker Camera Trap Photos in Sierra Leone, R. Garriga, A.McKenna in the Horn of Africa. • Notes on the antelopes of Iraq, Omar Fadhil Al-Sheikhly Finally, GNUSLETTER is now registered with • Antelopes in Stamps, D.
    [Show full text]
  • African Mammals (Tracks)
    L Gi'. M MM S C A POCKET NATURALISru GUIDE HOOFED MAMMALS Dik-Dik Madoqua spp . To 17 in. (43 cm) H Small antelope has a long, flexible snout. .,9-10 in. Common Hippopotamus Klipspringer Hippopotamus amphibius Oreatragus oreotroqus To 5 ft. (1.5 m) H To 2 ft. (60 cm) H Has dark 'tear stains' at the corner of the eyes. Downward-pointing hooves give the impression it walks on 'tiptoe'. Found in rocky habitats. White Black Steenbok Raphieerus eampestris 1 in. White Rhinoceros To 2 ft. (60 cm) H Large ears are striped inside. Ceratotherium simum Muzzle has a dark stripe. To 6 ft. (l.B m) H 9-10 in. t Has a square upper lip. The similar black rhinoceros has a , pointed, prehensile upper lip. t . eWhite '~'rBlack . Common Duiker " . Sylvieapra grimmia ". To 28 in. (70 cm) t1 t Has a prominent black 1 in. 'a: stripe on its snout. Inhabits woodlands Hyena lion and shrubby areas. t Forefoot , e+ Oribi 24-28 in. Ourebia ourebi African Elephant To 2 ft. (60 em) H Note short tail and black 1.5 in. Loxodonto africana Hind foot spot below ears. Inhabits To 14 ft. (4.2 m) H grassland savannas. Hind print is oval-shaped. t This guide provides simplified field reference to familiar animal tracks. It is important to note that tracks change depending on their age, the surface Hippopotamus they are made on, and the animal's gait (e.g., toes are often splayed when Springbok running). Track illustrations are ordered by size in each section and are not Antidorcas marsupialis To 30 in.
    [Show full text]
  • On the Complexities of Using New Visual Technologies to Communicate About Wildlife Communication
    Verma A, Van der Wal R, Fischer A. Microscope and spectacle: On the complexities of using new visual technologies to communicate about wildlife communication. Ambio 2015, 44(Suppl. 4), 648-660. Copyright: © The Author(s) 2015 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. DOI link to article: http://dx.doi.org/10.1007/s13280-015-0715-z Date deposited: 05/12/2016 This work is licensed under a Creative Commons Attribution 4.0 International License Newcastle University ePrints - eprint.ncl.ac.uk Ambio 2015, 44(Suppl. 4):S648–S660 DOI 10.1007/s13280-015-0715-z Microscope and spectacle: On the complexities of using new visual technologies to communicate about wildlife conservation Audrey Verma, Rene´ van der Wal, Anke Fischer Abstract Wildlife conservation-related organisations well-versed in crafting public outreach and awareness- increasingly employ new visual technologies in their raising activities. These range from unidirectional educa- science communication and public engagement efforts. tional campaigns and advertising and branding projects, to Here, we examine the use of such technologies for wildlife citizen science research with varying degrees of public conservation campaigns. We obtained empirical data from participation, the implementation of interactive media four UK-based organisations through semi-structured strategies, and the expansion of modes of interpretation to interviews and participant observation.
    [Show full text]
  • Wildlife and Wild Places in Mozambique K
    Wildlife and Wild Places in Mozambique K. L Tinley, A. J. Rosinha, Jose L. P. Lobao Tello and T. P. Dutton This account of the national parks, reserves and other places worthy of pro- tection in Mozambique gives some idea of the wealth of wildlife in this newly independent country. One special reserve has 25,000 buffaloes—the largest concentration in the world. Protected conservation areas in Mozambique fall into six categories: 1. Parques nacionais - national parks; 2. Reservas especiais - special game reserves; 3. Reservas parciais - partial reserves; 4. Regimen de vigilancia - fauna protection zones; 5. Coutadas - hunting and photographic safari areas, normally run on a private concession basis; 6. Reservas florestais - forest reserves. Some unique areas are still outside this system but have been recommended for inclusion, together with other ecosystems worthy of inclusion in the future. Game farming or ranching is attracting considerable interest; one private and one government scheme have been proposed. NATIONAL PARKS 1.* Parque Nacional da Gorongosa (c. 3770 sq km). Situated at the southern limit of the great rift valley with an extensive flood plain and associated lakes, this park includes Brachystegia woodland Acacia and Combretum savanna. Sharply rising inselbergs (volcanic protrusions) are also a feature. The ungulates are typical floodplain species, including elephant (abundant), buffalo, wildebeest, waterbuck, zebra, reedbuck, impala and oribi; on the elevated woodland and savanna habitat there are black rhino, eland, Lichten- stein's hartebeest, sable, kudu, nyala, Sharpe's grysbok, suni, blue and grey duiker, and klipspringer are common on rock outcrops; lion, leopard and hippopotamus are abundant. Both land and water birds are prolific and diverse, and crocodiles are very common.
    [Show full text]
  • Hippotragus Equinus – Roan Antelope
    Hippotragus equinus – Roan Antelope authorities as there may be no significant genetic differences between the two. Many of the Roan Antelope in South Africa are H. e. cottoni or equinus x cottoni (especially on private properties). Assessment Rationale This charismatic antelope exists at low density within the assessment region, occurring in savannah woodlands and grasslands. Currently (2013–2014), there are an observed 333 individuals (210–233 mature) existing on nine formally protected areas within the natural distribution range. Adding privately protected subpopulations and an Cliff & Suretha Dorse estimated 0.8–5% of individuals on wildlife ranches that may be considered wild and free-roaming, yields a total mature population of 218–294 individuals. Most private Regional Red List status (2016) Endangered subpopulations are intensively bred and/or kept in camps C2a(i)+D*†‡ to exclude predators and to facilitate healthcare. Field National Red List status (2004) Vulnerable D1 surveys are required to identify potentially eligible subpopulations that can be included in this assessment. Reasons for change Non-genuine: While there was an historical crash in Kruger National Park New information (KNP) of 90% between 1986 and 1993, the subpopulation Global Red List status (2008) Least Concern has since stabilised at c. 50 individuals. Overall, over the past three generations (1990–2015), based on available TOPS listing (NEMBA) Vulnerable data for nine formally protected areas, there has been a CITES listing None net population reduction of c. 23%, which indicates an ongoing decline but not as severe as the historical Endemic Edge of Range reduction. Further long-term data are needed to more *Watch-list Data †Watch-list Threat ‡Conservation Dependent accurately estimate the national population trend.
    [Show full text]
  • Okapia Johnstoni), Using Non-Invasive Genetic Techniques
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Enhancing knowledge of the ecology of a highly elusive species, the okapi (Okapia johnstoni), using non-invasive genetic techniques David W. G. Stanton*; School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom Ashley Vosper; Address? Stuart Nixon; Address? John Hart; Lukuru Foundation, Projet Tshuapa-Lomami-Lualaba (TL2), 1235 Ave Poids Lourds, Kinshasa, DRC Noëlle F. Kümpel; Conservation Programmes, Zoological Society of London, London NW1 4RY, United Kingdom Michael W. Bruford; School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom John G. Ewen§; Institute of Zoology, Zoological Society of London, London NW1 4RY, United Kingdom Jinliang Wang§; Institute of Zoology, Zoological Society of London, London NW1 4RY, United Kingdom *Corresponding author, §Joint senior authors ABSTRACT Okapi (Okapia johnstoni) are an even-toed ungulate in the family Giraffidae, and are endemic to the Democratic Republic of Congo (DRC). Very little is known about okapi ecology in the wild. We used non-invasive genetic methods to examine the social structure, mating system and dispersal for a population of okapi in the Réserve de Faune à Okapis, DRC. Okapi individuals appear to be solitary, although there was some evidence of genetically similar individuals being associated at a very small spatial scale. There was no evidence for any close spatial association between groups of related or unrelated okapi but we did find evidence for male-biased dispersal. Okapi are genetically polygamous or promiscuous, and are also likely to be socially polygamous or promiscuous. An isolation by distance pattern of genetic similarity was present, but appears to be operating at just below the spatial scale of the area investigated in the present study.
    [Show full text]
  • Cephalophus Natalensis – Natal Red Duiker
    Cephalophus natalensis – Natal Red Duiker listed two subspecies, including C. n. natalensis from KwaZulu-Natal (KZN), eastern Mpumalanga and southern Mozambique, and C. n. robertsi Rothschild 1906 from Mozambique and the regions north of the Limpopo River (Skinner & Chimimba 2005). Assessment Rationale This species is restricted to forest patches within northeastern South Africa and Swaziland. They can occur at densities as high as 1 individual / ha. In KZN, there are an estimated 3,046–4,210 individuals in protected areas alone, with the largest subpopulation of 1,666–2,150 Sam Williams individuals occurring in iSimangaliso Wetland Park (2012– 2014 counts; Ezemvelo KZN Wildlife unpubl. data). This Regional Red List status (2016) Near Threatened subpopulation is inferred to have remained stable or B2ab(ii,v)* increased over three generations (2000–2015), as the previous assessment (2004, using count data from 2002) National Red List status (2004) Least Concern estimated subpopulation size as 1,000 animals. While no Reasons for change Non-genuine change: other provincial subpopulation estimates are available, New information they are regularly recorded on camera traps in the Soutpansberg Mountains of Limpopo and the Mariepskop Global Red List status (2016) Least Concern forests of Mpumalanga, including on private lands outside protected areas (S. Williams unpubl. data). TOPS listing (NEMBA) None Reintroductions are probably a successful conservation CITES listing None intervention for this species. For example, reintroduced individuals from the 1980/90s are still present in areas of Endemic No southern KZN and are slowly moving into adjacent *Watch-list Data farmlands (Y. Ehlers-Smith unpubl. data). The estimated area of occupancy, using remaining (2013/14 land cover) Although standing only about 0.45 m high forest patches within the extent of occurrence, is 1,800 (Bowland 1997), the Natal Red Duiker has km2.
    [Show full text]
  • Connochaetes Gnou – Black Wildebeest
    Connochaetes gnou – Black Wildebeest Blue Wildebeest (C. taurinus) (Grobler et al. 2005 and ongoing work at the University of the Free State and the National Zoological Gardens), which is most likely due to the historic bottlenecks experienced by C. gnou in the late 1800s. The evolution of a distinct southern endemic Black Wildebeest in the Pleistocene was associated with, and possibly driven by, a shift towards a more specialised kind of territorial breeding behaviour, which can only function in open habitat. Thus, the evolution of the Black Wildebeest was directly associated with the emergence of Highveld-type open grasslands in the central interior of South Africa (Ackermann et al. 2010). Andre Botha Assessment Rationale Regional Red List status (2016) Least Concern*† This is an endemic species occurring in open grasslands in the central interior of the assessment region. There are National Red List status (2004) Least Concern at least an estimated 16,260 individuals (counts Reasons for change No change conducted between 2012 and 2015) on protected areas across the Free State, Gauteng, North West, Northern Global Red List status (2008) Least Concern Cape, Eastern Cape, Mpumalanga and KwaZulu-Natal TOPS listing (NEMBA) (2007) Protected (KZN) provinces (mostly within the natural distribution range). This yields a total mature population size of 9,765– CITES listing None 11,382 (using a 60–70% mature population structure). This Endemic Yes is an underestimate as there are many more subpopulations on wildlife ranches for which comprehensive data are *Watch-list Threat †Conservation Dependent unavailable. Most subpopulations in protected areas are stable or increasing.
    [Show full text]
  • MAMMALIAN SPECIES NO. 225, Pp. 1-7,4 Ñgs
    MAMMALIAN SPECIES NO. 225, pp. 1-7,4 ñgs. CephalophuS SylviCultOr. By Susan Lumpkin and Karl R. Kranz Published 14 November 1984 by The American Society of Mammalogists Cephalophus sylvicultor (Afzelius, 1815) mesopterygoid fossae in C. spadix are narrow and parallel-sided, Yellow-backed Duiker but in C. sylvicultor they are wedge-shaped (Ansell, 1971). In addition, C. jentinki has straight horn cores, swollen maxillary re- Antilope silvicultrix Afzelius, 1815:265. Type locality "in monti- gions, rounded edges on the infraorbital foramina, posterior notches bus Sierrae Leone & regionibus Sufuenfium fluvios Pongas & of the palate of unequal width, secondary inflation of the buUae, Quia [Guinea] adjacentibus frequens" (implicitly restricted to and inguinal glands, whereas C. sylvicultor has curved horn cores, Sierra Leone by Lydekker and Blaine, 1914:64). unswoUen maxillary regions, sharp edges on the infraorbital foram- Cephalophus punctulatus Gray, 1850:11. Type locality Sierra ina, posterior notches of the palate of equal width, no secondary Leone. inflation of the buUae, and no inguinal glands (Ansell, 1971 ; Thom- Cephalophus longiceps Gray, 1865:204. Type locality "Gaboon" as, 1892). It is not known whether inguinal glands are present in (Gabon). C. spadix (Ansell, in litt.). In a recent systematic revision of the Cephalophus ruficrista Bocage, 1869:221. Type locality "l'intéri- genus. Groves and Grubb (1981) concluded that C. spadix and C. eur d'Angola" (interior of Angola). sylvicultor constituted a superspecies. Cephalophus melanoprymnus Gray, 1871:594. Type locality "Ga- boon" (Gabon). GENERAL CHARACTERS. The largest of the Cephalo- Cephalophus sclateri Jentink, 1901:187. Type locality Grand Cape phinae, the yellow-backed duiker has a convex back, higher at the Mount, Liberia.
    [Show full text]
  • Animals of Africa
    Silver 49 Bronze 26 Gold 59 Copper 17 Animals of Africa _______________________________________________Diamond 80 PYGMY ANTELOPES Klipspringer Common oribi Haggard oribi Gold 59 Bronze 26 Silver 49 Copper 17 Bronze 26 Silver 49 Gold 61 Copper 17 Diamond 80 Diamond 80 Steenbok 1 234 5 _______________________________________________ _______________________________________________ Cape grysbok BIG CATS LECHWE, KOB, PUKU Sharpe grysbok African lion 1 2 2 2 Common lechwe Livingstone suni African leopard***** Kafue Flats lechwe East African suni African cheetah***** _______________________________________________ Red lechwe Royal antelope SMALL CATS & AFRICAN CIVET Black lechwe Bates pygmy antelope Serval Nile lechwe 1 1 2 2 4 _______________________________________________ Caracal 2 White-eared kob DIK-DIKS African wild cat Uganda kob Salt dik-dik African golden cat CentralAfrican kob Harar dik-dik 1 2 2 African civet _______________________________________________ Western kob (Buffon) Guenther dik-dik HYENAS Puku Kirk dik-dik Spotted hyena 1 1 1 _______________________________________________ Damara dik-dik REEDBUCKS & RHEBOK Brown hyena Phillips dik-dik Common reedbuck _______________________________________________ _______________________________________________African striped hyena Eastern bohor reedbuck BUSH DUIKERS THICK-SKINNED GAME Abyssinian bohor reedbuck Southern bush duiker _______________________________________________African elephant 1 1 1 Sudan bohor reedbuck Angolan bush duiker (closed) 1 122 2 Black rhinoceros** *** Nigerian
    [Show full text]