Quantum Vacuum: Renormalization Group and Anomalies in Cosmology”
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Path Integral Formulation of Loop Quantum Cosmology
Path Integral Formulation of Loop Quantum Cosmology Adam D. Henderson Institute for Gravitation and the Cosmos Pennsylvania State University International Loop Quantum Gravity Seminar March 17 2008 Motivations 1. There have been arguments against the singularity resolution in LQC using path integrals. The canonical quantization is well understood and the singularity resolution is robust, so where do the path integral arguments break down? 2. Recent developements have allowed for the construction of new spin foam models that are more closely related to the canonical theory. It is important to make connections to spin-foams by building path integrals from the canonical theory when possible. 3. A path integral representation of Loop Quantum Cosmology will aid in studying the physics of more complicated LQC models (k = 1, Λ = 0, Bianchi). Using standard path integral techniques one can 6 argue why the effective equations are so surprisingly accurate. Introduction We construct a path integral for the exactly soluble Loop Quantum • Cosmology starting with the canonical quantum theory. The construction defines each component of the path integral. Each • has non-trivial changes from the standard path integral. We see the origin of singularity resolution in the path integral • representation of LQC. The structure of the path integral features similarities to spin foam • models. The path integral can give an argument for the surprising accuracy • of the effective equations used in more complicated models. Outline Standard Construction Exactly Soluble LQC LQC Path Integral Other Forms of Path Integral Singularity Resolution/Effective Equations Conclusion Path Integrals - Overview Path Integrals: Covariant formulation of quantum theory expressed • as a sum over paths Formally the path integral can be written as • qeiS[q]/~ or q peiS[q,p]/~ (1) D D D Z Z To define a path integral directly involves defining the components • of these formal expressions: 1. -
Prediction in Quantum Cosmology
Prediction in Quantum Cosmology James B. Hartle Department of Physics University of California Santa Barbara, CA 93106, USA Lectures at the 1986 Carg`esesummer school publshed in Gravitation in As- trophysics ed. by J.B. Hartle and B. Carter, Plenum Press, New York (1987). In this version some references that were `to be published' in the original have been supplied, a few typos corrected, but the text is otherwise unchanged. The author's views on the quantum mechanics of cosmology have changed in important ways from those originally presented in Section 2. See, e.g. [107] J.B. Hartle, Spacetime Quantum Mechanics and the Quantum Mechan- ics of Spacetime in Gravitation and Quantizations, Proceedings of the 1992 Les Houches Summer School, ed. by B. Julia and J. Zinn-Justin, Les Houches Summer School Proceedings Vol. LVII, North Holland, Amsterdam (1995).) The general discussion and material in Sections 3 and 4 on the classical geom- etry limit and the approximation of quantum field theory in curved spacetime may still be of use. 1 Introduction As far as we know them, the fundamental laws of physics are quantum mechanical in nature. If these laws apply to the universe as a whole, then there must be a description of the universe in quantum mechancial terms. Even our present cosmological observations require such a description in principle, although in practice these observations are so limited and crude that the approximation of classical physics is entirely adequate. In the early universe, however, the classical approximation is unlikely to be valid. There, towards the big bang singularity, at curvatures characterized by the Planck length, 3 1 (¯hG=c ) 2 , quantum fluctuations become important and eventually dominant. -
Vacuum Energy
Vacuum Energy Mark D. Roberts, 117 Queen’s Road, Wimbledon, London SW19 8NS, Email:[email protected] http://cosmology.mth.uct.ac.za/ roberts ∼ February 1, 2008 Eprint: hep-th/0012062 Comments: A comprehensive review of Vacuum Energy, which is an extended version of a poster presented at L¨uderitz (2000). This is not a review of the cosmolog- ical constant per se, but rather vacuum energy in general, my approach to the cosmological constant is not standard. Lots of very small changes and several additions for the second and third versions: constructive feedback still welcome, but the next version will be sometime in coming due to my sporadiac internet access. First Version 153 pages, 368 references. Second Version 161 pages, 399 references. arXiv:hep-th/0012062v3 22 Jul 2001 Third Version 167 pages, 412 references. The 1999 PACS Physics and Astronomy Classification Scheme: http://publish.aps.org/eprint/gateway/pacslist 11.10.+x, 04.62.+v, 98.80.-k, 03.70.+k; The 2000 Mathematical Classification Scheme: http://www.ams.org/msc 81T20, 83E99, 81Q99, 83F05. 3 KEYPHRASES: Vacuum Energy, Inertial Mass, Principle of Equivalence. 1 Abstract There appears to be three, perhaps related, ways of approaching the nature of vacuum energy. The first is to say that it is just the lowest energy state of a given, usually quantum, system. The second is to equate vacuum energy with the Casimir energy. The third is to note that an energy difference from a complete vacuum might have some long range effect, typically this energy difference is interpreted as the cosmological constant. -
Spontaneous Symmetry Breaking and Mass Generation As Built-In Phenomena in Logarithmic Nonlinear Quantum Theory
Vol. 42 (2011) ACTA PHYSICA POLONICA B No 2 SPONTANEOUS SYMMETRY BREAKING AND MASS GENERATION AS BUILT-IN PHENOMENA IN LOGARITHMIC NONLINEAR QUANTUM THEORY Konstantin G. Zloshchastiev Department of Physics and Center for Theoretical Physics University of the Witwatersrand Johannesburg, 2050, South Africa (Received September 29, 2010; revised version received November 3, 2010; final version received December 7, 2010) Our primary task is to demonstrate that the logarithmic nonlinearity in the quantum wave equation can cause the spontaneous symmetry break- ing and mass generation phenomena on its own, at least in principle. To achieve this goal, we view the physical vacuum as a kind of the funda- mental Bose–Einstein condensate embedded into the fictitious Euclidean space. The relation of such description to that of the physical (relativis- tic) observer is established via the fluid/gravity correspondence map, the related issues, such as the induced gravity and scalar field, relativistic pos- tulates, Mach’s principle and cosmology, are discussed. For estimate the values of the generated masses of the otherwise massless particles such as the photon, we propose few simple models which take into account small vacuum fluctuations. It turns out that the photon’s mass can be naturally expressed in terms of the elementary electrical charge and the extensive length parameter of the nonlinearity. Finally, we outline the topological properties of the logarithmic theory and corresponding solitonic solutions. DOI:10.5506/APhysPolB.42.261 PACS numbers: 11.15.Ex, 11.30.Qc, 04.60.Bc, 03.65.Pm 1. Introduction Current observational data in astrophysics are probing a regime of de- partures from classical relativity with sensitivities that are relevant for the study of the quantum-gravity problem [1,2]. -
SUSY, Landscape and the Higgs
SUSY, Landscape and the Higgs Michael Dine Department of Physics University of California, Santa Cruz Workshop: Nature Guiding Theory, Fermilab 2014 Michael Dine SUSY, Landscape and the Higgs A tension between naturalness and simplicity There have been lots of good arguments to expect that some dramatic new phenomena should appear at the TeV scale to account for electroweak symmetry breaking. But given the exquisite successes of the Model, the simplest possibility has always been the appearance of a single Higgs particle, with a mass not much above the LEP exclusions. In Quantum Field Theory, simple has a precise meaning: a single Higgs doublet is the minimal set of additional (previously unobserved) degrees of freedom which can account for the elementary particle masses. Michael Dine SUSY, Landscape and the Higgs Higgs Discovery; LHC Exclusions So far, simplicity appears to be winning. Single light higgs, with couplings which seem consistent with the minimal Standard Model. Exclusion of a variety of new phenomena; supersymmetry ruled out into the TeV range over much of the parameter space. Tunings at the part in 100 1000 level. − Most other ideas (technicolor, composite Higgs,...) in comparable or more severe trouble. At least an elementary Higgs is an expectation of supersymmetry. But in MSSM, requires a large mass for stops. Michael Dine SUSY, Landscape and the Higgs Top quark/squark loop corrections to observed physical Higgs mass (A 0; tan β > 20) ≈ In MSSM, without additional degrees of freedom: 126 L 124 GeV H h m 122 120 4000 6000 8000 10 000 12 000 14 000 HMSUSYGeVL Michael Dine SUSY, Landscape and the Higgs 6y 2 δm2 = t m~ 2 log(Λ2=m2 ) H −16π2 t susy So if 8 TeV, correction to Higgs mass-squred parameter in effective action easily 1000 times the observed Higgs mass-squared. -
Spin Foam Vertex Amplitudes on Quantum Computer—Preliminary Results
universe Article Spin Foam Vertex Amplitudes on Quantum Computer—Preliminary Results Jakub Mielczarek 1,2 1 CPT, Aix-Marseille Université, Université de Toulon, CNRS, F-13288 Marseille, France; [email protected] 2 Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Cracow, Poland Received: 16 April 2019; Accepted: 24 July 2019; Published: 26 July 2019 Abstract: Vertex amplitudes are elementary contributions to the transition amplitudes in the spin foam models of quantum gravity. The purpose of this article is to make the first step towards computing vertex amplitudes with the use of quantum algorithms. In our studies we are focused on a vertex amplitude of 3+1 D gravity, associated with a pentagram spin network. Furthermore, all spin labels of the spin network are assumed to be equal j = 1/2, which is crucial for the introduction of the intertwiner qubits. A procedure of determining modulus squares of vertex amplitudes on universal quantum computers is proposed. Utility of the approach is tested with the use of: IBM’s ibmqx4 5-qubit quantum computer, simulator of quantum computer provided by the same company and QX quantum computer simulator. Finally, values of the vertex probability are determined employing both the QX and the IBM simulators with 20-qubit quantum register and compared with analytical predictions. Keywords: Spin networks; vertex amplitudes; quantum computing 1. Introduction The basic objective of theories of quantum gravity is to calculate transition amplitudes between configurations of the gravitational field. The most straightforward approach to the problem is provided by the Feynman’s path integral Z i (SG+Sf) hY f jYii = D[g]D[f]e } , (1) where SG and Sf are the gravitational and matter actions respectively. -
On the Fate of Singularities in Quantum Gravity
On the fate of singularities in quantum gravity Claus Kiefer Institut f¨ur Theoretische Physik Universitat¨ zu Koln¨ ½ Contents Singularities in cosmology Quantum geometrodynamics Quantum cosmology Quantum gravitational collapse Singularities in the classical theory Definition of a singularity A spacetime is singular if it is incomplete with respect to a timelike or null geodesic and if it cannot be embedded in a bigger spacetime. ◮ Energy condition ◮ Condition on the global structure ◮ Gravitation strong enough to lead to the existence of a closed trapped surface Theorem (Hawking and Penrose 1970) A spacetime M cannot satisfy causal geodesic completeness if, together with Einstein’s equations, the following four conditions hold: 1. M contains no closed timelike curves. 2. The strong energy condition is satisfied at every point. 3. The generality condition (. ) is satisfied for every causal geodesic. 4. M contains either a trapped surface, or a point p for which the convergence of all the null geodesics through p changes sign somewhere to the past of p, or a compact spacelike hypersurface Strong energy condition: ρ + p 0, ρ + p 0, i = 1, 2, 3 i i ≥ i ≥ P Cosmological singularities for homogeneous and isotropic spacetimes Classified by behaviour of scale factor a, energy density ρ, pressure p: Big Bang/Crunch a = 0 at finite proper time, ρ diverges Type I (Big Rip) a diverges in finite proper time, ρ and p diverge Type II or “sudden” (Big Brake/Big Demarrage)´ a finite, ρ finite, p diverges, Hubble parameter finite Type III (Big Freeze) a finite, both ρ and p diverge Type IV a finite, both ρ and p finite, but curvature derivatives diverge Most of these singularities occur in spite of the violation of energy conditions Relation to observations The observation of the Cosmic Microwave Background Radiation (CMB) indicates that there is enough matter on the past light-cone of our present location P to imply that the divergence of this cone changes somewhere to the past of P . -
Propagator for the Free Relativistic Particle on Archimedean and Nonarchimedean Spaces Udc: 530.1
FACTA UNIVERSITATIS Series: Physics, Chemistry and Technology Vol. 3, No 1, 2004, pp. 9-21 PROPAGATOR FOR THE FREE RELATIVISTIC PARTICLE ON ARCHIMEDEAN AND NONARCHIMEDEAN SPACES UDC: 530.1 D. D. Dimitrijević, G. S. Djordjević and Lj. Nešić Faculty of Science and Mathematics, P.O. Box 224, 18001 Niš, Serbia and Montenegro Abstract. We consider dynamics of a free relativistic particle at very short distances, treating space-time as archimedean as well as nonarchimedean one. Usual action for the relativistic particle is nonlinear. Meanwhile, in the real case, that system may be treated like a system with quadratic (Hamiltonian) constraint. We perform similar procedure in p -adic case, as the simplest example of a nonarchimedean space. The existence of the simplest vacuum state is considered and corresponding Green function is calculated. Similarities and differences between obtained results on both spaces are examined and possible physical implications are discussed. 1. INTRODUCTION It is generally believed that the notion of space-time as a continuous manifold should −35 break down at very short distances of the order of the Planck length λp ~ 10 m . This would arise from the process of measurement of space-time points based on quantum mechanics and gravity arguments [1]. Among many different possibilities for a mathematical background of a quantum theory on very small distances, noncommutative [2] and nonarchimedan [3] spaces appear as the most promising ones. The simplest example of a nonarchimedean space, and the most suitable mathematical machinery for describing it, comes from the theory of p-adic numbers and p-adic analysis. Since 1987, there has been an important interest in application of p -adic numbers in many branches of theoretical and mathematical physics (for a review, see [4]). -
The Quantum Vacuum and the Cosmological Constant Problem
The Quantum Vacuum and the Cosmological Constant Problem S.E. Rugh∗and H. Zinkernagel† Abstract - The cosmological constant problem arises at the intersection be- tween general relativity and quantum field theory, and is regarded as a fun- damental problem in modern physics. In this paper we describe the historical and conceptual origin of the cosmological constant problem which is intimately connected to the vacuum concept in quantum field theory. We critically dis- cuss how the problem rests on the notion of physical real vacuum energy, and which relations between general relativity and quantum field theory are assumed in order to make the problem well-defined. Introduction Is empty space really empty? In the quantum field theories (QFT’s) which underlie modern particle physics, the notion of empty space has been replaced with that of a vacuum state, defined to be the ground (lowest energy density) state of a collection of quantum fields. A peculiar and truly quantum mechanical feature of the quantum fields is that they exhibit zero-point fluctuations everywhere in space, even in regions which are otherwise ‘empty’ (i.e. devoid of matter and radiation). These zero-point arXiv:hep-th/0012253v1 28 Dec 2000 fluctuations of the quantum fields, as well as other ‘vacuum phenomena’ of quantum field theory, give rise to an enormous vacuum energy density ρvac. As we shall see, this vacuum energy density is believed to act as a contribution to the cosmological constant Λ appearing in Einstein’s field equations from 1917, 1 8πG R g R Λg = T (1) µν − 2 µν − µν c4 µν where Rµν and R refer to the curvature of spacetime, gµν is the metric, Tµν the energy-momentum tensor, G the gravitational constant, and c the speed of light. -
Making a Quantum Universe: Symmetry and Gravity
Article Making a Quantum Universe: Symmetry and Gravity Houri Ziaeepour1,2 1 Institut UTINAM, CNRS UMR 6213, Observatoire de Besançon, Université de Franche Compté, 41 bis ave. de l’Observatoire, BP 1615, 25010 Besançon, France; 2 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, GU5 6NT, Dorking, UK; [email protected] Version October 14, 2020 submitted to Universe Abstract: So far none of attempts to quantize gravity has led to a satisfactory model that not only describe gravity in the realm of a quantum world, but also its relation to elementary particles and other fundamental forces. Here we outline preliminary results for a model of quantum universe, in which gravity is fundamentally and by construction quantic. The model is based on 3 well motivated assumptions with compelling observational and theoretical evidence: quantum mechanics is valid at all scales; quantum systems are described by their symmetries; Universe has infinite independent degrees of freedom. The last assumption means that the Hilbert space of the Universe has SUpN Ñ 8q – area preserving Diff.pS2q symmetry, which is parameterized by two angular variables. We show that in absence of a background spacetime, this Universe is trivial and static. Nonetheless, quantum fluctuations break the symmetry and divide the Universe to subsystems. When a subsystem is singled out as reference - observer - and another as clock, two more continuous parameters arise, which can be interpreted as distance and time. We identify the classical spacetime with parameter space of the Hilbert space of the Universe. Therefore, its quantization is meaningless. In this view, the Einstein equation presents the projection of quantum dynamics in the Hilbert space into its parameter space. -
Traversing Cosmological Singularities, Complete Journeys Through Spacetime Including Antigravity
Traversing Cosmological Singularities Complete Journeys Through Spacetime Including Antigravity ∗ Itzhak Bars Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA A unique description of the Big Crunch-Big Bang transition is given at the classical gravity level, along with a complete set of homogeneous, isotropic, analytic solutions in scalar-tensor cosmology, with radiation and curvature. All solutions repeat cyclically; they have been obtained by using conformal gauge symmetry (Weyl symmetry) as a powerful tool in cosmology, and more generally in gravity. The significance of the Big Crunch-Big Bang transition is that it provides a model inde- pendent analytic resolution of the singularity, as an unambiguous and unavoidable solution of the equations at the classical gravitational physics level. It is controlled only by geometry (including anisotropy) and only very general features of matter coupled to gravity, such as kinetic energy of a scalar field, and radiation due to all forms of relativistic matter. This analytic resolution of the singularity is due to an attractor mechanism created by the leading terms in the cosmological equa- tion. It is unique, and it is unavoidable in classical relativity in a geodesically complete geometry. Its counterpart in quantum gravity remains to be understood. I. INTRODUCTION AND SUMMARY OF RESULTS Resolving the big bang singularity is one of the central challenges for fundamental physics and cosmology. The issue arises naturally in the context of classical relativity due to the geodesically incomplete nature of the singular spacetime [1]-[2]. The resolution may not be completed until the physics is understood in the context of quantum gravity. -
The Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big
View metadata, citation and similar papers at core.ac.uk brought to you by CORE The Ekpyrotic Universe: Colliding Branes and the Origin ofprovided the by CERN Document Server Hot Big Bang Justin Khoury1,BurtA.Ovrut2,PaulJ.Steinhardt1 and Neil Turok 3 1 Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA 2 Department of Physics, University of Pennsylvania, Philadelphia, PA 19104-6396, USA 3 DAMTP, CMS, Wilberforce Road, Cambridge, CB3 0WA, UK Abstract We propose a cosmological scenario in which the hot big bang universe is produced by the collision of a brane in the bulk space with a bounding orb- ifold plane, beginning from an otherwise cold, vacuous, static universe. The model addresses the cosmological horizon, flatness and monopole problems and generates a nearly scale-invariant spectrum of density perturbations with- out invoking superluminal expansion (inflation). The scenario relies, instead, on physical phenomena that arise naturally in theories based on extra di- mensions and branes. As an example, we present our scenario predominantly within the context of heterotic M-theory. A prediction that distinguishes this scenario from standard inflationary cosmology is a strongly blue gravitational wave spectrum, which has consequences for microwave background polariza- tion experiments and gravitational wave detectors. Typeset using REVTEX 1 I. INTRODUCTION The Big Bang model provides an accurate account of the evolution of our universe from the time of nucleosynthesis until the present, but does not address the key