Alternative Splicing in the Cytochrome P450 Superfamily Expands Protein Diversity to Augment Gene Function and Redirect Human Drug Metabolism S

Total Page:16

File Type:pdf, Size:1020Kb

Alternative Splicing in the Cytochrome P450 Superfamily Expands Protein Diversity to Augment Gene Function and Redirect Human Drug Metabolism S Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2017/02/10/dmd.116.073254.DC1 1521-009X/45/4/375–389$25.00 http://dx.doi.org/10.1124/dmd.116.073254 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 45:375–389, April 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Minireview Alternative Splicing in the Cytochrome P450 Superfamily Expands Protein Diversity to Augment Gene Function and Redirect Human Drug Metabolism s Andrew J. Annalora, Craig B. Marcus, and Patrick L. Iversen Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon Received September 2, 2016; accepted February 6, 2017 Downloaded from ABSTRACT The human genome encodes 57 cytochrome P450 genes, whose to a disease pathology. The expansion of P450 transcript diversity enzyme products metabolize hundreds of drugs, thousands of xeno- involves tissue-specific splicing factors, transformation-sensitive al- biotics, and unknown numbers of endogenous compounds, including ternate splicing, trans-splicing between gene transcripts, single- steroids, retinoids, and eicosanoids. Indeed, P450 genes are the first nucleotide polymorphisms, and epigenetic regulation of alternate line of defense against daily environmental chemical challenges in a splicing. Homeostatic regulation of variant P450 expression is influ- dmd.aspetjournals.org manner that parallels the immune system. Several National Institutes of enced also by nuclear receptor signaling, suppression of nonsense- Health databases, including PubMed, AceView, and Ensembl, were mediated decay or premature termination codons, mitochondrial queried to establish a comprehensive analysis of the full human P450 dysfunction, or host infection. This review focuses on emergent transcriptome. This review describes a remarkable diversification of aspects of the adaptive gene-splicing process, which when viewed the 57 human P450 genes, which may be alternatively processed into through the lens of P450–nuclear receptor gene interactions, resem- nearly 1000 distinct mRNA transcripts to shape an individual’s P450 blesaprimitiveimmune-likesystemthat can rapidly monitor, respond, proteome. Important P450 splice variants from families 1A, 1B, 2C, 2D, and diversify to acclimate to fluctuations in endo-xenobiotic exposure. 3A, 4F, 19A, and 24A have now been documented, with some displaying Insights gained from this review should aid future drug discovery and at ASPET Journals on October 3, 2021 alternative subcellular distribution or catalytic function directly linked improve therapeutic management of personalized drug regimens. Introduction transcripts and polypeptide products will improve our ability to assess the Mapping the human genome sequence was completed in 2001 (Lander functional nature of its role in both physiologic and pathologic conditions et al., 2001), helping to usher in the “postgenomic era” of personalized (La Cognata et al., 2014). The spectrum of alternate splicing mechanisms medicine. Over a decade later, however, the promise of pharmacoge- underlying the expansion of the proteome involves the use of seven main nomics (PGx) has yet to fully materialize, and the composition of the splicing types, as previously described (Blencowe, 2006; Roy et al., human genome remains enigmatic, as numerous questions linger con- 2013). The molecular basis for these mechanisms is complex and beyond cerning the complexity of its content and organization. For example, how the scope of this review; however, a brief description of the phenomenon can a genome with only 22,000 genes produce a proteome with over and its key players is provided in the supplemental materials (see 200,000 distinct proteins? While transcription is a relatively well un- Supplemental Fig. 1). Here we will focus primarily on the spectrum of derstood phenomenon, the mechanisms involved in regulating alternative phenotypic outcomes induced by alternative transcript splicing, in precursor or unprocessed messenger RNA (pre-mRNA) splicing, the order to highlight the array of splice-sensitive features operating in the driving force behind both transcriptome and proteome expansion, remains cytochrome P450 (P450) superfamily, a collection of 57 human genes less appreciated. The ability to link a single gene to its full suite of RNA that coordinate the metabolism of both drugs and endoxenobiotics. This work focuses new attention on the biologic impact of alternative P450 gene splicing, an underappreciated component of phase I drug metabolism that may complicate or disrupt personalized approaches to This research was supported by start-up funds from the Office of Research and medicine. Precision medicine, therefore, through the universal applica- the College of Agricultural Sciences at Oregon State University (Corvallis, OR) awarded to Drs. Marcus and Iversen. tion of genetics, still faces many challenges beyond cost, ethical dx.doi.org/10.1124/dmd.116.073254. considerations, and the need for additional, whole genome sequences. s This article has supplemental material available at dmd.aspetjournals. Multiple resources have now been developed, in addition to the org. Human Genome Project, to address these challenges, including: the ABBREVIATIONS: BP, benzo(a)pyrene; ER, endoplasmic reticulum; GWAS, genome-wide association studies; NMD, nonsense-mediated decay; NR, nuclear receptor; P450, cytochrome P450; PGx, pharmacogenomics; PPAR, peroxisome proliferator–activated receptors; pre-mRNA, precursor or unprocessed messenger RNA; ROS, reactive oxygen species; SNP, single-nucleotide polymorphism; snRNA, small nuclear RNA; VDR, vitamin D receptor. 375 376 Annalora et al. Hapmap Project, which enables single-nucleotide polymorphism and intronic-splicing enhancers) with tissue-specific, trans-acting, (SNP) arrays for .100,000 SNPs; the 1000 Genomes Project; the splicing regulatory factors. In this way the same pre-mRNA transcript ENCODE project for noncoding RNAs; and the National Human can be processed into tissue-specific, alternately spliced forms (Wang Genome Research Institute (NHGRI) genome-wide association and Burge, 2008). The cytochrome P450 superfamily of genes is well studies (GWAS) catalog. GWAS have now identified two P450s studied from many perspectives (Guengerich, 2013; Johnson and that represent a biomarker for disease or a drug-response phenotype, Stout, 2013; Pikuleva and Waterman, 2013). As of late 2015, PubMed including: 1) a CYP2C8 association with bisphosphonate-related listed over 23,790 citations referencing human P450 genes (according osteonecrosis of the jaw in multiple myeloma (Sarasquete et al., to GeneCards.org), with much of this work being focused on tissue- 2008); and 2) a CYP2C19 association with clopidogrel interindividual specific expression or catalytic function of individual, reference forms. variation as an antiplatelet drug (Shuldiner et al., 2009). Aside from Alternative splicing of P450s has also been well studied for more than showing strong associations, few pharmacogenetic biomarkers of this two decades; however, the structural and functional diversity of P450 sort have successfully transitioned from discovery to clinical practice splice variants, and their relationship to human health and disease, (Carr et al., 2014). Many GWAS studies have failed to provide remains poorly understood. A summary of known P450 splice variants prognostic value because they are not designed to evaluate how linked to human disease is presented in Table 1. Reports from groups variant gene expression is influenced by both cellular and environ- attempting to synthesize a global view of alternative P450 splicing, mental splicing factors. In this regard, we feel a new appreciation is and its relevance to our understanding of human metabolism in the needed for the complexity of alternative splicing. For not only is the context of PGx or personalized medicine, are exceedingly rare world of both coding and noncoding RNA more diverse and more (Nelson et al., 2004; Turman et al., 2006). Downloaded from complex than we could have imagined even a decade ago, it is teeming Our review has led us to conclude that personalized approaches to with untold amounts of RNA “dark matter” and other relics of the medicine whose sole basis is GWAS may be misleading, in that they fail RNA world, whose structure and function must be fully appreciated to account for variability in compensatory splicing mechanisms, which and classified before a new guiding orthodoxy for “individualized can modulate the expression of some highly penetrant mutations. This medicine” can be safely conceived (St. Laurent et al., 2014; Cowie phenomenon is exemplified by ontogenetic regulatory factors that can et al., 2015). mask the physiologic impact of genetic variations among developmen- dmd.aspetjournals.org tally regulated P450 genes (Hines and McCarver, 2002). To expand on this concept, and explore the array of alternative splicing products that Meta-Analysis of Alternative Gene Splicing in the Cytochrome serve as an improved platform for predicting disease whose basis is the P450 Superfamily functional genome, we annotated all of the known human P450 splice Alternative splicing regulated by tissue-specific factors is a means of variants currently listed in the NCBI’s PubMed, AceView, and Ensembl adapting to physiologic demands. Tissue-specific splice variants may databases (Thierry-Mieg and Thierry-Mieg, 2006; Cunningham et al., arise from tissue-specific promoter elements
Recommended publications
  • Studies on CYP1A1, CYP1B1 and CYP3A4 Gene Polymorphisms in Breast Cancer Patients
    Ginekol Pol. 2009, 80, 819-823 PRACE ORYGINALNE ginekologia Studies on CYP1A1, CYP1B1 and CYP3A4 gene polymorphisms in breast cancer patients Badania polimorfizmów genów CYP1A1, CYP1B1 i CYP3A4 u chorych z rakiem piersi Ociepa-Zawal Marta1, Rubiś Błażej2, Filas Violetta3, Bręborowicz Jan3, Trzeciak Wiesław H1. 1 Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences 2 Department of Clinical Chemistry and Molecular Diagnostics, 3Department of Tumor Pathology, Poznan University of Medical Sciences Abstract Background: The role of CYP1A1, CYP1B1 and CYP3A4 polymorphism in pathogenesis of breast cancer has not been fully elucidated. From three CYP1A1 polymorphisms *2A (3801T>C), *2C (2455A>G), and *2B variant, which harbors both polymorphisms, the *2A variant is potentially carcinogenic in African Americans and the Taiwanese, but not in Caucasians, and the CYP1B1*2 (355G>T) and CYP1B1*3 (4326C>G) variants might increase breast cancer risk. Although no association of any CYP3A4 polymorphisms and breast cancer has been documented, the CYP3A4*1B (392A>G) variant, correlates with earlier menarche and endometrial cancer secondary to tamoxifen therapy. Objective: The present study was designed to investigate the frequency of CYP1A1, CYP1B1 and CYP3A4 po- lymorphisms in a sample of breast cancer patients from the Polish population and to correlate the results with the clinical and laboratory findings. Material and methods: The frequencies of CYP1A1*2A; CYP1A1*2C; CYP1B1*3; CYP3A4*1B CYP3A4*2 polymorphisms were determined in 71 patients aged 36-87, with primary breast cancer and 100 healthy indi- viduals. Genomic DNA was extracted from the tumor, and individual gene fragments were PCR-amplified.
    [Show full text]
  • NIH Public Access Author Manuscript Pharmacogenet Genomics
    NIH Public Access Author Manuscript Pharmacogenet Genomics. Author manuscript; available in PMC 2013 February 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Pharmacogenet Genomics. 2012 February ; 22(2): 159–165. doi:10.1097/FPC.0b013e32834d4962. PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 19 Stuart A. Scotta, Katrin Sangkuhlc, Alan R. Shuldinere,f, Jean-Sébastien Hulotb,g, Caroline F. Thornc, Russ B. Altmanc,d, and Teri E. Kleinc aDepartment of Genetics and Genomic Sciences bCardiovascular Research Center, Mount Sinai School of Medicine, New York, New York cDepartments of Genetics dBioengineering, Stanford University, Stanford, California eDivision of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine fGeriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland, USA gDepartment of Pharmacology, Université Pierre et Marie Curie-Paris 6, INSERM UMR S 956, Pitié-Salpêtrière University Hospital, Paris, France Abstract This PharmGKB summary briefly discusses the CYP2C19 gene and current understanding of its function, regulation, and pharmacogenomic relevance. Keywords antidepressants; clopidogrel; CYP2C19*17; CYP2C19*2; CYP2C19; proton pump inhibitors; rs4244285 Introduction The cytochrome P450, family 2, subfamily C, polypeptide 19 (CYP2C19) gene is located within a cluster of cytochrome P450 genes (centromere-CYP2C18-CYP2C19-CYP2C9- CYP2C8-telomere) on chromosome 10q23.33. The CYP2C19 enzyme contributes to the metabolism of a large number of clinically relevant drugs and drug classes such as antidepressants [1], benzodiazepines [2], mephenytoin [3], proton pump inhibitors (PPIs) [4], and the antiplatelet prodrug clopidogrel [5]. Similar to other CYP450 genes, inherited genetic variation in CYP2C19 and its variable hepatic expression contributes to the interindividual phenotypic variability in CYP2C19 substrate metabolism.
    [Show full text]
  • New Perspectives of CYP1B1 Inhibitors in the Light of Molecular Studies
    processes Review New Perspectives of CYP1B1 Inhibitors in the Light of Molecular Studies Renata Mikstacka 1,* and Zbigniew Dutkiewicz 2,* 1 Department of Inorganic and Analytical Chemistry, Collegium Medicum, Nicolaus Copernicus University in Toru´n,Dr A. Jurasza 2, 85-089 Bydgoszcz, Poland 2 Department of Chemical Technology of Drugs, Pozna´nUniversity of Medical Sciences, Grunwaldzka 6, 60-780 Pozna´n,Poland * Correspondence: [email protected] (R.M.); [email protected] (Z.D.); Tel.: +48-52-585-3912 (R.M.); +48-61-854-6619 (Z.D.) Abstract: Human cytochrome P450 1B1 (CYP1B1) is an extrahepatic heme-containing monooxy- genase. CYP1B1 contributes to the oxidative metabolism of xenobiotics, drugs, and endogenous substrates like melatonin, fatty acids, steroid hormones, and retinoids, which are involved in diverse critical cellular functions. CYP1B1 plays an important role in the pathogenesis of cardiovascular diseases, hormone-related cancers and is responsible for anti-cancer drug resistance. Inhibition of CYP1B1 activity is considered as an approach in cancer chemoprevention and cancer chemotherapy. CYP1B1 can activate anti-cancer prodrugs in tumor cells which display overexpression of CYP1B1 in comparison to normal cells. CYP1B1 involvement in carcinogenesis and cancer progression encourages investigation of CYP1B1 interactions with its ligands: substrates and inhibitors. Compu- tational methods, with a simulation of molecular dynamics (MD), allow the observation of molecular interactions at the binding site of CYP1B1, which are essential in relation to the enzyme’s functions. Keywords: cytochrome P450 1B1; CYP1B1 inhibitors; cancer chemoprevention and therapy; molecu- Citation: Mikstacka, R.; Dutkiewicz, lar docking; molecular dynamics simulations Z. New Perspectives of CYP1B1 Inhibitors in the Light of Molecular Studies.
    [Show full text]
  • Identification and Characterization of CYP2C18 in the Cynomolgus Macaque (Macaca Fascicularis)
    NOTE Toxicology Identification and Characterization of CYP2C18 in the Cynomolgus Macaque (Macaca fascicularis) Yasuhiro UNO1)*, Kiyomi MATSUNO1), Chika NAKAMURA1), Masahiro UTOH1) and Hiroshi YAMAZAKI2) 1)Pharmacokinetics and Bioanalysis Center (PBC), Shin Nippon Biomedical Laboratories (SNBL), Kainan, Wakayama 642–0017 and 2)Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194–8543, Japan (Received 3 August 2009/Accepted 15 September 2009/Published online in J-STAGE 25 November 2009) ABSTRACT. The macaque is widely used for investigation of drug metabolism due to its evolutionary closeness to the human. However, the genetic backgrounds of drug-metabolizing enzymes have not been fully investigated; therefore, identification and characterization of drug-metabolizing enzyme genes are important for understanding drug metabolism in this species. In this study, we isolated and char- acterized a novel cytochrome P450 2C18 (CYP2C18) cDNA in cynomolgus macaques. This cDNA was highly homologous (96%) to human CYP2C18 cDNA. Cynomolgus CYP2C18 was preferentially expressed in the liver and kidney. Moreover, a metabolic assay using cynomolgus CYP2C18 protein heterologously expressed in Escherichia coli revealed its activity toward S-mephenytoin 4’-hydrox- ylation. These results suggest that cynomolgus CYP2C18 could function as a drug-metabolizing enzyme in the liver. KEY WORDS: cloning, CYP2C18, cytochrome P450, liver, monkey. J. Vet. Med. Sci. 72(2): 225–228, 2010 Cytochrome P450 (CYP) is a superfamily of some of the Such species differences also could be explained by func- most important drug-metabolizing enzymes and consists of tional disparity of the orthologous CYPs between the two a large number of subfamilies [14]. In humans, the CYP2C species, such as, if an ortholog to human CYP with low (or subfamilies contain important enzymes that metabolize no) expression and drug-metabolizing activity, for example approximately 20% of all prescribed drugs [3].
    [Show full text]
  • Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles.
    [Show full text]
  • Pgx - Cytochrome P450 2C19 (CYP2C19)
    PGx - Cytochrome P450 2C19 (CYP2C19) This assay is used to identify patients who may be at risk for altered metabolism of drugs that are modified by CYP2C19. Cytochrome P450 (CYP) isozyme 2C19 is responsible for phase I metabloism of about 40% of drugs including: clopidogrel, phenytoin, diazepam, R-warfarin, tamoxifen, some antidepressants, proton pump inhibitors, and antimalarials. Testing Method and Background This test utilizes the eSensor® 2C19 Genotyping Test is an in vitro diagnostic for the detection and genotyping a panel of variants involved with enzyme metabolism using isolated genomic DNA. The eSensor® technology uses a solid-phase electrochemical method for determining the genotyping status. The eSensor® 2C19 Genotyping Test is for research use only (RUO). CYP2C19 drug metabolism varies among individuals depending on specific genotype. The CYP2 family has many single- nucleotide polymorphisms (SNPs). CYP2C19 gene is located on chromosome 10q23.33 and is highly polymorphic, which can lead to large individual variation in CYP2C19 enzyme activity and related drug response phenotypes and/or undesired adverse drug events. Specifically, the CYP2C19 gene has more than 34 variant alleles identified, which in turn affects the pharmacokinetics of many drugs. Highlights of PGx - Cytochrome P450 2C19 (CYP2C19) Targeted Region CYP2C19: Detects 11 variants/polymorphisms 681G>A (*2) 636G>A (*3) 1A>G (*4) 1297C>T (*5) 395G>A (*6) 19294T>A (*7) 358T>C (*8) 431G>A (*9) 680C>T (*10) 1228C>T (*13) -806C>T (*17) Ordering Information Get started
    [Show full text]
  • Polymorphic Human Sulfotransferase 2A1 Mediates the Formation of 25-Hydroxyvitamin
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/01/17/dmd.117.078428.DC1 1521-009X/46/4/367–379$35.00 https://doi.org/10.1124/dmd.117.078428 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:367–379, April 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Polymorphic Human Sulfotransferase 2A1 Mediates the Formation of 25-Hydroxyvitamin D3-3-O-Sulfate, a Major Circulating Vitamin D Metabolite in Humans s Timothy Wong, Zhican Wang, Brian D. Chapron, Mizuki Suzuki, Katrina G. Claw, Chunying Gao, Robert S. Foti, Bhagwat Prasad, Alenka Chapron, Justina Calamia, Amarjit Chaudhry, Erin G. Schuetz, Ronald L. Horst, Qingcheng Mao, Ian H. de Boer, Timothy A. Thornton, and Kenneth E. Thummel Departments of Pharmaceutics (T.W., Z.W., B.D.C., M.S., K.G.C., C.G., B.P., Al.C., J.C., Q.M., K.E.T.), Medicine and Kidney Research Institute (I.H.d.B.), and Biostatistics (T.A.T.), University of Washington, Seattle, Washington; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (Z.W.); Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (R.S.F.); St. Jude Children’s Research Hospital, Memphis, Tennessee Downloaded from (Am.C., E.G.S.); and Heartland Assays LLC, Ames, Iowa (R.L.H.) Received September 1, 2017; accepted January 10, 2018 ABSTRACT dmd.aspetjournals.org Metabolism of 25-hydroxyvitamin D3 (25OHD3) plays a central role in with the rates of dehydroepiandrosterone sulfonation. Further analysis regulating the biologic effects of vitamin D in the body.
    [Show full text]
  • Frequencies of Clinically Important CYP2C19 and CYP2D6 Alleles Are Graded Across Europe
    European Journal of Human Genetics (2020) 28:88–94 https://doi.org/10.1038/s41431-019-0480-8 ARTICLE Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe 1,2 2 1 Jelena Petrović ● Vesna Pešić ● Volker M. Lauschke Received: 15 March 2019 / Revised: 3 July 2019 / Accepted: 17 July 2019 / Published online: 29 July 2019 © The Author(s) 2019. This article is published with open access Abstract CYP2C19 and CYP2D6 are important drug-metabolizing enzymes that are involved in the metabolism of around 30% of all medications. Importantly, the corresponding genes are highly polymorphic and these genetic differences contribute to interindividual and interethnic differences in drug pharmacokinetics, response, and toxicity. In this study we systematically analyzed the frequency distribution of clinically relevant CYP2C19 and CYP2D6 alleles across Europe based on data from 82,791 healthy individuals extracted from 79 original publications and, for the first time, provide allele confidence intervals for the general population. We found that frequencies of CYP2D6 gene duplications showed a clear South-East to North- West gradient ranging from <1% in Sweden and Denmark to 6% in Greece and Turkey. In contrast, an inverse distribution was observed for the loss-of-function alleles CYP2D6*4 and CYP2D6*5. Similarly, frequencies of the inactive CYP2C19*2 allele were graded from North-West to South-East Europe. In important contrast to previous work we found that the increased activity allele CYP2C19*17 was most prevalent in Central Europe (25–33%) with lower prevalence in Mediterranean-South Europeans (11–24%). In summary, we provide a detailed European map of common CYP2C19 and CYP2D6 variants and find that frequencies of the most clinically relevant alleles are geographically graded reflective of Europe’s migratory history.
    [Show full text]
  • Synonymous Single Nucleotide Polymorphisms in Human Cytochrome
    DMD Fast Forward. Published on February 9, 2009 as doi:10.1124/dmd.108.026047 DMD #26047 TITLE PAGE: A BIOINFORMATICS APPROACH FOR THE PHENOTYPE PREDICTION OF NON- SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN CYTOCHROME P450S LIN-LIN WANG, YONG LI, SHU-FENG ZHOU Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P. R. China (LL Wang & Y Li) Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia (LL Wang & SF Zhou). 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. DMD #26047 RUNNING TITLE PAGE: a) Running title: Prediction of phenotype of human CYPs. b) Author for correspondence: A/Prof. Shu-Feng Zhou, MD, PhD Discipline of Chinese Medicine, School of Health Sciences, RMIT University, WHO Collaborating Center for Traditional Medicine, Bundoora, Victoria 3083, Australia. Tel: + 61 3 9925 7794; fax: +61 3 9925 7178. Email: [email protected] c) Number of text pages: 21 Number of tables: 10 Number of figures: 2 Number of references: 40 Number of words in Abstract: 249 Number of words in Introduction: 749 Number of words in Discussion: 1459 d) Non-standard abbreviations: CYP, cytochrome P450; nsSNP, non-synonymous single nucleotide polymorphism. 2 DMD #26047 ABSTRACT Non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment and conducting individualized pharmacotherapy.
    [Show full text]
  • Cytochrome P450 2C19 Loss-Of-Function Polymorphism Is Associated with an Increased Treatment-Related Mortality in Patients Undergoing Allogeneic Transplantation
    Bone Marrow Transplantation (2007) 40, 659–664 & 2007 Nature Publishing Group All rights reserved 0268-3369/07 $30.00 www.nature.com/bmt ORIGINAL ARTICLE Cytochrome P450 2C19 loss-of-function polymorphism is associated with an increased treatment-related mortality in patients undergoing allogeneic transplantation AH Elmaagacli, M Koldehoff, NK Steckel, R Trenschel, H Ottinger and DW Beelen Department of Bone Marrow Transplantation, University Hospital of Essen, Essen, Germany The polymorphic gene expression of CYP2C19 causes characterized enzymes with a large number of genetic individual variability in drug metabolism and thereby in polymorphisms is cytochrome P450 (CYP) 2C19.1 Pre- pharmacologic and toxicologic responses. We genotyped vious studies on CYP2C19 using probe drugs such as 286 patients and their donors for the CYP2C19 gene who S-mephenytoin showed that individuals could be classified underwent allogeneic transplantation for various diseases into three different groups: poor metabolizers (PMs), and analyzed their outcome. Patients were classified as: intermediate metabolizers (IMs) and extensive metabolizers poor metabolizers (PMs; 3.1%), intermediate metaboli- (EMs). PMs have a genetically determined absence of active zers (IMs; 24.5%) and extensive metabolizers (EMs; enzymes, which is the cause for a slower metabolism of 72.5%). Patients genotyped as PMs had significant higher active drugs and is associated with prolonged side effects.1 hepato- and nephrotoxicities compared to IMs or EMs. If prodrugs are applied, the metabolism in their active form Maximum bilirubin and serum creatinine levels measured is delayed and reduced effectiveness may occur. Among the after transplant were approximately twofold higher than drugs which are metabolized by CYP2C19 enzymes are those of EMs or IMs.
    [Show full text]
  • Caffeine Metabolism and Cytochrome P450 Enzyme Mrna Expression
    Caffeine metabolism and Cytochrome P450 enzyme mRNA expression levels of genetically diverse inbred mouse strains Neal Addicott - CSU East Bay, Michael Malfatti - Lawrence Livermore National Laboratory, Gabriela G. Loots - Lawrence Livermore National Laboratory Metabolic pathways for caffeine 4. Results 1. Introduction (in mice - human overlaps underlined) Metabolites 30 minutes after dose Caffeine is broken down in humans by several enzymes from the Cytochrome Caffeine (1,3,7 - trimethylxanthine) O CH3 (n=6 per strain) CH3 6 N Paraxanthine/Caffeine N 7 Theophylline/Caffeine *Theobromine/Caffeine P450 (CYP) superclass of enzymes. These CYP enzymes are important in Theophylline 1 5 0.06 0.06 0.06 8 (7-N-demethylization) (1,3 - dimethylxanthine) 2 4 9 3 O N 0.05 0.05 0.05 activating or eliminating many medications. The evaluation of caffeine O H N 1,3,7 - trimethyluricacid CH 3 O CH3 N CH eine Peak Area Peak eine eine Peak Area eine Cyp1a2 3 CH 0.04 Area Peak eine 0.04 0.04 f f N f metabolites in a patient has been proposed as a means of estimating the activity 1 7 3 (3-N-demethylization) N Cyp3a4 N1 7 (8-hydrolyzation) 8 OH 0.03 0.03 0.03 of some CYP enzymes, contributing to genetics-based personalized medicine. O 3 N N Cyp1a2 3 O N Paraxanthine (1-N-demethylization) N 0.02 0.02 0.02 CH3 (1,7 - dimethylxanthine) CH3 O CH3 0.01 0.01 0.01 CH3 Theophylline Peak Area / Ca Peak Theophylline Paraxanthine Peak Area / Ca The frequency and distribution of polymorphisms in inbred strains of mice N Area / Ca Peak Theobromine 7 paraxanthine peak area /caffeine peak area /caffeine paraxanthine peak area theophylline peak area /caffeine peak area /caffeine theophylline peak area N1 Theobromine 0 0 peak area /caffeine peak area theobromine 0 0 C57BL/6JC57BL BALB/cJBALB CBA/JCBA/J DBA/2JDBA/2J .
    [Show full text]
  • Regulation of Human CYP2C18 and CYP2C19 in Transgenic Mice: Influence of Castration, Testosterone, and Growth Hormone□S
    Supplemental Material can be found at: http://dmd.aspetjournals.org/cgi/content/full/dmd.109.026963/DC1 0090-9556/09/3707-1505–1512$20.00 DRUG METABOLISM AND DISPOSITION Vol. 37, No. 7 Copyright © 2009 by The American Society for Pharmacology and Experimental Therapeutics 26963/3478494 DMD 37:1505–1512, 2009 Printed in U.S.A. Regulation of Human CYP2C18 and CYP2C19 in Transgenic Mice: Influence of Castration, Testosterone, and Growth Hormone□S Susanne Lo¨ fgren, R. Michael Baldwin,1 Margareta Carlero¨ s, Ylva Terelius, Ronny Fransson-Steen, Jessica Mwinyi, David J. Waxman, and Magnus Ingelman-Sundberg Safety Assessment, AstraZeneca Research and Development, So¨ derta¨ lje, Sweden (S.L., R.F.-S.); Department of Physiology and Pharmacology, Section of Pharmacokinetics, Karolinska Institutet, Stockholm, Sweden (R.M.B., M.C., J.M., M.I.-S.); Drug Metabolism and Pharmacokinetics and Bioanalysis, Bioscience, Medivir AB, Huddinge, Sweden (Y.T.); and Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts (D.J.W.) Received January 29, 2009; accepted March 26, 2009 ABSTRACT: Downloaded from The hormonal regulation of human CYP2C18 and CYP2C19, which GH treatment of transgenic males for 7 days suppressed hepatic are expressed in a male-specific manner in liver and kidney in a expression of CYP2C19 (>90% decrease) and CYP2C18 (ϳ50% mouse transgenic model, was examined. The influence of prepu- decrease) but had minimal effect on the expression of these genes bertal castration in male mice and testosterone treatment of fe- in kidney, brain, or small intestine. Under these conditions, contin- male mice was investigated, as was the effect of continuous ad- uous GH induced all four female-specific mouse liver Cyp2c genes dmd.aspetjournals.org ministration of growth hormone (GH) to transgenic males.
    [Show full text]