Research Conducted on Current Legislation Governing the Legality of Keeping Local Baboon Spiders in South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Research Conducted on Current Legislation Governing the Legality of Keeping Local Baboon Spiders in South Africa Research conducted on current legislation governing the legality of keeping local baboon spiders in South Africa. UPDATED 2020/05/06 – 14:48PM Take note that “Baboon Spiders” refers to local baboon spiders and “Tarantulas” refers to exotics & non-local species. NATIONAL LEGISLATION Protected / illegal are listed in this column Act, Ordinance or Bill Date Currently in force? Theraphosid taxa included in legislation NATIONAL ENVIRONMENTAL MANAGEMENT: BIODIVERSITY 2004 Yes Requires species to be listed by Minister in TOPS ACT No. 10 regulations THREATENED OR PROTECTED SPECIES (TOPS) 2015 Not out for Ceratogyrus paulseni REGULATIONS, CRITICALLY ENDANGERED SPECIES comment yet Idiothele mira PUBLICATION OF LISTS OF CRITICALLY ENDANGERED, 2007 Yes Ceratogyrus all species ENDANGERED, VULNERABLE AND PROTECTED SPECIES Pterinochilus all species Harpactira all species (listed as Xarpactira in doc) PROVINCIAL LEGISLATION Act, Ordinance or Bill Date Currently in force? Theraphosid taxa included in legislation Western Cape: 1974 Yes All invertebrates (wild animals), exotic and NATURE AND ENVIRONMENTAL CONSERVATION ORDINANCE indigenous.* NO. 19 Eastern Cape: 1974 Yes All invertebrates (wild animals), exotic and NATURE AND ENVIRONMENTAL CONSERVATION ORDINANCE indigenous.* NO. 19 Eastern Cape: 2019 No List of species will be published later by the EASTERN CAPE ENVIRONMENTAL MANAGEMENT BILL. minister. NOTICE 205 Free State: 1969 Yes None, also no mention of any invertebrates. NATURE CONSERVATION ORDINANCE NO. 8 Northern Cape: 2009 Yes Ceratogyrus spp., all species NORTHERN CAPE NATURE CONSERVATION ACT NO. 9 Harpactira spp., all species Pterinochilus spp., all species KwaZulu Natal: 1974 Yes No indigenous taxa listed as protected. NATURE CONSERVATION ORDINANCE NO. 15 OF 1974 UPDATED TO PROVINCIAL GAZETTE NO. 5265 1998 KwaZulu Natal: 2014 No Augacephalus breyeri SCHEDULES TO THE KWAZULU-NATAL ENVIRONMENTAL, Augacephalus junodi BIODIVERSITY AND PROTECTED AREAS MANAGEMENT BILL Brachionopus robustus (FOR COMMENT) Ceratogyrus darlingi Harpactira curator Idiothele mira Idiothele nigrofulva Limpopo: 2003 Yes Ceratogyrus spp., all species LIMPOPO ENVIRONMENTAL MANAGEMENT ACT NO. 7 Harpactira spp., all species Pterinochilus spp., all species (spelt as Pterinocchilus spp. in the Act Mpumalanga: 1998 Yes Ceratogyrus spp., all species MPUMALANGA NATURE CONSERVATION ACT NO. 10 Harpactira spp., all species Pterinochilus spp., all species Gauteng: 1983 Yes Ceratogyrus spp., all species TRANSVAAL NATURE CONSERVATION ORDINANCE NO. 12 Harpactira spp., all species Pterinochilus spp., all species Gauteng: 2014 No List of species will be published Gauteng Nature Conservation Bill North West: 1983 No Ceratogyrus spp., all species TRANSVAAL NATURE CONSERVATION ORDINANCE NO. 12 Harpactira spp., all species Pterinochilus spp., all species North West: 2016 Yes Ceratogyrus spp., all species NORTH WEST BIODIVESITY MANAGEMENT ACT NO. 4 Harpactira spp., all species Pterinochilus spp., all species This is the most current info we can find through local government bio-diversity acts. If you have newer info or info to the contrary or benefit of this document, please get in touch with us: [email protected] / www.mymonsters.co.za .
Recommended publications
  • Malelane Safari Lodge, Kruger National Park
    INVERTEBRATE SPECIALIST REPORT Prepared For: Malelane Safari Lodge, Kruger National Park Dalerwa Ventures for Wildlife cc P. O. Box 1424 Hoedspruit 1380 Fax: 086 212 6424 Cell (Elize) 074 834 1977 Cell (Ian): 084 722 1988 E-mail: [email protected] [email protected] Table of Contents 1. EXECUTIVE SUMMARY ............................................................................................................................ 3 2. INTRODUCTION ........................................................................................................................................... 5 2.1 DESCRIPTION OF PROPOSED PROJECT .................................................................................................................... 5 2.1.1 Safari Lodge Development .................................................................................................................... 5 2.1.2 Invertebrate Specialist Report ............................................................................................................... 5 2.2 TERMS OF REFERENCE ......................................................................................................................................... 6 2.3 DESCRIPTION OF SITE AND SURROUNDING ENVIRONMENT ......................................................................................... 8 3. BACKGROUND ............................................................................................................................................. 9 3.1 LEGISLATIVE FRAMEWORK ..................................................................................................................................
    [Show full text]
  • Fasanbi SHOWCASE
    Threatened Species Monitoring PROGRAMME Threatened Species in South Africa: A review of the South African National Biodiversity Institutes’ Threatened Species Programme: 2004–2009 Acronyms ADU – Animal Demography Unit ARC – Agricultural Research Council BASH – Big Atlassing Summer Holiday BIRP – Birds in Reserves Project BMP – Biodiversity Management Plan BMP-S – Biodiversity Management Plans for Species CFR – Cape Floristic Region CITES – Convention on International Trade in Endangered Species CoCT – City of Cape Town CREW – Custodians of Rare and Endangered Wildflowers CWAC – Co-ordinated Waterbird Counts DEA – Department of Environmental Affairs DeJaVU – December January Atlassing Vacation Unlimited EIA – Environmental Impact Assessment EMI – Environmental Management Inspector GBIF – Global Biodiversity Information Facility GIS – Geographic Information Systems IAIA – International Association for Impact Assessment IAIAsa – International Association for Impact Assessment South Africa IUCN – International Union for Conservation of Nature LAMP – Long Autumn Migration Project LepSoc – Lepidopterists’ Society of Africa MCM – Marine and Coastal Management MOA – memorandum of agreement MOU – memorandum of understanding NBI – National Botanical Institute NEMA – National Environmental Management Act NEMBA – National Environmental Management Biodiversity Act NGO – non-governmental organization NORAD – Norwegian Agency for Development Co–operation QDGS – quarter-degree grid square SABAP – Southern African Bird Atlas Project SABCA – Southern African
    [Show full text]
  • Molecular Basis of the Remarkable Species Selectivity of an Insecticidal
    www.nature.com/scientificreports OPEN Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the Received: 03 February 2016 Accepted: 20 June 2016 African spider Augacephalus Published: 07 July 2016 ezendami Volker Herzig1,*, Maria Ikonomopoulou1,*,†, Jennifer J. Smith1,*, Sławomir Dziemborowicz2, John Gilchrist3, Lucia Kuhn-Nentwig4, Fernanda Oliveira Rezende5, Luciano Andrade Moreira5, Graham M. Nicholson2, Frank Bosmans3 & Glenn F. King1 The inexorable decline in the armament of registered chemical insecticides has stimulated research into environmentally-friendly alternatives. Insecticidal spider-venom peptides are promising candidates for bioinsecticide development but it is challenging to find peptides that are specific for targeted pests. In the present study, we isolated an insecticidal peptide (Ae1a) from venom of the African spider Augacephalus ezendami (family Theraphosidae). Injection of Ae1a into sheep blowflies (Lucilia cuprina) induced rapid but reversible paralysis. In striking contrast, Ae1a was lethal to closely related fruit flies (Drosophila melanogaster) but induced no adverse effects in the recalcitrant lepidopteran pest Helicoverpa armigera. Electrophysiological experiments revealed that Ae1a potently inhibits the voltage-gated sodium channel BgNaV1 from the German cockroach Blattella germanica by shifting the threshold for channel activation to more depolarized potentials. In contrast, Ae1a failed to significantly affect sodium currents in dorsal unpaired median neurons from the American cockroachPeriplaneta americana. We show that Ae1a interacts with the domain II voltage sensor and that sensitivity to the toxin is conferred by natural sequence variations in the S1–S2 loop of domain II. The phyletic specificity of Ae1a provides crucial information for development of sodium channel insecticides that target key insect pests without harming beneficial species.
    [Show full text]
  • Project Reports 2006
    KNP 15/1/2 - 06 Project Reports 2006 Scientific Reports on Research Projects undertaken in the Kruger National Park during 2006 TABLE OF CONTENTS FELINE LENTIVIRUS: MOLECULAR ANALYSIS AND EPIDEMIOLOGY IN SOUTHERN AFRICAN LIONS ................................................................................. 13 Adams H .....................................................................................................................13 WILDLIFE CONSERVATION THROUGH PEOPLE CENTRED APPROACHES TO NATURAL RESOURCE MANAGEMENT AND THE CONTROL OF WILDLIFE EXPLOITATION........................................................................................................ 14 Algotsson EM ..............................................................................................................14 A REGIONAL SCALE PASSIVE MONITORING STUDY OF SULPHUR DIOXIDE (SO2), NITROGEN OXIDES (NOX) AND OZONE (O3) ........................................................ 15 Annegarn HJ ...............................................................................................................15 METAL ANALYSIS AND PHYSICO-CHEMICAL CHARACTERISTICS OF FOUR MAJOR RIVER SYSTEMS THAT TRANSECT THE KRUGER NATIONAL PARK (SOUTH AFRICA)..................................................................................................... 16 Barker HJ ....................................................................................................................16 TOWARDS A SOCIO-ECOLOGICAL SYSTEMS VIEW OF THE SAND RIVER CATCHMENT, SOUTH AFRICA: A RESILIENCE ANALYSIS
    [Show full text]
  • Insect-Active Toxins with Promiscuous Pharmacology from the African Theraphosid Spider Monocentropus Balfouri
    toxins Article Insect-Active Toxins with Promiscuous Pharmacology from the African Theraphosid Spider Monocentropus balfouri Jennifer J. Smith 1,†, Volker Herzig 1,†, Maria P. Ikonomopoulou 1,†,‡, Sławomir Dziemborowicz 2, Frank Bosmans 3, Graham M. Nicholson 2 and Glenn F. King 1,* 1 Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; [email protected] (J.J.S.); [email protected] (V.H.); [email protected] (M.P.I.) 2 School of Life Sciences, University of Technology Sydney, NSW, Sydney 2007, Australia; [email protected] (S.D.); [email protected] (G.M.N). 3 Department of Physiology & Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; [email protected] * Correspondence: [email protected]; Tel.: +61-7-3346-2025 † These authors contributed equally to this work. ‡ Present address: QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia. Academic Editor: Lourival D. Possani Received: 28 March 2017; Accepted: 28 April 2017; Published: 5 May 2017 Abstract: Many chemical insecticides are becoming less efficacious due to rising resistance in pest species, which has created much interest in the development of new, eco-friendly bioinsecticides. Since insects are the primary prey of most spiders, their venoms are a rich source of insect-active peptides that can be used as leads for new bioinsecticides or as tools to study molecular receptors that are insecticidal targets. In the present study, we isolated two insecticidal peptides, µ/!-TRTX-Mb1a and -Mb1b, from venom of the African tarantula Monocentropus balfouri.
    [Show full text]
  • Spiders & Scorpion Livestock
    Spiders & Scorpion Livestock Updated: 22.09.2017 Please Note: Livestock lists are correct at time of publishing and availability is subject to change Common Name Latin Name Age/Size Price Stock Status Spiders Brazilian Red And White Knee Female £49.95 Available Tarantula Adult Brazilian White Knee Tarantula £34.95 Available Chaco Golden Knee Tarantula Grammostola Pulchripes £29.95 Available Cobalt Blue Tarantula Haplopelma Lividum Sub Adult £49.95 Available Costa Rican Zebra Female £49.95 Available Curly Hair Tarantula Female £29.95 Available Field Wolf Spider Hogna Miami £19.95 Available Fringed Ornamental p. ornata spiderling £24.95 Available 1 / 4 Common Name Latin Name Age/Size Price Stock Status Spiders Golden Baboon Tarantula Augacephalus ezendami £39.95 Available Gooty Ornamental p. metallica spiderling £49.95 Available Green Bottle Blue Tarantula Female £49.95 Available Green Femur Birdeater Phormictopus"Green Femur" £39.95 Available Indian Ornamental Tarantula Poecilotheria regalis 2cm £24.95 Available King Baboon Tarantula Pelinobius Muticus £24.95 Available Martinique Pink Toe Tarantula 2cm £16.95 Available Mexican Fire Leg Tarantula Brachypelma Bohemi £39.95 Available Mexican Red Knee Tarantula Brachypelma Smithi £34.95 Available 2 / 4 Common Name Latin Name Age/Size Price Stock Status Spiders Mexican Red Leg Tarantula Brachypelma Emilia £39.95 Available £24.95 Available Mexican Red Rump Brachypelma Vagans Female Sub Adult Available £49.95 spiderling £19.95 Available OBT Tarantula Female Sub Adult Available £39.95 Purple Earth
    [Show full text]
  • To Map Baboon Spider (Araneae: Theraphosidae) Distributions and Diversity in Southern Africa
    The Baboon Spider Atlas – using citizen science and the ‘fear factor’ to map baboon spider (Araneae: Theraphosidae) distributions and diversity in Southern Africa Heather Campbell & Ian Engelbrecht Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa. Corresponding author email: [email protected] Abstract 1. Charismatic invertebrates are popular subjects for citizen science but it is harder to engage the public in research on animals that are perceived as dangerous. Many successful citizen science projects exist in North America and Europe, but with the increased use of new technologies and social media there is a greater capacity to expand citizen science to less developed regions. 2. Baboon spiders are African members of the tarantula family. They are threatened by habitat loss and illegal harvesting for the pet trade, but conservation efforts are hampered by a lack of knowledge on their ecology. 3. Here we describe the Baboon Spider Atlas, a project combining traditional research with citizen science to map the diversity and distributions of baboon spiders (Araneae: Theraphosidae) in Southern Africa. Our project embraces the ‘fear factor’ associated with spiders to obtain photographic records from the public. 4. The Baboon Spider Atlas has assembled the largest database of information on baboon spiders in Southern Africa and is providing novel insights into their biology. Distribution ranges have been extended and potential new species discovered. Preliminary results suggest that their distribution may be limited more by cold, wet climatic conditions than hot, dry conditions. Records for wandering adult females and immatures highlight a previously undocumented behaviour and challenges the notion that baboon spiders are sedentary 1 animals.
    [Show full text]
  • Biodiversity Impact Assessment
    March 2020 19121900-328397-9 APPENDIX H Biodiversity Impact Assessment REPORT Specialist Assessment for the Proposed Surface Pipeline and Associated Infrastructure - Biodiversity Impact Assessment AngloGold Ashanti (Pty) Limited South African Operations Submitted to: Anglo Gold Ashanti (Pty) Limited South African Operations Mr J van Wyk Carletonville - Fochville Road R500 Carletonville Gauteng 2501 Submitted by: Golder Associates Africa (Pty) Ltd. Building 1, Maxwell Office Park, Magwa Crescent West, Waterfall City, Midrand, 1685, South Africa P.O. Box 6001, Halfway House, 1685 +27 11 254 4800 19121900-327695-6 February 2020 February 2020 19121900-327695-6 Distribution List 1 eCopy to Anglo Gold Ashanti (Pty) Limited South African Operations 1 eCopy to [email protected] i February 2020 19121900-327695-6 Executive Summary Project overview The AGA operations in the West Wits mining lease areas are at risk of flooding due to ingress of fissure water from surrounding mining operations. Approximately 25 Mℓ/day of fissure water flows into the underground workings of the defunct Blyvooruitzicht Mine, which spans a strike of 6 km along the boundary with AGA. If dewatering at the Old Blyvooruitzicht Shafts (#4, #5 & 6#) shafts were to cease, uncontrolled fissure water would report to the AGA operations, which would pose both a flood and safety risk of AGA personnel and the mining operations. This report provides a professional opinion regarding the anticipated terrestrial, wetland and aquatic impacts from this proposed project. Location The proposed water pipeline and associated infrastructure is located approximately 80 km west of Johannesburg. It originates at CWC 4#, approximately 3.3 km south east of Carletonville and ends at the North Boundary Dam (NBD) approximately 6 km south-south-west of Carletonville in Blyvooruitzicht, Merafong City Local Municipality, West Rand District Municipality in the Gauteng Province of South Africa.
    [Show full text]
  • Araneae (Spider) Photos
    Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison.
    [Show full text]
  • Versatile Spider Venom Peptides and Their Medical and Agricultural Applications
    Accepted Manuscript Versatile spider venom peptides and their medical and agricultural applications Natalie J. Saez, Volker Herzig PII: S0041-0101(18)31019-5 DOI: https://doi.org/10.1016/j.toxicon.2018.11.298 Reference: TOXCON 6024 To appear in: Toxicon Received Date: 2 May 2018 Revised Date: 12 November 2018 Accepted Date: 14 November 2018 Please cite this article as: Saez, N.J., Herzig, V., Versatile spider venom peptides and their medical and agricultural applications, Toxicon (2019), doi: https://doi.org/10.1016/j.toxicon.2018.11.298. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT MANUSCRIPT ACCEPTED ACCEPTED MANUSCRIPT 1 Versatile spider venom peptides and their medical and agricultural applications 2 3 Natalie J. Saez 1, #, *, Volker Herzig 1, #, * 4 5 1 Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia 6 7 # joint first author 8 9 *Address correspondence to: 10 Dr Natalie Saez, Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 11 4072, Australia; Phone: +61 7 3346 2011, Fax: +61 7 3346 2101, Email: [email protected] 12 Dr Volker Herzig, Institute for Molecular Bioscience, The University of Queensland, St.
    [Show full text]
  • Arachnida, Araneae) of the Savanna Biome in South Africa
    The faunistic diversity of spiders (Arachnida, Araneae) of the Savanna Biome in South Africa S.H. Foord1, A.S. Dippenaar-Schoeman2& C.R Haddad3 1Department of Zoology, Centre for Invasion Biology, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa 2 ARC-Plant Protection Research Institute, Private Bag X134, Queenswood 0121/Department of Zoology &Entomology, University of Pretoria, Pretoria 0001, South Africa 3Department of Zoology & Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa Invertebrates include more than 80% of all animals, yet they are severely under-represented in studies of southern African diversity. Site biodiversity estimates that do not consider invertebrates, not only omit the greatest part of what they are attempting to measure, but also ignore major contributors to essential ecosystem processes. All available information on spider species distribution in the South African Savanna Biome was compiled. This is the largest biome in the country,occupying over one third of the surface area.A total of 1230 species represented by 381genera and 62 families are known from the biome. The last decade has seen an exponential growth in the knowledge of the group in South Africa, but there certainly are several more species that have to be discovered, and the distribution patterns of those listed are partly unknown. Information is summarized for all quarter degree squares of the biome and reveals considerable inequalities in knowledge. At a large scale the eastern region is much better surveyed than the western parts, but at smaller scales throughout the region, several areas have little information.
    [Show full text]
  • Tarantula Phylogenomics
    bioRxiv preprint doi: https://doi.org/10.1101/501262; this version posted January 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Tarantula phylogenomics: A robust phylogeny of multiple tarantula lineages inferred from transcriptome data sheds light on the prickly issue of urticating setae evolution. Saoirse Foleya#*, Tim Lüddeckeb#*, Dong-Qiang Chengc, Henrik Krehenwinkeld, Sven Künzele, Stuart J. Longhornf, Ingo Wendtg, Volker von Wirthh, Rene Tänzleri, Miguel Vencesj, William H. Piela,c a National University of Singapore, Department of Biological Sciences, 16 Science Drive 4, Singapore 117558, Singapore b Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Animal Venomics Research Group, Winchesterstr. 2, 35394 Gießen, Germany c Yale-NUS College, 10 College Avenue West #01-101, Singapore 138609, Singapore d Department of Biogeography, Trier University, Trier, Germany e Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany f Hope Entomological Collections, Oxford University Museum of Natural History (OUMNH), Parks Road, Oxford, England OX1 3PW, United Kingdom g Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany h Deutsche Arachnologische Gesellschaft e.V., Zeppelinstr. 28, 71672 Marbach a. N., Germany. i Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany j Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany # shared first authorship, both authors contributed equally *corresponding authors, email addresses: [email protected] and [email protected] Abstract Mygalomorph spiders of the family Theraphosidae, known to the broader public as tarantulas, are among the most recognizable arachnids on earth due to their large size and widespread distribution.
    [Show full text]