Basal Ganglia, Which Appear to “Filter” Spontaneous, Self-Guided Movements, and Set Overall Activity Levels
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Basal Ganglia & Cerebellum
1/2/2019 This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the internet or on any personal websites. Your use of this resource is with the acknowledgment and acceptance of those restrictions. Basal Ganglia & Cerebellum – a quick overview MHD-Neuroanatomy – Neuroscience Block Gregory Gruener, MD, MBA, MHPE Vice Dean for Education, SSOM Professor, Department of Neurology LUHS a member of Trinity Health Outcomes you want to accomplish Basal ganglia review Define and identify the major divisions of the basal ganglia List the major basal ganglia functional loops and roles List the components of the basal ganglia functional “circuitry” and associated neurotransmitters Describe the direct and indirect motor pathways and relevance/role of the substantia nigra compacta 1 1/2/2019 Basal Ganglia Terminology Striatum Caudate nucleus Nucleus accumbens Putamen Globus pallidus (pallidum) internal segment (GPi) external segment (GPe) Subthalamic nucleus Substantia nigra compact part (SNc) reticular part (SNr) Basal ganglia “circuitry” • BG have no major outputs to LMNs – Influence LMNs via the cerebral cortex • Input to striatum from cortex is excitatory – Glutamate is the neurotransmitter • Principal output from BG is via GPi + SNr – Output to thalamus, GABA is the neurotransmitter • Thalamocortical projections are excitatory – Concerned with motor “intention” • Balance of excitatory & inhibitory inputs to striatum, determine whether thalamus is suppressed BG circuits are parallel loops • Motor loop – Concerned with learned movements • Cognitive loop – Concerned with motor “intention” • Limbic loop – Emotional aspects of movements • Oculomotor loop – Concerned with voluntary saccades (fast eye-movements) 2 1/2/2019 Basal ganglia “circuitry” Cortex Striatum Thalamus GPi + SNr Nolte. -
Basal Ganglia Anatomy, Physiology, and Function Ns201c
Basal Ganglia Anatomy, Physiology, and Function NS201c Human Basal Ganglia Anatomy Basal Ganglia Circuits: The ‘Classical’ Model of Direct and Indirect Pathway Function Motor Cortex Premotor Cortex + Glutamate Striatum GPe GPi/SNr Dopamine + - GABA - Motor Thalamus SNc STN Analagous rodent basal ganglia nuclei Gross anatomy of the striatum: gateway to the basal ganglia rodent Dorsomedial striatum: -Inputs predominantly from mPFC, thalamus, VTA Dorsolateral striatum: -Inputs from sensorimotor cortex, thalamus, SNc Ventral striatum: Striatal subregions: Dorsomedial (caudate) -Inputs from vPFC, hippocampus, amygdala, Dorsolateral (putamen) thalamus, VTA Ventral (nucleus accumbens) Gross anatomy of the striatum: patch and matrix compartments Patch/Striosome: -substance P -mu-opioid receptor Matrix: -ChAT and AChE -somatostatin Microanatomy of the striatum: cell types Projection neurons: MSN: medium spiny neuron (GABA) •striatonigral projecting – ‘direct pathway’ •striatopallidal projecting – ‘indirect pathway’ Interneurons: FS: fast-spiking interneuron (GABA) LTS: low-threshold spiking interneuron (GABA) LA: large aspiny neuron (ACh) 30 um Cellular properties of striatal neurons Microanatomy of the striatum: striatal microcircuits • Feedforward inhibition (mediated by fast-spiking interneurons) • Lateral feedback inhibition (mediated by MSN collaterals) Basal Ganglia Circuits: The ‘Classical’ Model of Direct and Indirect Pathway Function Motor Cortex Premotor Cortex + Glutamate Striatum GPe GPi/SNr Dopamine + - GABA - Motor Thalamus SNc STN The simplified ‘classical’ model of basal ganglia circuit function • Information encoded as firing rate • Basal ganglia circuit is linear and unidirectional • Dopamine exerts opposing effects on direct and indirect pathway MSNs Basal ganglia motor circuit: direct pathway Motor Cortex Premotor Cortex Glutamate Striatum GPe GPi/SNr Dopamine + GABA Motor Thalamus SNc STN Direct pathway MSNs express: D1, M4 receptors, Sub. -
Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: a Comparative in Situ Hybridization Analysis
The Journal of Neuroscience, March 1993. 73(3): 1258-1279 Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: A Comparative in situ Hybridization Analysis Martin K.-H. Schafer,i-a Robert Day,* William E. Cullinan,’ Michel Chri?tien,3 Nabil G. Seidah,* and Stanley J. Watson’ ‘Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0720 and J. A. DeSeve Laboratory of *Biochemical and 3Molecular Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada H2W lR7 Posttranslational processing of proproteins and prohor- The participation of neuropeptides in the modulation of a va- mones is an essential step in the formation of bioactive riety of CNS functions is well established. Many neuropeptides peptides, which is of particular importance in the nervous are synthesized as inactive precursor proteins, which undergo system. Following a long search for the enzymes responsible an enzymatic cascade of posttranslational processing and mod- for protein precursor cleavage, a family of Kexin/subtilisin- ification events during their intracellular transport before the like convertases known as PCl, PC2, and furin have recently final bioactive products are secreted and act at either pre- or been characterized in mammalian species. Their presence postsynaptic receptors. Initial endoproteolytic cleavage occurs in endocrine and neuroendocrine tissues has been dem- C-terminal to pairs of basic amino acids such as lysine-arginine onstrated. This study examines the mRNA distribution of (Docherty and Steiner, 1982) and is followed by the removal these convertases in the rat CNS and compares their ex- of the basic residues by exopeptidases. Further modifications pression with the previously characterized processing en- can occur in the form of N-terminal acetylation or C-terminal zymes carboxypeptidase E (CPE) and peptidylglycine a-am- amidation, which is essential for the bioactivity of many neu- idating monooxygenase (PAM) using in situ hybridization ropeptides. -
Distinct Transcriptomic Cell Types and Neural Circuits of the Subiculum and Prosubiculum Along 2 the Dorsal-Ventral Axis 3 4 Song-Lin Ding1,2,*, Zizhen Yao1, Karla E
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.14.876516; this version posted December 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distinct transcriptomic cell types and neural circuits of the subiculum and prosubiculum along 2 the dorsal-ventral axis 3 4 Song-Lin Ding1,2,*, Zizhen Yao1, Karla E. Hirokawa1, Thuc Nghi Nguyen1, Lucas T. Graybuck1, Olivia 5 Fong1, Phillip Bohn1, Kiet Ngo1, Kimberly A. Smith1, Christof Koch1, John W. Phillips1, Ed S. Lein1, 6 Julie A. Harris1, Bosiljka Tasic1, Hongkui Zeng1 7 8 1Allen Institute for Brain Science, Seattle, WA 98109, USA 9 10 2Lead Contact 11 12 *Correspondence: [email protected] (SLD) 13 14 15 Highlights 16 17 1. 27 transcriptomic cell types identified in and spatially registered to “subicular” regions. 18 2. Anatomic borders of “subicular” regions reliably determined along dorsal-ventral axis. 19 3. Distinct cell types and circuits of full-length subiculum (Sub) and prosubiculum (PS). 20 4. Brain-wide cell-type specific projections of Sub and PS revealed with specific Cre-lines. 21 22 23 In Brief 24 25 Ding et al. show that mouse subiculum and prosubiculum are two distinct regions with differential 26 transcriptomic cell types, subtypes, neural circuits and functional correlation. The former has obvious 27 topographic projections to its main targets while the latter exhibits widespread projections to many 28 subcortical regions associated with reward, emotion, stress and motivation. -
Characterization of Substantia Nigra
Mourtzi et al. Stem Cell Research & Therapy (2021) 12:335 https://doi.org/10.1186/s13287-021-02398-3 RESEARCH Open Access Characterization of substantia nigra neurogenesis in homeostasis and dopaminergic degeneration: beneficial effects of the microneurotrophin BNN-20 Theodora Mourtzi1,2*, Dimitrios Dimitrakopoulos2†, Dimitrios Kakogiannis2†, Charalampos Salodimitris2, Konstantinos Botsakis1, Danai Kassandra Meri2, Maria Anesti2,3, Aggeliki Dimopoulou1, Ioannis Charalampopoulos4,5, Achilleas Gravanis4,5, Nikolaos Matsokis3, Fevronia Angelatou1† and Ilias Kazanis2*† Abstract Background: Loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) underlines much of the pathology of Parkinson’s disease (PD), but the existence of an endogenous neurogenic system that could be targeted as a therapeutic strategy has been controversial. BNN-20 is a synthetic, BDNF-mimicking, microneurotrophin that we previously showed to exhibit a pleiotropic neuroprotective effect on the dopaminergic neurons of the SNpc in the “weaver” mouse model of PD. Here, we assessed its potential effects on neurogenesis. Methods: We quantified total numbers of dopaminergic neurons in the SNpc of wild-type and “weaver” mice, with or without administration of BNN-20, and we employed BrdU labelling and intracerebroventricular injections of DiI to evaluate the existence of dopaminergic neurogenesis in the SNpc and to assess the origin of newborn dopaminergic neurons. The in vivo experiments were complemented by in vitro proliferation/differentiation assays of adult neural stem cells (NSCs) isolated from the substantia nigra and the subependymal zone (SEZ) stem cell niche to further characterize the effects of BNN-20. * Correspondence: [email protected]; [email protected]; [email protected] †Dimitrios Dimitrakopoulos and Dimitrios Kakogiannis contributed equally to this work. -
Rhesus Monkey Brain Atlas Subcortical Gray Structures
Rhesus Monkey Brain Atlas: Subcortical Gray Structures Manual Tracing for Hippocampus, Amygdala, Caudate, and Putamen Overview of Tracing Guidelines A) Tracing is done in a combination of the three orthogonal planes, as specified in the detailed methods that follow. B) Each region of interest was originally defined in the right hemisphere. The labels were then reflected onto the left hemisphere and all borders checked and adjusted manually when necessary. C) For the initial parcellation, the user used the “paint over function” of IRIS/SNAP on the T1 template of the atlas. I. Hippocampus Major Boundaries Superior boundary is the lateral ventricle/temporal horn in the majority of slices. At its most lateral extent (subiculum) the superior boundary is white matter. The inferior boundary is white matter. The anterior boundary is the lateral ventricle/temporal horn and the amygdala; the posterior boundary is lateral ventricle or white matter. The medial boundary is CSF at the center of the brain in all but the most posterior slices (where the medial boundary is white matter). The lateral boundary is white matter. The hippocampal trace includes dentate gyrus, the CA3 through CA1 regions of the hippocamopus, subiculum, parasubiculum, and presubiculum. Tracing A) Tracing is done primarily in the sagittal plane, working lateral to medial a. Locate the most lateral extent of the subiculum, which is bounded on all sides by white matter, and trace. b. As you page medially, tracing the hippocampus in each slice, the superior, anterior, and posterior boundaries of the hippocampus become the lateral ventricle/temporal horn. c. Even further medially, the anterior boundary becomes amygdala and the posterior boundary white matter. -
Amygdala Functional Connectivity, HPA Axis Genetic Variation, and Life Stress in Children and Relations to Anxiety and Emotion Regulation
Journal of Abnormal Psychology © 2015 American Psychological Association 2015, Vol. 124, No. 4, 817–833 0021-843X/15/$12.00 http://dx.doi.org/10.1037/abn0000094 Amygdala Functional Connectivity, HPA Axis Genetic Variation, and Life Stress in Children and Relations to Anxiety and Emotion Regulation David Pagliaccio, Joan L. Luby, Ryan Bogdan, Arpana Agrawal, Michael S. Gaffrey, Andrew C. Belden, Kelly N. Botteron, Michael P. Harms, and Deanna M. Barch Washington University in St. Louis Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within 4 hypothalamic- pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9- to 14-year-olds; N ϭ 120). Whole-brain regression analyses indicated that increasing genetic “risk” predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic “risk” and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. -
Dopaminergic Microtransplants Into the Substantia Nigra of Neonatal Rats with Bilateral 6-OHDA Lesions
The Journal of Neuroscience, May 1995, 15(5): 3548-3561 Dopaminergic Microtransplants into the Substantia Nigra of Neonatal Rats with Bilateral 6-OHDA Lesions. I. Evidence for Anatomical Reconstruction of the Nigrostriatal Pathway Guido Nikkhah,1,2 Miles G. Cunningham,3 Maria A. Cenci,’ Ronald D. McKay,4 and Anders Bj6rklund’ ‘Department of Medical Cell Research, University of Lund, S-223 62 Lund, Sweden, *Neurosurgical Clinic, Nordstadt Hospital, D-301 67 Hannover, Germany, 3Harvard Medical School, Boston, Massachusetts 02115, and 4 Laboratory of Molecular Biology, NINDS NIH, Bethesda, Maryland 20892 Reconstruction of the nigrostriatal pathway by long axon [Key words: target reinnervation, axon growth, neural growth derived from dopamine-rich ventral mesencephalic transplantation, tyrosine hydroxylase immunohistochem- (VM) transplants grafted into the substantia nigra may en- istry, Fos protein, Fluoro-Gold] hance their functional integration as compared to VM grafts implanted ectopically into the striatum. Here we report on In the lesioned brain of adult recipients dopamine-rich grafts a novel approach by which fetal VM grafts are implanted from fetal ventral mesencephalon (VM) are unable to reinner- unilaterally into the substantia nigra (SN) of 6-hydroxydo- vate the caudate-putamen unless they are placed close to, or pamine (SOHDA)-lesioned neonatal pups at postnatal day within, the denervated target structure (BjGrklund et al., 1983b; 3 (P3) using a microtransplantation technique. The results Nikkhah et al., 1994b). The failure of regenerating dopaminergic demonstrate that homotopically placed dopaminergic neu- axons to reinnervate the striatum from more distant implantation rons survive and integrate well into the previously sites, including their normal site of origin, the substantia nigra 6-OHDA-lesioned neonatal SN region. -
Striatal and Midbrain Connectivity with the Hippocampus Selectively Boosts Memory for Contextual Novelty
HIPPOCAMPUS 25:1262–1273 (2015) Striatal and Midbrain Connectivity with the Hippocampus Selectively Boosts Memory for Contextual Novelty Alexandros Kafkas* and Daniela Montaldi ABSTRACT: The role of contextual expectation in processing familiar of the new information (Kakade and Dayan, 2002). and novel stimuli was investigated in a series of experiments combining eye The ability to discriminate potentially salient familiar tracking, functional magnetic resonance imaging, and behavioral methods. An experimental paradigm emphasizing either familiarity or novelty detec- and novel information, in a context abundant with tion at retrieval was used. The detection of unexpected familiar and novel old and new stimuli, becomes crucial for ensuring stimuli, which were characterized by lower probability, engaged activity in effective contextual learning. Efficient discrimination midbrain and striatal structures. Specifically, detecting unexpected novel may trigger an orienting response toward the new stimuli, relative to expected novel stimuli, produced greater activity in the unexpected information and may therefore enhance substantia nigra/ventral tegmental area (SN/VTA), whereas the detection of unexpected familiar, relative to expected, familiar stimuli, elicited activity memory formation (Tulving and Kroll, 1995). Indeed, in the striatum/globus pallidus (GP). An effective connectivity analysis the brain’s dopaminergic system, including striatal and showed greater functional coupling between these two seed areas (GP and midbrain structures, has been shown to respond to SN/VTA) and the hippocampus, for unexpected than for expected stimuli. reward anticipation and to prediction errors as well as Within this network of midbrain/striatal–hippocampal interactions two having an effect on memory formation (Adcock et al., pathways are apparent; the direct SN–hippocampal pathway sensitive to unexpected novelty and the perirhinal–GP–hippocampal pathway sensitive 2006; Wittmann et al., 2011). -
MR Findings in Patients with Subacute Necrotizing Encephalomyelopathy (Leigh Syndrome): Correlation with Biochemical Defect
379 MR Findings in Patients with Subacute Necrotizing Encephalomyelopathy (Leigh Syndrome): Correlation with Biochemical Defect 1 2 L. Medina · MR studies were correlated with biochemical results in nine children who presented 1 3 T. L. Chi · with lactic acidosis andjor abnormal MR findings in the basal ganglia. Neurologic D. C. DeVivo4 development was delayed in all nine children. Seven of these patients were diagnosed S. K. Hilal 1 as having subacute necrotizing encephalomyelopathy (SNE, or Leigh syndrome) on the basis of history, clinical findings, and biochemical studies; of the remaining two, one had congenital lactic acidosis and the other had familial bilateral striatal necrosis with no known biochemical correlate. Although the clinical presentation of these patients was similar, we found distinctive MR abnormalities in characteristic locations in the seven patients with SNE, with or without detectable specific mitochondrial enzyme deficiency in cultured skin fibroblast assays. In our case studies of SNE patients with detectable enzyme deficiency states, defects in pyruvate dehydrogenase complex and cytochrome c oxidase have been found. The MR finding of note in SNE is the remarkably symmetrical involvement, most frequently of the putamen. In our study, lesions were also commonly found in the globus pallidus and the caudate nucleus, but never in the absence of putamina! abnormalities. Other areas of involvement included the paraven tricular white matter, corpus callosum, substantia nigra, decussation of superior cere bellar peduncles, periaqueductal region, and brainstem. In patients who present with lactic acidosis and whose MR findings show symmetrical abnormalities in the brain, but with sparing of the putamen, the diagnosis of SNE is in doubt. -
Different Roles of Direct and Indirect Frontoparietal Pathways for Individual Working Memory Capacity
2894 • The Journal of Neuroscience, March 9, 2016 • 36(10):2894–2903 Behavioral/Cognitive Different Roles of Direct and Indirect Frontoparietal Pathways for Individual Working Memory Capacity X Matthias Ekman,1,2 Christian J. Fiebach,1,3,4 Corina Melzer,2 XMarc Tittgemeyer,2 and Jan Derrfuss1,2 1Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, 6500 HE Nijmegen, The Netherlands, 2Max Planck Institute for Neurological Research, 50931 Cologne, Germany, 3Department of Psychology, Goethe University Frankfurt, 60323 Frankfurt am Main, Germany, and 4Center for Individual Development and Adaptive Education, 60486 Frankfurt am Main, Germany The ability to temporarily store and manipulate information in working memory is a hallmark of human intelligence and differs consid- erably across individuals, but the structural brain correlates underlying these differences in working memory capacity (WMC) are only poorly understood. In two separate studies, diffusion MRI data and WMC scores were collected for 70 and 109 healthy individuals. Using a combination of probabilistic tractography and network analysis of the white matter tracts, we examined whether structural brain network properties were predictive of individual WMC. Converging evidence from both studies showed that lateral prefrontal cortex and posterior parietal cortex of high-capacity individuals are more densely connected compared with low-capacity individuals. Importantly, our network approach was further able to dissociate putative functional roles associated with two different pathways connecting frontal and parietal regions: a corticocortical pathway and a subcortical pathway. In Study 1, where participants were required to maintain and update working memory items, the connectivity of the direct and indirect pathway was predictive of WMC. -
Substantia Nigra and Parkinson's Disease
HISTORICAL REVIEW Substantia Nigra and Parkinson’s Disease: A Brief History of Their Long and Intimate Relationship Martin Parent, André Parent ABSTRACT: The substantia nigra was discovered in 1786 by Félix Vicq d’Azyr, but it took more than a century before Paul Blocq and Georges Marinesco alluded to a possible link between this structure and Parkinson’s disease. The insight came from the study of a tuberculosis patient admitted in Charcot’s neurology ward at la Salpêtrière because he was suffering from unilateral parkinsonian tremor. At autopsy, Blocq and Marinesco discovered an encapsulated tumor confined to the substantia nigra, contralateral to the affected side, and concluded that tremor in that particular case resulted from a midbrain lesion. This pioneering work, published in 1893, led Edouard Brissaud to formulate, in 1895, the hypothesis that the substantia nigra is the major pathological site in Parkinson’s disease. Brissaud’s hypothesis was validated in 1919 by Constantin Trétiakoff in a remarkable thesis summarizing a post-mortem study of the substantia nigra conducted in Marinesco’s laboratory. Despite highly convincing evidence of nigral cell losses in idiopathic and post-encephalitic Parkinsonism, Trétiakoff’s work raised considerable doubts among his colleagues, who believed that the striatum and pallidum were the preferential targets of parkinsonian degeneration. Trétiakoff’s results were nevertheless confirmed by detailed neuropathological studies undertaken in the 1930s and by the discovery, in the 1960s, of the dopaminergic nature of the nigrostriatal neurons that degenerate in Parkinson’s disease. These findings have strengthened the link between the substantia nigra and Parkinson’s disease, but modern research has uncovered the multifaceted nature of this neurodegenerative disorder by identifying other brain structures and chemospecifc systems involved in its pathogenesis.