Quantification by Sidney Felder the Truth-Functional Connectives

Total Page:16

File Type:pdf, Size:1020Kb

Quantification by Sidney Felder the Truth-Functional Connectives Quantification by SidneyFelder The truth-functional connectivesconstitute the expressive and deductive “engine” of propositional logic. These combine and relate complete atomic sentences whose internal structures are givenno distinctively logical role whatsoever. From one formal point of view, quantificational logic,inall of its infinite varieties, is marked by its penetration to a sentence’ssub-atomic level, a levelfrom which sub-sentential elements that are common to multiplicities of sentences can be discerned and exploited. It has been found, specifically,that just by isolating those aspects of propositions that can be interpreted as making assertions about all or some individuals of one domain or another,a tremendously more powerful system of logic is created: In augmenting the propositional logic by the universal and existential quantifiers “for all x” (symbolized (x) or (∀x)) and “there exists an x” (symbolized (∃x)), and their associated apparatus, we both 1) enormously expand the sphere of abstract ideas and structures that can be givenprecise and distinctive expression in formal terms and 2) vastly increase the range of propositions that can be brought into non-trivial expressive and deduc- tive relationship with each other. We are nowgoing to define the vocabulary and concepts of what is variously called the FirstOrder Predicate Calculus, Predicate Logic,the Lower Predicate Calculus (LPC), and FirstOrder Logic (FOL). (Another (nowseldom used) older name is the FirstOrder Functional Calculus). First Order Logic is simultaneously the most elementary and the most standard of the quantificational log- ics. (There is, for example, Second Order Logic, Third Order Logic, Quantified Modal Logic, Epis- temic Logic, etc.). The First Order system whose axioms include only logical axioms (only axioms that are logically valid) singles out the class of logically valid formulae. However, there are manyother concepts and structures that can be expressed in a First Order language. Each augmentation of the logical axioms (which belong to all First Order systems) by a logically consistent set of non-valid axioms (proper axioms)defines a class of more definite structures. While manydifferent choices of axioms will single out the same class of structures, and while manyconceptually natural structures are undefin- able in First Order systems, the expressive power of First Order languages completely dwarfs that of sentential calculi. These notes are designed to provide a synoptic orientation to some of the simplest concepts, rela- tions, and structures that can be expressed in a First Order Language. In addition to the sentences and connectivesofpropositional logic, the basic elements of a First Order System include: 1) anon- empty domain or universe of individuals U; 2) aset of individual constants a, b, c,... each denoting some definite individual belonging to U; 3) aset of predicate constants A, B, C,... designating prop- erties and relations among the individuals of U (a monadic predicate corresponds to a subset of U and an n-adic predicate for n greater than 1 corresponds to a set of n-tuples of elements of U); 4) a set of variables x, y,z,... ranging overall the objects of U; 5) the quantifiers (∀x) and (∃x), repre- senting the expressions ‘for all x’ and ‘there exists an x’ respectively; and 6) the logical constant ‘≈’, invariably representing the relation of identity among individuals. While the designations of the predicate constants (predicates) and the individual constants (constants) vary from interpretation to interpretation, the quantifiers and the the identity relation are (likethe truth-functional connectives) Course Notes Page 1 Quantification treated as logical constants, and their interpretations are fixed. (Although an infinite number of dis- tinct formulae can be composed from these linguistic elements, each well-formed formula of the lan- guage is assumed to be finite in length (i.e., to be composed of a finite number of symbolic tokens)). Nowsuppose that U is the set of physical objects and the predicate G is interpreted as the property green.Ifthe constant a is interpreted as ‘the largest leaf on Earth’ and the constant b is interpreted as the sun, the sentence G(a)isinterpreted as the sentence “The largest leaf on Earth is green”, and the sentence G(b)isinterpreted as the statement “The sun is green”. It is a consequence of the interpretation chosen that G(a)istrue and G(b)isfalse. Or,suppose that U is the set of natural numbers {0,1,2,3,...}, that the symbol > represents, as usual, the relation ‘numerically greater than’, and that the constants 2 and 3 represent, as usual, the numbers 2 and 3. Under this interpretation, the sentence >(0,5) (more commonly written 0>5) ,which represents the statement “0 is greater than 5” is false, but the sentence 5>0, which represents the statement “5 is greater than 0”, is true. On the other hand, the simple predicate formula G(x) is neither true nor false categorically: G(x) is true for some assignments of objects to x and false for others. Adopting a slightly different point of view, wesay that the formula G(x) is satisfied by some assignments of values to x and is not satis- fied by others. Thus if we interpret the predicate G as the property green (or,equivalently,the set of all green objects), G(x) will be satisfied by all green objects and will fail to be satisfied by any non-green object. Analogously,x>y is true for some pairs of natural numbers and is false for oth- ers. Specifically x>y is satisfied by all ordered pairs of natural numbers whose first terms are numerically greater than their second terms, and fails to be satisfied by anyordered pair whose first term is not greater than its second term. We now describe howthe quantified formulae are to be understood. Giventhe non-empty domain of discourse U of all physical objects, and supposing for the present that the predicate letter G is interpreted as the color green, the formula (∀x)G(x) states that all objects of U possess the property green, and the formula (∃x)G(x) states that there exists at least one object in U that possesses the property green. In both of these formulae, all occurrences of x are bound,and we say that x appears in this formula only as a bound or apparent variable.The variables embedded in the quan- tifiers themselves, (∀x) and (∃x), are always classified as bound, and the other occurrences of the variable x in the above formulae are bound because (as indicated by the pattern of parentheses) these occurrences fall within the scope of the quantifiers. Because we normally desire the proposi- tion (∀x)G(x) to imply the proposition (∃x)G(x) (i.e., because we want (∃x)G(x) to be true whenever (∀x)G(x) is true), it is standard to arrange things so that the formula (∀x)G(x) has existential import,meaning that the proposition that all objects are green is interpreted in such a way as to imply that there exists at least one green object. This is accomplished not by making anyparticular assumption about the meaning of the universal quantifier (∀x), but rather by imposing the constraint that the universe of discourse U can neverbeempty,that is, by imposing the demand that all admis- sible domains contain at least one object. Under the assumption that U has at least one object, the truth of the statement that “All objects are green” presupposes that at least one object in U is green, meaning that (∀x)G(x) is true in no domain in which (∃x)G(x) is false. If we admitted the possibil- ity of a domain U with no objects, (∀x)G(x) would be vacuously true, and we would be admitting a situation in which (∀x)G(x) was true and (∃x)G(x) was false. (The reader should be aware that there are variations of the standard formalism, called free logics,inwhich empty domains are admit- ted). What about a sentence of the form G(c), which states that the specific object designated by the Course Notes Page 2 Quantification constant c is green? Such a statement is intermediate in logical strength between (∀x)G(x) and (∃x)G(x) (i.e., is logically implied by (∀x)G(x), logically implies (∃x)G(x), and is logically equiv- alent to neither). Forexample, the statement that all objects are green is logically implies the state- ment that Joe’scoat is green, and the statement that Joe’scoat is green implies the statement that there exists at least one green object. (In the peculiar but logically irreproachable universe whose only object is Joe’scoat, the following statements are all simultaneously true: All objects are green; Joe’scoat is green; Some object is green; Nothing other than Joe’scoat is green). Now, consider anydefinite domain U. If it is not the case that all objects in U are green, there must exist some object that is not green. Symbolically,the sentence ¬ (∀x)G(x) is equivalent to the statement (∃x)(¬ G(x) (¬ G is of course the predicate ‘is not green’). Analogously,itisclear that if there does not exist evenasingle green object in U, all objects in U (and there has to be at least one object in U) must be non-green. In symbols, ¬ (∃x)G(x) is equivalent to (∀x)(¬ G(x). This means that it is possible to define universal quantification in terms of existential quantification, and vice-versa.Ifwe takeexistential quantification as primitive,the universally quantified formula (∀x)G(x) corresponds to the formula ¬ (∃x)¬ G(x). In words (interpreting the predicate constant G as green), the assertion that all objects are green is logically equivalent to the assertion that there does not exist evenasin- gle non-green object.
Recommended publications
  • 1 Lecture 13: Quantifier Laws1 1. Laws of Quantifier Negation There
    Ling 409 lecture notes, Lecture 13 Ling 409 lecture notes, Lecture 13 October 19, 2005 October 19, 2005 Lecture 13: Quantifier Laws1 true or there is at least one individual that makes φ(x) true (or both). Those are also equivalent statements. 1. Laws of Quantifier Negation Laws 2 and 3 suggest a fundamental connection between universal quantification and There are a number of equivalences based on the set-theoretic semantics of predicate logic. conjunction and existential quantification and disjunction: Take for instance a statement of the form (∃x)~ φ(x)2. It asserts that there is at least one individual d which makes ~φ(x) true. That means that d makes ϕ(x) false. That, in turn, (∀x) ψ(x) is true iff ψ(a) and ψ(b) and ψ(c) … (where a, b, c … are the names of the means that (∀x) φ(x) is false, which means that ~(∀x) φ(x) is true. The same reasoning individuals in the domain.) can be applied in the reverse direction and the result is the first quantifier law: ∃ ψ ψ ψ ψ ( x) (x) is true iff (a) or (b) or c) … (where a, b, c … are the names of the (1) Laws of Quantifier Negation individuals in the domain.) Law 1: ~(∀x) φ(x) ⇐⇒ (∃x)~ φ(x) From that point of view, Law 1 resembles a generalized DeMorgan’s Law: (Possible English correspondents: Not everyone passed the test and Someone did not pass (4) ~(ϕ(a) & ϕ(b) & ϕ(c) … ) ⇐⇒ ~ϕ(a) v ~ϕ(b) v ϕ(c) … the test.) (5) Law 4: (∀x) ψ(x) v (∀x)φ(x) ⇒ (∀x)( ψ(x) v φ(x)) ϕ ⇐ ϕ Because of the Law of Double Negation (~~ (x) ⇒ (x)), Law 1 could also be written (6) Law 5: (∃x)( ψ(x) & φ(x)) ⇒ (∃x) ψ(x) & (∃x)φ(x) as follows: These two laws are one-way entailments, NOT equivalences.
    [Show full text]
  • Terms First-Order Logic: Syntax - Formulas
    First-order logic FOL Query Evaluation Giuseppe De Giacomo • First-order logic (FOL) is the logic to speak about object, which are the domain of discourse or universe. Universita` di Roma “La Sapienza” • FOL is concerned about Properties of these objects and Relations over objects (resp. unary and n-ary Predicates) • FOL also has Functions including Constants that denote objects. Corso di Seminari di Ingegneria del Software: Data and Service Integration Laurea Specialistica in Ingegneria Informatica Universita` degli Studi di Roma “La Sapienza” A.A. 2005-06 G. De Giacomo FOL queries 1 First-order logic: syntax - terms First-order logic: syntax - formulas Ter ms : defined inductively as follows Formulas: defined inductively as follows k • Vars: A set {x1,...,xn} of individual variables (variables that denote • if t1,...,tk ∈ Ter ms and P is a k-ary predicate, then k single objects) P (t1,...,tk) ∈ Formulas (atomic formulas) • Function symbols (including constants: a set of functions symbols of given • φ ∈ Formulas and ψ ∈ Formulas then arity > 0. Functions of arity 0 are called constants. – ¬φ ∈ Formulas • Vars ⊆ Ter ms – φ ∧ ψ ∈ Formulas k – φ ∨ ψ ∈ Formulas • if t1,...,tk ∈ Ter ms and f is a k-ary function, then k ⊃ ∈ f (t1,...,tk) ∈ Ter ms – φ ψ Formulas • nothing else is in Ter ms . • φ ∈ Formulas and x ∈ Vars then – ∃x.φ ∈ Formulas – ∀x.φ ∈ Formulas G. De Giacomo FOL queries 2 G. De Giacomo FOL queries 3 • nothing else is in Formulas. First-order logic: Semantics - interpretations Note: if a predicate is of arity Pi , then it is a proposition of propositional logic.
    [Show full text]
  • Lexical Scoping As Universal Quantification
    University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science March 1989 Lexical Scoping as Universal Quantification Dale Miller University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/cis_reports Recommended Citation Dale Miller, "Lexical Scoping as Universal Quantification", . March 1989. University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-23. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/785 For more information, please contact [email protected]. Lexical Scoping as Universal Quantification Abstract A universally quantified goal can be interpreted intensionally, that is, the goal ∀x.G(x) succeeds if for some new constant c, the goal G(c) succeeds. The constant c is, in a sense, given a scope: it is introduced to solve this goal and is "discharged" after the goal succeeds or fails. This interpretation is similar to the interpretation of implicational goals: the goal D ⊃ G should succeed if when D is assumed, the goal G succeeds. The assumption D is discharged after G succeeds or fails. An interpreter for a logic programming language containing both universal quantifiers and implications in goals and the body of clauses is described. In its non-deterministic form, this interpreter is sound and complete for intuitionistic logic. Universal quantification can provide lexical scoping of individual, function, and predicate constants. Several examples are presented to show how such scoping can be used to provide a Prolog-like language with facilities for local definition of programs, local declarations in modules, abstract data types, and encapsulation of state.
    [Show full text]
  • Sets, Propositional Logic, Predicates, and Quantifiers
    COMP 182 Algorithmic Thinking Sets, Propositional Logic, Luay Nakhleh Computer Science Predicates, and Quantifiers Rice University !1 Reading Material ❖ Chapter 1, Sections 1, 4, 5 ❖ Chapter 2, Sections 1, 2 !2 ❖ Mathematics is about statements that are either true or false. ❖ Such statements are called propositions. ❖ We use logic to describe them, and proof techniques to prove whether they are true or false. !3 Propositions ❖ 5>7 ❖ The square root of 2 is irrational. ❖ A graph is bipartite if and only if it doesn’t have a cycle of odd length. ❖ For n>1, the sum of the numbers 1,2,3,…,n is n2. !4 Propositions? ❖ E=mc2 ❖ The sun rises from the East every day. ❖ All species on Earth evolved from a common ancestor. ❖ God does not exist. ❖ Everyone eventually dies. !5 ❖ And some of you might already be wondering: “If I wanted to study mathematics, I would have majored in Math. I came here to study computer science.” !6 ❖ Computer Science is mathematics, but we almost exclusively focus on aspects of mathematics that relate to computation (that can be implemented in software and/or hardware). !7 ❖Logic is the language of computer science and, mathematics is the computer scientist’s most essential toolbox. !8 Examples of “CS-relevant” Math ❖ Algorithm A correctly solves problem P. ❖ Algorithm A has a worst-case running time of O(n3). ❖ Problem P has no solution. ❖ Using comparison between two elements as the basic operation, we cannot sort a list of n elements in less than O(n log n) time. ❖ Problem A is NP-Complete.
    [Show full text]
  • CHAPTER 1 the Main Subject of Mathematical Logic Is Mathematical
    CHAPTER 1 Logic The main subject of Mathematical Logic is mathematical proof. In this chapter we deal with the basics of formalizing such proofs and analysing their structure. The system we pick for the representation of proofs is natu- ral deduction as in Gentzen (1935). Our reasons for this choice are twofold. First, as the name says this is a natural notion of formal proof, which means that the way proofs are represented corresponds very much to the way a careful mathematician writing out all details of an argument would go any- way. Second, formal proofs in natural deduction are closely related (via the Curry-Howard correspondence) to terms in typed lambda calculus. This provides us not only with a compact notation for logical derivations (which otherwise tend to become somewhat unmanageable tree-like structures), but also opens up a route to applying the computational techniques which un- derpin lambda calculus. An essential point for Mathematical Logic is to fix the formal language to be used. We take implication ! and the universal quantifier 8 as basic. Then the logic rules correspond precisely to lambda calculus. The additional connectives (i.e., the existential quantifier 9, disjunction _ and conjunction ^) will be added via axioms. Later we will see that these axioms are deter- mined by particular inductive definitions. In addition to the use of inductive definitions as a unifying concept, another reason for that change of empha- sis will be that it fits more readily with the more computational viewpoint adopted there. This chapter does not simply introduce basic proof theory, but in addi- tion there is an underlying theme: to bring out the constructive content of logic, particularly in regard to the relationship between minimal and classical logic.
    [Show full text]
  • Precomplete Negation and Universal Quantification
    PRECOMPLETE NEGATION AND UNIVERSAL QUANTIFICATION by Paul J. Vada Technical Report 86-9 April 1986 Precomplete Negation And Universal Quantification. Paul J. Voda Department of Computer Science, The University of British Columbia, Vancouver, B.C. V6T IW5, Canada. ABSTRACT This paper is concerned with negation in logic programs. We propose to extend negation as failure by a stronger form or negation called precomplete negation. In contrast to negation as failure, precomplete negation has a simple semantic charaterization given in terms of computational theories which deli­ berately abandon the law of the excluded middle (and thus classical negation) in order to attain computational efficiency. The computation with precomplete negation proceeds with the direct computation of negated formulas even in the presence of free variables. Negated formulas are computed in a mode which is dual to the standard positive mode of logic computations. With uegation as failure the formulas with free variables must be delayed until the latter obtain values. Consequently, in situations where delayed formulas are never sufficiently instantiated, precomplete negation can find solutions unattainable with negation as failure. As a consequence of delaying, negation as failure cannot compute unbounded universal quantifiers whereas precomplete negation can. Instead of concentrating on the model-theoretical side of precomplete negation this paper deals with questions of complete computations and efficient implementations. April 1986 Precomplete Negation And Universal Quanti.flcation. Paul J. Voda Department or Computer Science, The University or British Columbia, Vancouver, B.C. V6T 1W5, Canada. 1. Introduction. Logic programming languages ba.5ed on Prolog experience significant difficulties with negation. There are many Prolog implementations with unsound negation where the computation succeeds with wrong results.
    [Show full text]
  • Not All There: the Interactions of Negation and Universal Quantifier Pu
    Not all there: The interactions of negation and universal quantifier Puk'w in PayPaˇȷuT@m∗ Roger Yu-Hsiang Lo University of British Columbia Abstract: The current paper examines the ambiguity between negation and the univer- sal quantifier Puk'w in PayPaˇȷuT@m, a critically endangered Central Salish language. I ar- gue that the ambiguity in PayPaˇȷuT@m arises from the nonmaximal, exception-tolerating property of Salish all, instead of resorting to the scopal interaction between negation and the universal quantifier, as in English. Specifically, by assuming that negation in PayPaˇȷuT@m is always interpreted with the maximal force, the ambiguity can be under- stood as originating from exceptions to this canonical interpretation. Whether or not this ambiguity is only available in PayPaˇȷuT@m is still unclear, and further data elicitation and cross-Salish comparison are underway. Keywords: PayPaˇȷuT@m (Mainland Comox), semantics, ambiguities, negation, univer- sal quantifier 1 Introduction This paper presents a preliminary analysis of the semantic ambiguity involved in the combination of negation and the universal quantifier Puk'w in PayPaˇȷuT@m, a critically endangered Central Salish language. The ambiguity between a negative element and a universal quantifier is also found in English. For example, consider the English paradigm in (1) from Carden (1976), where (1a) has only one reading while (1b) is ambiguous. (1) a. Not all the boys will run. :(8x;boy(x);run(x)) b. [ All the boys ] won’t run. i. :(8x;boy(x);run(x)) ii. (8x;boy(x));:(run(x)) In the traditional account, with the readings in (1a) and (1b-i), negation takes higher scope than the quantified DP at LF.
    [Show full text]
  • On Operator N and Wittgenstein's Logical Philosophy
    JOURNAL FOR THE HISTORY OF ANALYTICAL PHILOSOPHY ON OPERATOR N AND WITTGENSTEIN’S LOGICAL VOLUME 5, NUMBER 4 PHILOSOPHY EDITOR IN CHIEF JAMES R. CONNELLY KEVIN C. KLEMENt, UnIVERSITY OF MASSACHUSETTS EDITORIAL BOARD In this paper, I provide a new reading of Wittgenstein’s N oper- ANNALISA COLIVA, UnIVERSITY OF MODENA AND UC IRVINE ator, and of its significance within his early logical philosophy. GaRY EBBS, INDIANA UnIVERSITY BLOOMINGTON I thereby aim to resolve a longstanding scholarly controversy GrEG FROSt-ARNOLD, HOBART AND WILLIAM SMITH COLLEGES concerning the expressive completeness of N. Within the debate HENRY JACKMAN, YORK UnIVERSITY between Fogelin and Geach in particular, an apparent dilemma SANDRA LaPOINte, MCMASTER UnIVERSITY emerged to the effect that we must either concede Fogelin’s claim CONSUELO PRETI, THE COLLEGE OF NEW JERSEY that N is expressively incomplete, or reject certain fundamental MARCUS ROSSBERG, UnIVERSITY OF CONNECTICUT tenets within Wittgenstein’s logical philosophy. Despite their ANTHONY SKELTON, WESTERN UnIVERSITY various points of disagreement, however, Fogelin and Geach MARK TEXTOR, KING’S COLLEGE LonDON nevertheless share several common and problematic assump- AUDREY YAP, UnIVERSITY OF VICTORIA tions regarding Wittgenstein’s logical philosophy, and it is these RICHARD ZACH, UnIVERSITY OF CALGARY mistaken assumptions which are the source of the dilemma. Once we recognize and correct these, and other, associated ex- REVIEW EDITORS pository errors, it will become clear how to reconcile the ex- JULIET FLOYD, BOSTON UnIVERSITY pressive completeness of Wittgenstein’s N operator, with sev- CHRIS PINCOCK, OHIO STATE UnIVERSITY eral commonly recognized features of, and fundamental theses ASSISTANT REVIEW EDITOR within, the Tractarian logical system.
    [Show full text]
  • Existential Quantification
    Quantification 1 From last time: Definition: Proposition A declarative sentence that is either true (T) or false (F), but not both. • Tucson summers never get above 100 degrees • If the doorbell rings, then my dog will bark. • You can take the flight if and only if you bought a ticket • But NOT x < 10 Why do we want use variables? • Propositional logic is not always expressive enough • Consider: “All students like summer vacation” • Should be able to conclude that “If Joe is a student, he likes summer vacation”. • Similarly, “If Rachel is a student, she likes summer vacation” and so on. • Propositional Logic does not support this! Predicates Definition: Predicate (a.k.a. Propositional Function) A statement that includes at least one variable and will evaluate to either true or false when the variables(s) are assigned value(s). • Example: S(x) : (−10 < x) ∧ (x < 10) E(a, b) : a eats b • These are not complete! Predicates Definition: Domain (a.ka. Universe) of Discourse The collection of values from which a variable’s value is drawn. • Example: S(x) : (−10 < x) ∧ (x < 10), x ∈ ℤ E(a, b) : a eats b, a ∈ People, b ∈ Vegetables • In This Class: Domains may NOT hide operators • OK: Vegetables • Not-OK: Raw Vegetables (Vegetable ∧ ¬Cooked) Predicates S(x) : (−10 < x) ∧ (x < 10), x ∈ ℤ E(a, b) : a eats b, a ∈ People, b ∈ Vegetables • Can evaluate predicates at specific values (making them propositions): • What is E(Joe, Asparagus)? • What is S(0)? Combining Predicates with Logical Operators • In E(a, b) : a eats b, a ∈ people, b ∈ vegetables, change the domain of b to “raw vegetables”.
    [Show full text]
  • 8 : : H Responses -> : : : S: to Disks, Displays, 8 : : ATM, Etc
    USOO5867649A United States Patent (19) 11 Patent Number: 5,867,649 Larson (45) Date of Patent: Feb. 2, 1999 54) DANCE/MULTITUDE CONCURRENT Algorithms for Scalable Synchronization on Shaved COMPUTATION Memory Multiprocessors, J. Mollor-Crumley, ACM Trans actions on Computer Systems, vol. 9, No. 1, Feb. 1991. 75 Inventor: Brian Ralph Larson, Mpls., Minn. Verification of Sequential and Concurrent Programs, Apt. & 73 Assignee: Multitude Corporation, Bayport, Olderog; Springer-Verlag, 1991. Minn. The Science of Programming, D. Gries Springer-Verlag, 1981. 21 Appl. No.: 589,933 Computer Architecture R. Karin Prentice-Hall (1989) (CPT. 5). 22 Filed: Jan. 23, 1996 The Design and Analysis of Parallel Algorithms, S. Akl, (51) Int. Cl." ...................................................... G06F 15/16 Prentice-Hall, 1989. 52 U.S. Cl. ......................................................... 395/200.31 Executing Temporal Logic Programs, B.C. Moszkowski, 58 Field of Search ....................... 364/DIG. 1 MS File, Cambridge University Press, Copyright 1986, pp. 1-125. 364/DIG. 2 MS File: 395/377, 376, 379, 382, 385, 390, 391,561, 800, 705, 706, Primary Examiner Robert B. Harrell 712, 200.31, 800.28, 800.3, 800.36; 340/825.8 Attorney, Agent, or Firm-Haugen and Nikolai, P.A. 56) References Cited 57 ABSTRACT U.S. PATENT DOCUMENTS This invention computes by constructing a lattice of States. 4,814,978 3/1989 Dennis .................................... 395/377 Every lattice of States corresponding to correct execution 4,833,468 5/1989 Larson et al. 340/825.8 Satisfies the temporal logic formula comprising a Definitive 5,029,080 7/1991 Otsuki ..................................... 395/377 Axiomatic Notation for Concurrent Execution (DANCE) program. This invention integrates into a State-lattice com OTHER PUBLICATIONS putational model: a polymorphic, Strong type System; Reference Manual for the ADA Programming Language, US Visibility-limiting domains, first-order assertions, and logic Dept.
    [Show full text]
  • An Introduction to Formal Logic
    forall x: Calgary An Introduction to Formal Logic By P. D. Magnus Tim Button with additions by J. Robert Loftis Robert Trueman remixed and revised by Aaron Thomas-Bolduc Richard Zach Fall 2021 This book is based on forallx: Cambridge, by Tim Button (University College Lon- don), used under a CC BY 4.0 license, which is based in turn on forallx, by P.D. Magnus (University at Albany, State University of New York), used under a CC BY 4.0 li- cense, and was remixed, revised, & expanded by Aaron Thomas-Bolduc & Richard Zach (University of Calgary). It includes additional material from forallx by P.D. Magnus and Metatheory by Tim Button, used under a CC BY 4.0 license, from forallx: Lorain County Remix, by Cathal Woods and J. Robert Loftis, and from A Modal Logic Primer by Robert Trueman, used with permission. This work is licensed under a Creative Commons Attribution 4.0 license. You are free to copy and redistribute the material in any medium or format, and remix, transform, and build upon the material for any purpose, even commercially, under the following terms: ⊲ You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. ⊲ You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. The LATEX source for this book is available on GitHub and PDFs at forallx.openlogicproject.org.
    [Show full text]
  • Chapter 6: Translations in Monadic Predicate Logic 223
    TRANSLATIONS IN 6 MONADIC PREDICATE LOGIC 1. Introduction ....................................................................................................222 2. The Subject-Predicate Form of Atomic Statements......................................223 3. Predicates........................................................................................................224 4. Singular Terms ...............................................................................................226 5. Atomic Formulas ............................................................................................228 6. Variables And Pronouns.................................................................................230 7. Compound Formulas ......................................................................................232 8. Quantifiers ......................................................................................................232 9. Combining Quantifiers With Negation ..........................................................236 10. Symbolizing The Statement Forms Of Syllogistic Logic ..............................243 11. Summary of the Basic Quantifier Translation Patterns so far Examined ......248 12. Further Translations Involving Single Quantifiers ........................................251 13. Conjunctive Combinations of Predicates.......................................................255 14. Summary of Basic Translation Patterns from Sections 12 and 13.................262 15. ‘Only’..............................................................................................................263
    [Show full text]