Metallicity Without Quasi-Particles in Room-Temperature Strontium Titanate

Total Page:16

File Type:pdf, Size:1020Kb

Metallicity Without Quasi-Particles in Room-Temperature Strontium Titanate www.nature.com/npjquantmats ARTICLE OPEN Metallicity without quasi-particles in room-temperature strontium titanate Xiao Lin1, Carl Willem Rischau1, Lisa Buchauer1, Alexandre Jaoui1, Benoît Fauqué1,2 and Kamran Behnia1 Cooling oxygen-deficient strontium titanate to liquid-helium temperature leads to a decrease in its electrical resistivity by several orders of magnitude. The temperature dependence of resistivity follows a rough T3 behavior before becoming T2 in the low- temperature limit, as expected in a Fermi liquid. Here, we show that the roughly cubic resistivity above 100 K corresponds to a regime where the quasi-particle mean-free-path is shorter than the electron wave-length and the interatomic distance. These criteria define the Mott-Ioffe-Regel limit. Exceeding this limit is the hallmark of strange metallicity, which occurs in strontium titanate well below room temperature, in contrast to other perovskytes. We argue that the T3-resistivity cannot be accounted for by electron-phonon scattering à la Bloch–Gruneisen and consider an alternative scheme based on Landauer transmission between individual dopants hosting large polarons. We find a scaling relationship between carrier mobility, the electric permittivity and the frequency of transverse optical soft mode in this temperature range. Providing an account of this observation emerges as a challenge to theory. npj Quantum Materials (2017)2:41 ; doi:10.1038/s41535-017-0044-5 INTRODUCTION interatomic distance, the lowest conceivable length scale. The existence of well-defined quasi-particles is taken for granted Strontium titanate is the strangest known metal according to in the Boltzmann–Drude picture of electronic transport. In this the criteria for strangeness widely used (See Table 1). Since quasi- picture, carriers of charge or energy are scattered after traveling a particles in this system are not well-defined in a time scale long finite distance. The Mott-Ioffe-Regel (MIR) limit is attained when enough to allow the existence of a scattering time, charge the mean-free-path of a carrier falls below its Fermi wavelength or transport cannot be reasonably described by a phonon-scattering 16–19, 23–25 the interatomic distance.1 In most metals, resistivity saturates picture. This was the approach in previous attempts to when this limit is approached. But in “bad”2 or “strange”3 metals, it understand charge transport. We argue that metallicity is caused continues to increase.4 It is indeed strange when the mean-free- by the temperature dependence of the transmission coefficient path persists to fall after attaining its shortest conceivable along Landauer canals between dopants. Such a picture does not magnitude and often unexpected behavior is considered bad. require a scattering time or a mean-free-path. We find an In most cases, bad metals present a linear temperature empirical link between mobility and permittivity, which gives a dependence beyond the MIR limit. Bruin et al.5 recently noticed reasonable account of the experimental data. Providing a that the T-linear scattering rate in numerous metals, either quantitative account of this observation emerges as a specific ordinary or strange, has a similar magnitude. This observation challenge to transport theory. h suggests the relevance of a universal Planck timescale (τP , kBT where kB is the Boltzmann and ħ the reduced Planck constants) to electronic dissipation and motivated a theoretical attempt to RESULTS quantify an upper limit to the diffusion constant in incoherent Metallicity beyond the MIR limit in strontium titanate metals.6 During the past years, several theories of charge transport Figure 1a shows the temperature dependence of resistivity in fi 7–14 17 with no need for well-de ned quasi-particles were proposed. SrTiO3−δ as the carrier concentration is changed from 2.4 × 10 More recently, direct measurements of thermal diffusivity15 have cm−3 to 3.5 × 1019 cm−3. At low temperature (T 100 K), the provided additional evidence for quasi-particle-free thermal system displays a T-square resistivity21, 22 as expected for electron- transport at room temperature in cuprates. electron scattering26 in a Fermi liquid. Plotting resistivity as a 2 We show here that n-doped SrTiO3 is an unnoticed case of function of T (see Fig. 2 in ref. 22), one can see that inelastic strange or bad metallicity. The resistivity of this dilute metal resistivity becomes T-square in the low-temperature limit. A wide decreases by orders of magnitude upon cooling to cryogenic range of dense Fermi liquids display Kadowaki–Woods scaling27 of – temperatures.16 20 In the low-temperature limit, resistivity follows their T-square resistivity prefactor and their electronic specific a T-square behavior,21, 22 as expected in a Fermi liquid. Above 100 heat. Since the latter is proportional to carrier concentration, the 17, 22 28 K, however, the temperature dependence is close to cubic. In case of low-density systems such as doped SrTiO3 is different. this regime, the mean-free-path of carriers becomes shorter than However, the scaling between the resistivity prefactor and their wavelength. At room temperature, it falls well below the Fermi energy persists. Indeed, the magnitude of this prefactor 1Laboratoire Physique et Etude de Matériaux (CNRS-UPMC), ESPCI Paris, PSL Research University, 75005 Paris, France and 2JEIP, USR 3573 CNRS, Collège de France, PSL Research University, 75005 Paris, France Correspondence: Kamran Behnia ([email protected]) Received: 23 February 2017 Revised: 16 June 2017 Accepted: 22 June 2017 Published online: 21 July 2017 Published in partnership with Nanjing University Quasi-particle-free metallicity of SrTiO3 X Lin et al. 2 Table 1. How the MIR limit of metallicity is exceeded in different perovskytes −1 ρ Ω ‘ ‘ Compound kF (nm ) (400 K) (m cm) (400 K) (nm) kF (400 K) TkF ‘¼1 (K) References La1.72Sr0.18Cu04 6.6 0.32 0.35 2.2 850 4, 63 YBa2Cu4O8 1.4 0.36 0.8 1.1 450 64, 65 Sr2RuO4 5.6 0.2 0.38 2.1 800 66 17 −3 SrTiO3−δ (n = 410 cm ) 0.24 5900 0.2 0.05 100 This work The table compares the Fermi wave-vector, the resistivity, and the mean-free-path at 400 K in four different systems using Eq. (1). The table lists an underdoped, an optimally-doped cuprate and strontium ruthenate and compares them with doped strontium titanate. In the case of YBa2Cu4O8, we assume that there are four Fermi surface pockets with a kF corresponding to the square root of the frequency of quantum oscillations. In contrast to other systems, the MIR limit in doped strontium titanate occurs well below room temperature. Fig. 2 Breakdown of the Mott-Ioffe-Regel limit. a Temperature Fig. 1 Resistivity and mobility in doped SrTiO3. a Temperature dependence of the mean-free-path in dilute metallic SrTiO3−δ dependence of resistivity in SrTiO −δ as the carrier concentrations is − 3 sample up to 400 K. Blue circles represent ‘ , extracted from tuned from 1017 to 1019 cm 3. Room-temperature resistivity is e resistivity using Eq. (1). Red diamonds represent the mean-free-path several hundred times higher than low-temperature resistivity. b À = ‘′ ¼ ‘ n 1 3 in the non-degenerate regime: e e Λ . Also shown are the de Hall mobility as a function of temperature. Above 100 K, the −1/3 mobility does not depend on carrier concentration and is roughly Broglie thermal wavelength, Λ, the inter-electron distance n , the À1 = cubic in temperature. c Assuming that inelastic resistivity follows a inverse of the Fermi wavelength (kF ) and the lattice parameter, a α power law, i.e., ρ = ρ0 + AT , one can extract the exponent, α by 0.39 nm. The system remains metallic even at 400 K, in spite of taking a logarithmic derivative: α = dln(ρ − ρ0)/dlnT, as in the case of exceeding the MIR limit by all conceivable criteria. b A color 62 α ≃ ‘′ cuprates. At low temperature, 2. Above 50 K, it starts a plot of e, extracted from the resistivity data of Fig. 1 in the (T, n) significant shift upward and exceeds three around 150 K, before plane. Different crossovers are shown. The MIR limit is exceeded in a steadily decreasing afterwards. The antiferrodistortive transition39 is high-temperature window narrowing down with increasing the source of the small anomaly at 105 K concentration npj Quantum Materials (2017) 41 Published in partnership with Nanjing University Quasi-particle-free metallicity of SrTiO3 X Lin et al. 3 decreases by several orders of magnitude with changing carrier As seen in Fig. 2a, the mean-free-path becomes shorter than the 22 À1 concentration. inverse of the Fermi wave-vector kF and then the lattice Figure 1b shows the temperature dependence of the extracted parameter a. Now, at this carrier concentration, with an effective μ ¼ 1 * Hall mobility, neρ. Above 100 K, it displays a temperature mass of m = 1.8me, the Fermion degeneracy temperature is as dependence close to T−3 and barely varies with carrier concentra- low as 15 K.32 As one sees in the figure, this is the temperature at tion. Our data is in agreement with the less extensive data ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffih 17 which de Broglie thermal wavelength, π Ã becomes reported previously by Tufte and Chapman. Figure 1c shows 2 m kBT −1/3 how the exponent of inelastic resistivity evolves as a function of comparable to the inter-electron distance n . Above this α temperature, the electrons become non-degenerate and follow temperature. The total resistivity can be expressed as ρ = ρ0 + AT . As seen in Fig. 1c, α is 2 at very low-temperature (T <50K) but a Maxwell–Boltzmann distribution. As a consequence and thanks smoothly rises with warming. One does not expect the T-square to thermal excitation, the typical carrier momentum is larger than ħ resistivity to survive at the Fermi degeneracy temperature.
Recommended publications
  • Preparation of Barium Strontium Titanate Powder from Citrate
    APPLIED ORGANOMETALLIC CHEMISTRY Appl. Organometal. Chem. 13, 383–397 (1999) Preparation of Barium Strontium Titanate Powder from Citrate Precursor Chen-Feng Kao* and Wein-Duo Yang Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan TiCl4 or titanium isopropoxide reacted with INTRODUCTION citric acid to form a titanyl citrate precipitate. Barium strontium citrate solutions were then BaTiO3 is ferroelectric and piezoelectric and has added to the titanyl citrate reaction to form gels. extensive applications as an electronic material. It These gels were dried and calcined to (Ba,Sr)- can be used as a capacitor, thermistor, transducer, TiO3 powders. The gels and powders were accelerometer or degausser of colour television. characterized by DSC/TGA, IR, SEM and BaTiO3 doped with strontium retains its original XRD analyses. These results showed that, at characteristics but has a lower Curie temperature 500 °C, the gels decomposed to Ba,Sr carbonate for positive temperature coefficient devices under and TiO2, followed by the formation of (Ba,Sr)- various conditions. TiO3. The onset of perovskite formation oc- Besides solid-state reactions, chemical reactions curred at 600 °C, and was nearly complete at have also been used to prepare BaTiO3 powder. 1 1000 °C. Traces of SrCO3 were still present. Among them the hydrolysis of metal alkoxide , The cation ratios of the titanate powder oxalate precipitation in ethanol2, and alcoholic prepared in the pH range 5–6 were closest to dehydration of citrate solution3 are among the more the original stoichiometry. Only 0.1 mol% of the attractive methods. In 1956 Clabaugh et al.4 free cations remained in solution.
    [Show full text]
  • Evidence for High-Temperature Superconductivity in Doped Laser-Processed Sr-Ru-O
    Evidence for High-Temperature Superconductivity in Doped Laser-Processed Sr-Ru-O A. M. Gulian1, K. S. Wood2, D. Van Vechten2, J. Claassen2, R. J. Soulen, Jr.2, S. Qadri2, M. Osofsky2, A. Lucarelli3, G. Lüpke3, G. R. Badalyan4, V. S. Kuzanyan4, A. S. Kuzanyan4, and V. R. Nikoghosyan4 Abstract: We have discovered that samples of a new material produced by special processing of crystals of Sr2RuO4 (which is known to be a triplet superconductor with Tc values ~1.0-1.5K) exhibit signatures of superconductivity (zero DC resistance and expulsion of magnetic flux) at temperatures exceeding 200K. The special processing includes deposition of a silver coating and laser micromachining; Ag doping and enhanced oxygen are observed in the resultant surface layer. The transition, whether measured resistively or by magnetic field expulsion, is broad. When the transition is registered by resistive methods, the critical temperature is markedly reduced when the measuring current is increased. The resistance disappears by about 190K. The highest value of Tc registered by magneto-optical visualization is about 220K and even higher values (up to 250K) are indicated from the SQUID-magnetometer measurements. 1) Physics Art Frontiers, Ashton, Maryland, 20861-9747 2) Naval Research Laboratory, Washington DC, 20375-0001 3) The College of William and Mary, Virginia, 23185 4) Physics Research Institute, Ashtarak, 378410, Armenia 1 1. Introduction. Laser ablation is one of the non-traditional methods of materials processing that may substantially alter the physical properties of samples. In addition to removing atoms from the surface, it may leave behind a recrystallized surface layer of altered composition and properties.
    [Show full text]
  • Sensitization of Titanium Dioxide and Strontium Titanate Electrodes By
    Subscriber access provided by University of Texas Libraries Sensitization of titanium dioxide and strontium titanate electrodes by ruthenium(II) tris(2,2'-bipyridine-4,4'-dicarboxylic acid) and zinc tetrakis(4-carboxyphenyl)porphyrin: an evaluation of sensitization efficiency for component photoelectrodes in a multipanel device Reza Dabestani, Allen J. Bard, Alan Campion, Marye Anne Fox, Thomas E. Mallouk, Stephen E. Webber, and J. M. White J. Phys. Chem., 1988, 92 (7), 1872-1878 • DOI: 10.1021/j100318a035 Downloaded from http://pubs.acs.org on February 2, 2009 More About This Article The permalink http://dx.doi.org/10.1021/j100318a035 provides access to: • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article The Journal of Physical Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 1872 J. Phys Chem. 1988, 92, 1872-1878 Sensitization of Titanium Dioxide and Strontium Titanate Electrodes by Ruthenium( I I) Trls (2,2’- bipyridine-4,4’-dicar box y lic acid) and Zinc Tetrakis (4-carboxy phen yl) porphyrin: An Evaluation of Sensitization Efficiency for Component Photoelectrodes in a Muitipanei Device Reza Dabestani, Allen J. Bard, Alan Campion, Marye Anne Fox,* Thomas E. Mallouk, Stephen E. Webber, and J. M. White Department of Chemistry, University of Texas, Austin, Texas 78712 (Received: December 1. 1986; In Final Form: October 6, 1987) The utility of polycrystalline anatase Ti02 and SrTi03 semiconductor electrodes sensitized by ruthenium(I1) tris(2,2’-bi- pyridine-4,4’-dicarboxylicacid) (1) and by zinc tetrakis(4-carboxypheny1)porphyrin (2) as component photoelectrodes in a multipanel array has been evaluated.
    [Show full text]
  • Magnetic Properties and Defects in Iron Implanted Strontium Titanate Single Crystals and Thin Films
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-4-2012 12:00 AM Magnetic Properties and Defects in Iron Implanted Strontium Titanate Single Crystals and Thin films Misha Chavarha The University of Western Ontario Supervisor Lyudmila Goncharova The University of Western Ontario Graduate Program in Physics A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Misha Chavarha 2012 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Condensed Matter Physics Commons Recommended Citation Chavarha, Misha, "Magnetic Properties and Defects in Iron Implanted Strontium Titanate Single Crystals and Thin films" (2012). Electronic Thesis and Dissertation Repository. 435. https://ir.lib.uwo.ca/etd/435 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. DEFECTS AND MAGNETIC PROPERTIES OF IRON-IMPLANTED STRONTIUM TITANATE AND THIN FIMS (Spine title: Defects and magnetic properties of iron-implanted strontium titanate and thin films) (Thesis format: Monograph) by Misha Chavarha Graduate Program in Physics A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Misha Chavarha 2012 THE UNIVERSITY OF WESTERN ONTARIO SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES CERTIFICATE OF EXAMINATION Supervisor Examiners ______________________________ ______________________________ Dr. Lyudmila Goncharova Dr. Giovanni Fanchini ______________________________ Supervisory Committee Dr. Jeffrey Hutter ______________________________ ______________________________ Dr.
    [Show full text]
  • GROWTH and CHARACTERIZATION of Sr2 Ruo4 and Sr2 Rho4
    GROWTH AND CHARACTERIZATION OF Sr2RuO4 AND Sr2RhO4 GROWTH AND CHARACTERIZATION OF Sr2RuO4 AND Sr2RhO4 By KEVIN D. MORTIMER, B. Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Master of Science McMaster University © Copyright by Kevin D. Mortimer, 2014, unless otherwise noted. MASTER OF SCIENCE (2014) (Physics and Astronomy) McMaster University, Hamilton, Ontario TITLE: Growth and characterization of Sr2RuO4 and Sr2RhO4 AUTHOR: Kevin D. Mortimer, B. Sc. (Physics), Queen's University SUPERVISOR: Dr. Thomas Timusk NUMBER OF PAGES: xii, 122 ii Abstract We report on the growth and characterization of strontium ruthenate (214) (Sr2RuO4) and strontium rhodate (214) (Sr2RhO4) in efforts to test their agreement with Landau-Fermi liquid theory using optical measurements. We begin by reviewing the theory of Landau-Fermi liquids and the frequency and temperature dependent conductivities. We review existing work on both Sr2RuO4 and Sr2RhO4 including evidence of agreement with Landau-Fermi liquid theory. We also describe optical floating zone crystal growth and the exact procedures we used to prepare samples of both Sr2RuO4 and Sr2RhO4 via optical floating zone. The resulting Sr2RuO4 crystals were characterized using AC susceptibility measurements and Sr2RhO4 by powder diffraction, single crystal diffraction, and SQUID magnetization measurements. Finally, early optical reflectivity measurements at low temperatures are presented. iii Acknowledgments Very few efforts in science are made individually. Most scientists, researchers, engineers, whether they are hobbiests or professionals, have a wide support network in place with whom they can consult, investigate, cross-reference, collaborate and more. Though the writing of a thesis is an individual effort, the gathering of data is not.
    [Show full text]
  • Arxiv:1702.07144V3 [Cond-Mat.Str-El] 23 Jul 2017 Rect Measurements of Thermal Diffusivity[15] Have Pro- Fig
    Metallicity without quasi-particles in room-temperature strontium titanate Xiao Lin1, Carl Willem Rischau1, Lisa Buchauer1, Alexandre Jaoui1, Beno^ıtFauqu´e1;2 and Kamran Behnia1 (1) Laboratoire Physique et Etude de Mat´eriaux(CNRS-UPMC), ESPCI Paris, PSL Research University, 75005 Paris, France (2) JEIP, USR 3573 CNRS, Coll`egede France, PSL Research University, 75005 Paris, France (Dated: April 28, 2017) Cooling oxygen-deficient strontium titanate to liquid-helium temperature leads to a decrease in its electrical resistivity by several orders of magnitude. The temperature dependence of resistivity follows a rough T3 behavior before becoming T2 in the low-temperature limit, as expected in a Fermi liquid. Here, we show that the roughly cubic resistivity above 100K corresponds to a regime where the quasi-particle mean-free-path is shorter than the electron wave-length and the interatomic distance. These criteria define the Mott-Ioffe-Regel limit. Exceeding this limit is the hallmark of strange metallicity, which occurs in strontium titanate well below room temperature, in contrast to other perovskytes. We argue that the T3-resistivity cannot be accounted for by electron-phonon scattering `ala Bloch-Gruneisen and consider an alternative scheme based on Landauer transmis- sion between individual dopants hosting large polarons. We find a scaling relationship between carrier mobility, the electric permittivity and the frequency of transverse optical soft mode in this temperature range. Providing an account of this observation emerges as a challenge to theory. I. INTRODUCTION cubic[17, 22]. In this regime, the mean-free-path of car- riers becomes shorter than their wavelength. At room The existence of well-defined quasi-particles is taken temperature, it falls well below the interatomic distance, for granted in the Boltzmann-Drude picture of electronic the lowest conceivable length scale.
    [Show full text]
  • Institutional Repository - Research Portal Dépôt Institutionnel - Portail De La Recherche
    Institutional Repository - Research Portal Dépôt Institutionnel - Portail de la Recherche University of Namurresearchportal.unamur.be THESIS / THÈSE DOCTOR OF SCIENCES Processing of transparent YAG and BaTiO3 ceramics by SPS Author(s) - Auteur(s) : Moronta Perez, Rosa Award date: 2018 Awarding institution: University of Namur Supervisor - Co-Supervisor / Promoteur - Co-Promoteur : Link to publication Publication date - Date de publication : Permanent link - Permalien : Rights / License - Licence de droit d’auteur : General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. BibliothèqueDownload date: Universitaire 24. sept.. 2021 Moretus Plantin UNIVERSITY OF NAMUR FACULTY OF SCIENCES Namur, Belgium Processing of transparent YAG and BaTiO3 ceramics by SPS Author: ROSA MORONTA PEREZ Members of the jury: Pr. LAURENT HOUSSIAU (President) Pr. PAOLA PALMERO Dr. CLAUDE ESTOURNES Dr. PHILIPPE AUBRY Pr. OLIVIER DEPARIS Dr. FRANCIS CAMBIER Dr. LAURENT BOILET (Co-supervisor) Pr. LUC HENRARD (Supervisor) Doctoral Thesis January 2018 UNIVERSITY OF NAMUR BELGIAN CERAMIC RESEARCH FACULTY OF SCIENCES CENTRE Namur, Belgium Mons, Belgium Processing of transparent YAG and BaTiO3 ceramics by SPS Ph.
    [Show full text]
  • Crystallization Dynamics and Interface Stability of Strontium Titanate Thin
    research papers Journal of Applied Crystallization dynamics and interface stability of Crystallography strontium titanate thin films on silicon ISSN 1600-5767 Florian Hanzig,a* Juliane Hanzig,a Erik Mehner,a Carsten Richter,a,b Jozef Vesely´,c,d Received 20 October 2014 Hartmut Sto¨cker,a Barbara Abendroth,a Mykhaylo Motylenko,c Volker Klemm,c Accepted 4 February 2015 Dmitri Novikovb and Dirk C. Meyera aInstitute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Strasse 23, 09596 Freiberg, Germany, bHamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron, Notke- strasse 85, 22607 Hamburg, Germany, cInstitute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner-Strasse 5, 09596 Freiberg, Germany, and dFaculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague, Czech Republic. Correspondence e-mail: [email protected] Different physical vapor deposition methods have been used to fabricate strontium titanate thin films. Within the binary phase diagram of SrO and TiO2 the stoichiometry ranges from Ti rich to Sr rich, respectively. The crystallization of these amorphous SrTiO3 layers is investigated by in situ grazing-incidence X-ray diffraction using synchrotron radiation. The crystallization dynamics and evolution of the lattice constants as well as crystallite sizes of the SrTiO3 layers were determined for temperatures up to 1223 K under atmospheric conditions applying different heating rates. At approximately 473 K, crystallization of perovskite-type SrTiO3 is initiated for Sr-rich electron beam evaporated layers, whereas Sr-depleted sputter-deposited thin films crystallize at 739 K. During annealing, a significant diffusion of Si from the substrate into the SrTiO3 layers occurs in the case of Sr-rich composition.
    [Show full text]
  • Atomically Resolved Surface Phases of La0.8Sr0.2Mno3(110) Thin Films
    Journal of Materials Chemistry A PAPER View Article Online View Journal | View Issue Atomically resolved surface phases of La0.8Sr0.2MnO3(110) thin films† Cite this: J. Mater. Chem. A, 2020, 8, 22947 Giada Franceschi, Michael Schmid, Ulrike Diebold and Michele Riva * The atomic-scale properties of lanthanum–strontium manganite (La1ÀxSrxMnO3Àd, LSMO) surfaces are of high interest because of the roles of the material as a prototypical complex oxide, in the fabrication of spintronic devices and in catalytic applications. This work combines pulsed laser deposition (PLD) with atomically resolved scanning tunneling microscopy (STM) and surface analysis techniques (low-energy electron diffraction – LEED, X-ray photoelectron spectroscopy – XPS, and low-energy He+ ion scattering – LEIS) to assess the atomic properties of La0.8Sr0.2MnO3(110) surfaces and their dependence on the surface composition. Epitaxial films with 130 nm thickness were grown on Nb-doped SrTiO3(110) and their near-surface stoichiometry was adjusted by depositing La and Mn in sub-monolayer amounts, quantified with a movable quartz-crystal microbalance. The resulting surfaces were equilibrated at 700 C under 0.2 mbar O2, i.e., under conditions that bridge the gap between ultra-high vacuum and the Creative Commons Attribution 3.0 Unported Licence. Received 18th July 2020 operating conditions of high-temperature solid-oxide fuel cells, where LSMO is used as the cathode. The Accepted 31st August 2020 atomic details of various composition-related surface phases have been unveiled. The phases are DOI: 10.1039/d0ta07032g characterized by distinct structural and electronic properties and vary in their ability to accommodate rsc.li/materials-a deposited cations.
    [Show full text]
  • Physical and Electrical Properties of Srtio3 and Srzro3
    EPJ Web of Conferences 162, 01052 (2017) DOI: 10.1051/epjconf/201716201052 InCAPE2017 Physical and electrical properties of SrTiO3 and SrZrO3 Norhizatol Fashren Muhamad1, 2*, Rozana Aina Maulat Osman1, 2, Mohd Sobri Idris2, 3 and Mohd Najib Mohd Yasin1 1School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia. 2CEO Frontier Material Research Centre, School of Material Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia. 3School of Materials Engineering, Universiti Malaysia Perlis, jejawi, 02600 Arau, perlis, Malaysia. Abstract. Perovskite type oxide strontium titanate (SrTiO3) and strontium zirconate (SrZrO3) ceramic powder has been synthesized using conventional solid state reaction method. The powders were mixed and ground undergone calcinations at 1400oC for 12 h and sintered at 1550oC for 5h. X-ray Diffraction exposes physical properties SrTiO3 which exhibit cubic phase (space group: pm-3m) at room temperature meanwhile SrZrO3 has Orthorhombic phase (space group: pnma). The electrical properties such as dielectric constant (εr), dielectric loss (tan δ), and conductivity (σ) were studied in variation temperature and frequency. High dielectric constant of SrTiO3 and SrZrO3 were observed at 10 kHz for both samples about 240 and 21 respectively at room temperature. The dielectric loss of SrTiO3 and SrZrO3 is very low loss value approximately 0.00076 and 0.67512 indicates very good dielectric. 1 Introduction stability inside SrTiO3 are widely required for the application of high energy storage density dielectrics. Ceramic with perovskite crystal structure have long been Numerous attempts have been explored to further investigated due to their excellent ferroelectric, improve the properties of SrTiO3 based ceramics.
    [Show full text]
  • Lowering of Ground State Induced by Core-Shell Structure in Strontium
    Lowering of ground state induced by core-shell structure in strontium titanate Jean-Michel Kiat, Bernard Hehlen, Mickaël Anoufa, Christine Bogicevic, A Curfs, Bernard Boyer, A Al-Sabbagh, F Porcher, A Al-Zein To cite this version: Jean-Michel Kiat, Bernard Hehlen, Mickaël Anoufa, Christine Bogicevic, A Curfs, et al.. Lowering of ground state induced by core-shell structure in strontium titanate. Physical Review B, American Physical Society, 2016, 93, pp.144117 - 144117. 10.1103/PhysRevB.93.144117. hal-01384969 HAL Id: hal-01384969 https://hal.archives-ouvertes.fr/hal-01384969 Submitted on 20 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICAL REVIEW B 93, 144117 (2016) Lowering of ground state induced by core-shell structure in strontium titanate J. M. Kiat,1,2,* B. Hehlen,3 M. Anoufa,1 C. Bogicevic,1 C. Curfs,4 B. Boyer,5 M. Al-Sabbagh,3 F. Porcher,2 and A. Al-Zein4 1Laboratoire Structures, Propriet´ es´ et Modelisation´ des Solides, Ecole Centrale Paris, CNRS-UMR 8580, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex, France 2Laboratoire Leon´ Brillouin, CE Saclay CNRS-UMR 12, 91991 Gif-Sur-Yvette Cedex, France 3Laboratoire Charles Coulomb, CNRS-UMR 5221, Universite´ Montpellier II–CC 069 Place E.
    [Show full text]
  • (STO): Can It Replace Silicon for Power Electronic Applications?
    Synthesis and Analysis of Strontium Titanate (STO): Can It Replace Silicon for Power Electronic Applications? Kwon, Alexander (School: Sage Hill School) Silicon is the leading semiconductor material but has inherent limitations such as low band gap and low electron mobility relative to other semiconductors. Metal oxides are currently being studied as alternatives to silicon in power electronics. One such metal oxide is strontium titanate (STO), which has semiconducting properties, tuning capabilities, and potential for superconductivity. In this project, multiple STO samples were synthesized using molecular beam epitaxy, a thin-film deposition technique in an ultra- high vacuum environment. Electron beam evaporation was then used to deposit electrically conducting contacts onto the corners of each sample. As for STO analysis, x-ray diffraction measured sample thickness and lattice spacing, and atomic force microscopy identified surface defects. A physical property measurement system was then employed to cool down samples from 300 K to 2 K, and dilution refrigeration further cooled down samples from 1 K to 0.01 K. Resistance and electron mobility were measured through Hall measurements as dependent variables of temperature change. The results showed that the STO samples had minimized lattice spacing and were very smooth, thus optimizing electron mobility. Nevertheless, all STO samples had electron mobilities that were less than silicon. But STO was found to have superconducting properties between 0.01 K and 0.28 K. In conclusion, silicon possesses higher electron mobility than STO. However, STO possesses potential benefits over silicon: wider band gap, lower lattice spacing, higher dielectric constant, and superconducting properties. Due to these benefits, STO shows promise in high voltage power electronic applications..
    [Show full text]