Computationally Efficient Search for Large Primes
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Fast Tabulation of Challenge Pseudoprimes Andrew Shallue and Jonathan Webster
THE OPEN BOOK SERIES 2 ANTS XIII Proceedings of the Thirteenth Algorithmic Number Theory Symposium Fast tabulation of challenge pseudoprimes Andrew Shallue and Jonathan Webster msp THE OPEN BOOK SERIES 2 (2019) Thirteenth Algorithmic Number Theory Symposium msp dx.doi.org/10.2140/obs.2019.2.411 Fast tabulation of challenge pseudoprimes Andrew Shallue and Jonathan Webster We provide a new algorithm for tabulating composite numbers which are pseudoprimes to both a Fermat test and a Lucas test. Our algorithm is optimized for parameter choices that minimize the occurrence of pseudoprimes, and for pseudoprimes with a fixed number of prime factors. Using this, we have confirmed that there are no PSW-challenge pseudoprimes with two or three prime factors up to 280. In the case where one is tabulating challenge pseudoprimes with a fixed number of prime factors, we prove our algorithm gives an unconditional asymptotic improvement over previous methods. 1. Introduction Pomerance, Selfridge, and Wagstaff famously offered $620 for a composite n that satisfies (1) 2n 1 1 .mod n/ so n is a base-2 Fermat pseudoprime, Á (2) .5 n/ 1 so n is not a square modulo 5, and j D (3) Fn 1 0 .mod n/ so n is a Fibonacci pseudoprime, C Á or to prove that no such n exists. We call composites that satisfy these conditions PSW-challenge pseudo- primes. In[PSW80] they credit R. Baillie with the discovery that combining a Fermat test with a Lucas test (with a certain specific parameter choice) makes for an especially effective primality test[BW80]. -
Abstract in This Paper, D-Strong and Almost D-Strong Near-Rings Ha
Periodica Mathematica Hungarlca Vol. 17 (1), (1986), pp. 13--20 D-STRONG AND ALMOST D-STRONG NEAR-RINGS A. K. GOYAL (Udaipur) Abstract In this paper, D-strong and almost D-strong near-rings have been defined. It has been proved that if R is a D-strong S-near ring, then prime ideals, strictly prime ideals and completely prime ideals coincide. Also if R is a D-strong near-ring with iden- tity, then every maximal right ideal becomes a maximal ideal and moreover every 2- primitive near-ring becomes a near-field. Several properties, chain conditions and structure theorems have also been discussed. Introduction In this paper, we have generalized some of the results obtained for rings by Wong [12]. Corresponding to the prime and strictly prime ideals in near-rings, we have defined D-strong and almost D-strong near-rings. It has been shown that a regular near-ring having all idempotents central in R is a D-strong and hence almost D-strong near-ring. If R is a D-strong S-near ring, then it has been shown that prime ideals, strictly prime ideals and com- pletely prime ideals coincide and g(R) = H(R) ~ ~(R), where H(R) is the intersection of all strictly prime ideals of R. Also if R is a D-strong near-ring with identity, then every maximal right ideal becomes a maximal ideal and moreover every 2-primitive near-ring becomes a near-field. Some structure theorems have also been discussed. Preliminaries Throughout R will denote a zero-symmetric left near-ring, i.e., R -- Ro in the sense of Pilz [10]. -
FACTORING COMPOSITES TESTING PRIMES Amin Witno
WON Series in Discrete Mathematics and Modern Algebra Volume 3 FACTORING COMPOSITES TESTING PRIMES Amin Witno Preface These notes were used for the lectures in Math 472 (Computational Number Theory) at Philadelphia University, Jordan.1 The module was aborted in 2012, and since then this last edition has been preserved and updated only for minor corrections. Outline notes are more like a revision. No student is expected to fully benefit from these notes unless they have regularly attended the lectures. 1 The RSA Cryptosystem Sensitive messages, when transferred over the internet, need to be encrypted, i.e., changed into a secret code in such a way that only the intended receiver who has the secret key is able to read it. It is common that alphabetical characters are converted to their numerical ASCII equivalents before they are encrypted, hence the coded message will look like integer strings. The RSA algorithm is an encryption-decryption process which is widely employed today. In practice, the encryption key can be made public, and doing so will not risk the security of the system. This feature is a characteristic of the so-called public-key cryptosystem. Ali selects two distinct primes p and q which are very large, over a hundred digits each. He computes n = pq, ϕ = (p − 1)(q − 1), and determines a rather small number e which will serve as the encryption key, making sure that e has no common factor with ϕ. He then chooses another integer d < n satisfying de % ϕ = 1; This d is his decryption key. When all is ready, Ali gives to Beth the pair (n; e) and keeps the rest secret. -
Fast Generation of RSA Keys Using Smooth Integers
1 Fast Generation of RSA Keys using Smooth Integers Vassil Dimitrov, Luigi Vigneri and Vidal Attias Abstract—Primality generation is the cornerstone of several essential cryptographic systems. The problem has been a subject of deep investigations, but there is still a substantial room for improvements. Typically, the algorithms used have two parts – trial divisions aimed at eliminating numbers with small prime factors and primality tests based on an easy-to-compute statement that is valid for primes and invalid for composites. In this paper, we will showcase a technique that will eliminate the first phase of the primality testing algorithms. The computational simulations show a reduction of the primality generation time by about 30% in the case of 1024-bit RSA key pairs. This can be particularly beneficial in the case of decentralized environments for shared RSA keys as the initial trial division part of the key generation algorithms can be avoided at no cost. This also significantly reduces the communication complexity. Another essential contribution of the paper is the introduction of a new one-way function that is computationally simpler than the existing ones used in public-key cryptography. This function can be used to create new random number generators, and it also could be potentially used for designing entirely new public-key encryption systems. Index Terms—Multiple-base Representations, Public-Key Cryptography, Primality Testing, Computational Number Theory, RSA ✦ 1 INTRODUCTION 1.1 Fast generation of prime numbers DDITIVE number theory is a fascinating area of The generation of prime numbers is a cornerstone of A mathematics. In it one can find problems with cryptographic systems such as the RSA cryptosystem. -
The Pseudoprimes to 25 • 109
MATHEMATICS OF COMPUTATION, VOLUME 35, NUMBER 151 JULY 1980, PAGES 1003-1026 The Pseudoprimes to 25 • 109 By Carl Pomerance, J. L. Selfridge and Samuel S. Wagstaff, Jr. Abstract. The odd composite n < 25 • 10 such that 2n_1 = 1 (mod n) have been determined and their distribution tabulated. We investigate the properties of three special types of pseudoprimes: Euler pseudoprimes, strong pseudoprimes, and Car- michael numbers. The theoretical upper bound and the heuristic lower bound due to Erdös for the counting function of the Carmichael numbers are both sharpened. Several new quick tests for primality are proposed, including some which combine pseudoprimes with Lucas sequences. 1. Introduction. According to Fermat's "Little Theorem", if p is prime and (a, p) = 1, then ap~1 = 1 (mod p). This theorem provides a "test" for primality which is very often correct: Given a large odd integer p, choose some a satisfying 1 <a <p - 1 and compute ap~1 (mod p). If ap~1 pi (mod p), then p is certainly composite. If ap~l = 1 (mod p), then p is probably prime. Odd composite numbers n for which (1) a"_1 = l (mod«) are called pseudoprimes to base a (psp(a)). (For simplicity, a can be any positive in- teger in this definition. We could let a be negative with little additional work. In the last 15 years, some authors have used pseudoprime (base a) to mean any number n > 1 satisfying (1), whether composite or prime.) It is well known that for each base a, there are infinitely many pseudoprimes to base a. -
Neural Networks and the Search for a Quadratic Residue Detector
Neural Networks and the Search for a Quadratic Residue Detector Michael Potter∗ Leon Reznik∗ Stanisław Radziszowski∗ [email protected] [email protected] [email protected] ∗ Department of Computer Science Rochester Institute of Technology Rochester, NY 14623 Abstract—This paper investigates the feasibility of employing This paper investigates the possibility of employing ANNs artificial neural network techniques for solving fundamental in the search for a solution to the quadratic residues (QR) cryptography problems, taking quadratic residue detection problem, which is defined as follows: as an example. The problem of quadratic residue detection Suppose that you have two integers a and b. Then a is is one which is well known in both number theory and a quadratic residue of b if and only if the following two cryptography. While it garners less attention than problems conditions hold: [1] such as factoring or discrete logarithms, it is similar in both 1) The greatest common divisor of a and b is 1, and difficulty and importance. No polynomial–time algorithm is 2) There exists an integer c such that c2 ≡ a (mod b). currently known to the public by which the quadratic residue status of one number modulo another may be determined. This The first condition is satisfied automatically so long as ∗ work leverages machine learning algorithms in an attempt to a 2 Zb . There is, however, no known polynomial–time (in create a detector capable of solving instances of the problem the number of bits of a and b) algorithm for determining more efficiently. A variety of neural networks, currently at the whether the second condition is satisfied. -
A Clasification of Known Root Prime-Generating
Special properties of the first absolute Fermat pseudoprime, the number 561 Marius Coman Bucuresti, Romania email: [email protected] Abstract. Though is the first Carmichael number, the number 561 doesn’t have the same fame as the third absolute Fermat pseudoprime, the Hardy-Ramanujan number, 1729. I try here to repair this injustice showing few special properties of the number 561. I will just list (not in the order that I value them, because there is not such an order, I value them all equally as a result of my more or less inspired work, though they may or not “open a path”) the interesting properties that I found regarding the number 561, in relation with other Carmichael numbers, other Fermat pseudoprimes to base 2, with primes or other integers. 1. The number 2*(3 + 1)*(11 + 1)*(17 + 1) + 1, where 3, 11 and 17 are the prime factors of the number 561, is equal to 1729. On the other side, the number 2*lcm((7 + 1),(13 + 1),(19 + 1)) + 1, where 7, 13 and 19 are the prime factors of the number 1729, is equal to 561. We have so a function on the prime factors of 561 from which we obtain 1729 and a function on the prime factors of 1729 from which we obtain 561. Note: The formula N = 2*(d1 + 1)*...*(dn + 1) + 1, where d1, d2, ...,dn are the prime divisors of a Carmichael number, leads to interesting results (see the sequence A216646 in OEIS); the formula M = 2*lcm((d1 + 1),...,(dn + 1)) + 1 also leads to interesting results (see the sequence A216404 in OEIS). -
Arxiv:1412.5226V1 [Math.NT] 16 Dec 2014 Hoe 11
q-PSEUDOPRIMALITY: A NATURAL GENERALIZATION OF STRONG PSEUDOPRIMALITY JOHN H. CASTILLO, GILBERTO GARC´IA-PULGAR´IN, AND JUAN MIGUEL VELASQUEZ-SOTO´ Abstract. In this work we present a natural generalization of strong pseudoprime to base b, which we have called q-pseudoprime to base b. It allows us to present another way to define a Midy’s number to base b (overpseudoprime to base b). Besides, we count the bases b such that N is a q-probable prime base b and those ones such that N is a Midy’s number to base b. Furthemore, we prove that there is not a concept analogous to Carmichael numbers to q-probable prime to base b as with the concept of strong pseudoprimes to base b. 1. Introduction Recently, Grau et al. [7] gave a generalization of Pocklignton’s Theorem (also known as Proth’s Theorem) and Miller-Rabin primality test, it takes as reference some works of Berrizbeitia, [1, 2], where it is presented an extension to the concept of strong pseudoprime, called ω-primes. As Grau et al. said it is right, but its application is not too good because it is needed m-th primitive roots of unity, see [7, 12]. In [7], it is defined when an integer N is a p-strong probable prime base a, for p a prime divisor of N −1 and gcd(a, N) = 1. In a reading of that paper, we discovered that if a number N is a p-strong probable prime to base 2 for each p prime divisor of N − 1, it is actually a Midy’s number or a overpseu- doprime number to base 2. -
A Scalable System-On-A-Chip Architecture for Prime Number Validation
A SCALABLE SYSTEM-ON-A-CHIP ARCHITECTURE FOR PRIME NUMBER VALIDATION Ray C.C. Cheung and Ashley Brown Department of Computing, Imperial College London, United Kingdom Abstract This paper presents a scalable SoC architecture for prime number validation which targets reconfigurable hardware This paper presents a scalable SoC architecture for prime such as FPGAs. In particular, users are allowed to se- number validation which targets reconfigurable hardware. lect predefined scalable or non-scalable modular opera- The primality test is crucial for security systems, especially tors for their designs [4]. Our main contributions in- for most public-key schemes. The Rabin-Miller Strong clude: (1) Parallel designs for Montgomery modular arith- Pseudoprime Test has been mapped into hardware, which metic operations (Section 3). (2) A scalable design method makes use of a circuit for computing Montgomery modu- for mapping the Rabin-Miller Strong Pseudoprime Test lar exponentiation to further speed up the validation and to into hardware (Section 4). (3) An architecture of RAM- reduce the hardware cost. A design generator has been de- based Radix-2 Scalable Montgomery multiplier (Section veloped to generate a variety of scalable and non-scalable 4). (4) A design generator for producing hardware prime Montgomery multipliers based on user-defined parameters. number validators based on user-specified parameters (Sec- The performance and resource usage of our designs, im- tion 5). (5) Implementation of the proposed hardware ar- plemented in Xilinx reconfigurable devices, have been ex- chitectures in FPGAs, with an evaluation of its effective- plored using the embedded PowerPC processor and the soft ness compared with different size and speed tradeoffs (Sec- MicroBlaze processor. -
The Quadratic Sieve Factoring Algorithm
The Quadratic Sieve Factoring Algorithm Eric Landquist MATH 488: Cryptographic Algorithms December 14, 2001 1 1 Introduction Mathematicians have been attempting to find better and faster ways to fac- tor composite numbers since the beginning of time. Initially this involved dividing a number by larger and larger primes until you had the factoriza- tion. This trial division was not improved upon until Fermat applied the factorization of the difference of two squares: a2 b2 = (a b)(a + b). In his method, we begin with the number to be factored:− n. We− find the smallest square larger than n, and test to see if the difference is square. If so, then we can apply the trick of factoring the difference of two squares to find the factors of n. If the difference is not a perfect square, then we find the next largest square, and repeat the process. While Fermat's method is much faster than trial division, when it comes to the real world of factoring, for example factoring an RSA modulus several hundred digits long, the purely iterative method of Fermat is too slow. Sev- eral other methods have been presented, such as the Elliptic Curve Method discovered by H. Lenstra in 1987 and a pair of probabilistic methods by Pollard in the mid 70's, the p 1 method and the ρ method. The fastest algorithms, however, utilize the− same trick as Fermat, examples of which are the Continued Fraction Method, the Quadratic Sieve (and it variants), and the Number Field Sieve (and its variants). The exception to this is the El- liptic Curve Method, which runs almost as fast as the Quadratic Sieve. -
The RSA Algorithm Clifton Paul Robinson
Bridgewater State University Virtual Commons - Bridgewater State University Honors Program Theses and Projects Undergraduate Honors Program 5-1-2018 The Key to Cryptography: The RSA Algorithm Clifton Paul Robinson Follow this and additional works at: http://vc.bridgew.edu/honors_proj Part of the Computer Sciences Commons Recommended Citation Robinson, Clifton Paul. (2018). The Key ot Cryptography: The RSA Algorithm. In BSU Honors Program Theses and Projects. Item 268. Available at: http://vc.bridgew.edu/honors_proj/268 Copyright © 2018 Clifton Paul Robinson This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. The Key to Cryptography: The RSA Algorithm Clifton Paul Robinson Submitted in Partial Completion of the Requirements for Commonwealth Interdisciplinary Honors in Computer Science and Mathematics Bridgewater State University May 1, 2018 Dr. Jacqueline Anderson Thesis Co-Advisor Dr. Michael Black, Thesis Co-Advisor Dr. Ward Heilman, Committee Member Dr. Haleh Khojasteh, Committee Member BRIDGEWATER STATE UNIVERSITY UNDERGRADUATE THESIS The Key To Cryptography: The RSA Algorithm Author: Advisors: Clifton Paul ROBINSON Dr. Jackie ANDERSON Dr. Michael BLACK Submitted in Partial Completion of the Requirements for Commonwealth Honors in Computer Science and Mathematics Dr. Ward Heilman, Reading Committee Dr. Haleh Khojasteh, Reading Committee ii Dedicated to Mom, Dad, James, and Mimi iii Contents Abstractv 1 Introduction1 1.1 The Project Overview........................1 2 Theorems and Definitions2 2.1 Definitions..............................2 2.2 Theorems...............................5 3 The History of Cryptography6 3.1 Origins................................6 3.2 A Transition.............................6 3.3 Cryptography at War........................7 3.4 The Creation and Uses of RSA...................7 4 The Mathematics9 4.1 What is a Prime Number?.....................9 4.2 Factoring Numbers........................ -
Generating Provable Primes Efficiently on Embedded Devices
Generating Provable Primes Efficiently on Embedded Devices Christophe Clavier1, Benoit Feix1;2, Lo¨ıc Thierry2;?, and Pascal Paillier3 1 XLIM, University of Limoges, [email protected] 2 INSIDE Secure [email protected],[email protected] 3 CryptoExperts [email protected] Abstract. This paper introduces new techniques to generate provable prime numbers efficiently on embedded devices such as smartcards, based on variants of Pocklington's and the Brillhart-Lehmer-Selfridge-Tuckerman- Wagstaff theorems. We introduce two new generators that, combined with cryptoprocessor-specific optimizations, open the way to efficient and tamper-resistant on-board generation of provable primes. We also report practical results from our implementations. Both our theoretical and ex- perimental results show that constructive methods can generate provable primes essentially as efficiently as state-of-the-art generators for probable primes based on Fermat and Miller-Rabin pseudo-tests. We evaluate the output entropy of our two generators and provide techniques to ensure a high level of resistance against physical attacks. This paper intends to provide practitioners with the first practical solutions for fast and secure generation of provable primes in embedded security devices. Keywords: Prime Numbers, Pocklington's theorem, Public Key Cryp- tography, Embedded Software, Modular Exponentiation, Cryptographic Accelerators, Primality Proving. 1 Introduction Large prime numbers are a basic ingredient of keys in several standardized primi- tives such as RSA [21], Digital Signature Algorithm (DSA) [12] or Diffie-Hellman key exchange (DH) [10]. This paper precisely addresses the generation of prov- able prime numbers in embedded, crypto-enabled devices. When it comes to RSA key generation, two approaches coexist: key pairs may be generated off-board (i.e.