Algorithmic Aspects of Constrained Unit Disk Graphs
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The AVD-Edge-Coloring Conjecture for Some Split Graphs
Matem´atica Contempor^anea, Vol. 44,1{10 c 2015, Sociedade Brasileira de Matem´atica The AVD-edge-coloring conjecture for some split graphs Alo´ısiode Menezes Vilas-B^oas C´eliaPicinin de Mello Abstract Let G be a simple graph. An adjacent vertex distinguishing edge- coloring (AVD-edge-coloring) of G is an edge-coloring of G such that for each pair of adjacent vertices u; v of G, the set of colors assigned to the edges incident with u differs from the set of colors assigned to the edges incident with v. The adjacent vertex distinguishing 0 chromatic index of G, denoted χa(G), is the minimum number of colors required to produce an AVD-edge-coloring for G. The AVD- edge-coloring conjecture states that every simple connected graph G ∼ 0 with at least three vertices and G =6 C5 has χa(G) ≤ ∆(G) + 2. The conjecture is open for arbitrary graphs, but it holds for some classes of graphs. In this note we focus on split graphs. We prove this AVD-edge- coloring conjecture for split-complete graphs and split-indifference graphs. 1 Introduction In this paper, G denotes a simple, undirected, finite, connected graph. The sets V (G) and E(G) are the vertex and edge sets of G. Let u; v 2 2000 AMS Subject Classification: 05C15. Key Words and Phrases: edge-coloring, adjacent strong edge-coloring, split graph. Supported by CNPq (132194/2010-4 and 308314/2013-1). The AVD-edge-coloring conjecture for some split graphs 2 V (G). We denote an edge by uv.A clique is a set of vertices pairwise adjacent in G and a stable set is a set of vertices such that no two of which are adjacent. -
Disk Intersection Graphs: Models, Data Structures, and Algorithms
Disk Intersection Graphs: Models, Data Structures, and Algorithms Dissertation zur Erlangung des Doktorgrades vorgelegt am Fachbereich Mathematik und Informatik der Freien Universität Berlin von Paul Seiferth 2016 Erstgutachter: Prof. Dr. Wolfgang Mulzer Zweitgutachter: Prof. Dr. Christian Knauer Tag der Disputation: 19.08.2016 iii Abstract 2 Let P R be a set of n point sites. The unit disk graph UD(P) on P has vertex ⊂ set P and an edge between two sites p, q P if and only if p and q have Euclidean 2 distance jpqj 6 1. If we interpret P as centers of disks with diameter 1, then UD(P) is the intersection graph of these disks, i.e., two sites p and q form an edge if and only if their corresponding unit disks intersect. Two natural generalizations of unit disk graphs appear when we assign to each point p P an associated radius r > 0. The first one is 2 p the disk graph D(P), where we put an edge between p and q if and only if jpqj 6 rp +rq, meaning that the disks with centers p and q and radii rp and rq intersect. The second one yields a directed graph on P, called the transmission graph of P. We obtain it by putting a directed edge from p to q if and only if jpqj 6 rp, meaning that q lies in the disk with center p and radius rp. For disk and transmission graphs we define the radius ratio Ψ to be the ratio of the largest and the smallest radius that is assigned to a site in P. -
Theoretical Computer Science a Polynomial Solution to the K-Fixed
Theoretical Computer Science 411 (2010) 967–975 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs A polynomial solution to the k-fixed-endpoint path cover problem on proper interval graphs Katerina Asdre, Stavros D. Nikolopoulos ∗ Department of Computer Science, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece article info a b s t r a c t Article history: We study a variant of the path cover problem, namely, the k-fixed-endpoint path cover Received 29 January 2008 problem, or kPC for short. Given a graph G and a subset T of k vertices of V .G/, a k-fixed- Received in revised form 24 December 2008 endpoint path cover of G with respect to T is a set of vertex-disjoint paths P that covers Accepted 7 November 2009 the vertices of G such that the k vertices of T are all endpoints of the paths in P . The kPC Communicated by P. Spirakis problem is to find a k-fixed-endpoint path cover of G of minimum cardinality; note that, if T is empty (or, equivalently, k D 0), the stated problem coincides with the classical path Keywords: cover problem. The kPC problem generalizes some path cover related problems, such as Perfect graphs Proper interval graphs the 1HP and 2HP problems, which have been proved to be NP-complete. Note that the Path cover complexity status for both 1HP and 2HP problems on interval graphs remains an open Fixed-endpoint path cover question (Damaschke (1993) [9]). In this paper, we show that the kPC problem can be solved Linear-time algorithms in linear time on the class of proper interval graphs, that is, in O.n C m/ time on a proper interval graph on n vertices and m edges. -
Algorithms on Geometric Graphs
M. Tech. (Computer Science) Dissertation Algorithms on Geometric Graphs A dissertation submitted in partial fulfillment of the requirements for the award of M.Tech.(Computer Science) degree By Minati De Roll No: CS0805 under the supervision of Professor Subhas C. Nandy Advanced Computing and Microelectronics Unit INDIANSTATISTICALINSTITUTE 203, Barrackpore Trunk Road Kolkata - 700 108 Acknowledgement At the end of this course, it is my pleasure to thank everyone who has helped me along the way. First of all, I want to express my sincere gratitude to my supervisor, Prof. Subhas C. Nandy, for introducing me to the world of computational geometry and giving me interesting problems. I have learnt a lot from him. For his patience, for all his advice and encouragement and for the way he helped me to think about problems with a broader perspective, I will always be grateful. I would like to thank all the professors at ISI who have made my educational life exciting and helped me to gain a better outlook on computer science. I would also like to express my gratitude to Prof. B. P. Sinha, Prof. Arijit Bishnu, Goutam K. Das, Daya Gour for interesting discussions. I would like to thank everybody at ISI for providing a wonderful atmosphere for pursuing my studies. I thank all my classmates who have made the academic and non-academic experience very delightful. Special thanks to my friends Somindu-di, Debosmita-di, Ishita, Anindita-di, Aritra-da, Butu-da, Koushik, Anisur, Soumyot- tam, Joydeep and many others who made my campus life so enjoyable. It has been great having them around at all times, good or bad. -
An Upper Bound for Cubicity in Terms of Boxicity
An upper bound for Cubicity in terms of Boxicity L. Sunil Chandran ∗ K. Ashik Mathew † Abstract An axis-parallel b-dimensional box is a Cartesian product R1 × R2 × ... × Rb where each Ri (for 1 ≤ i ≤ b) is a closed interval of the form [ai,bi] on the real line. The boxicity of any graph G, box(G) is the minimum positive integer b such that G can be represented as the intersection graph of axis parallel b-dimensional boxes. A b-dimensional cube is a Cartesian product R1 × R2 × ... × Rb, where each Ri (for 1 ≤ i ≤ b) is a closed interval of the form [ai,ai+1] on the real line. When the boxes are restricted to be axis-parallel cubes in b-dimension, the minimum dimension b required to represent the graph is called the cubicity of the graph (denoted by cub(G)). In this paper we prove that cub(G) ≤⌈log n⌉box(G) where n is the number of vertices in the graph. We also show that this upper bound is tight. Keywords: Cubicity, Boxicity, Interval graph, Indifference graph 1 Introduction Let F = {Sx ⊆ U : x ∈ V } be a family of subsets of U, where V is an index set. The intersec- tion graph Ω(F) of F has V as vertex set, and two distinct vertices x and y are adjacent if and only if Sx ∩ Sy 6= ∅. Representations of graphs as the intersection graphs of various geometric objects is a well-studied area in graph theory. A prime example of a graph class defined in this way is the class of interval graphs. -
Maximum Clique in Disk-Like Intersection Graphs
Maximum Clique in Disk-Like Intersection Graphs Édouard Bonnet Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France [email protected] Nicolas Grelier Department of Computer Science, ETH Zürich [email protected] Tillmann Miltzow Utrecht University, Utrecht Netherlands [email protected] Abstract We study the complexity of Maximum Clique in intersection graphs of convex objects in the plane. On the algorithmic side, we extend the polynomial-time algorithm for unit disks [Clark ’90, Raghavan and Spinrad ’03] to translates of any fixed convex set. We also generalize the efficient polynomial-time approximation scheme (EPTAS) and subexponential algorithm for disks [Bonnet et al. ’18, Bonamy et al. ’18] to homothets of a fixed centrally symmetric convex set. The main open question on that topic is the complexity of Maximum Clique in disk graphs. It is not known whether this problem is NP-hard. We observe that, so far, all the hardness proofs for Maximum Clique in intersection graph classes I follow the same road. They show that, for every graph G of a large-enough class C, the complement of an even subdivision of G belongs to the intersection class I. Then they conclude invoking the hardness of Maximum Independent Set on the class C, and the fact that the even subdivision preserves that hardness. However there is a strong evidence that this approach cannot work for disk graphs [Bonnet et al. ’18]. We suggest a new approach, based on a problem that we dub Max Interval Permutation Avoidance, which we prove unlikely to have a subexponential-time approximation scheme. -
Discrete Applied Mathematics Complexity-Separating
Discrete Applied Mathematics 281 (2020) 162–171 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Complexity-separating graph classes for vertex, edge and total colouringI Celina M.H. de Figueiredo COPPE, Universidade Federal do Rio de Janeiro, Brazil article info a b s t r a c t Article history: Given a class A of graphs and a decision problem π belonging to NP, we say that a Received 24 April 2018 full complexity dichotomy of A was obtained if one describes a partition of A into Received in revised form 30 January 2019 subclasses such that π is classified as polynomial or NP-complete when restricted Accepted 22 February 2019 to each subclass. The concept of full complexity dichotomy is particularly interesting Available online 19 March 2019 for the investigation of NP-complete problems: as we partition a class A into NP- Keywords: complete subclasses and polynomial subclasses, it becomes clearer why the problem is Analysis of algorithms and problem NP-complete in A. The class C of graphs that do not contain a cycle with a unique chord complexity was studied by Trotignon and Vu²kovi¢ who proved a structure theorem which led to Graph algorithms solving the vertex-colouring problem in polynomial time. In the present survey, we apply Structural characterization of types of the structure theorem to study the complexity of edge-colouring and total-colouring, and graphs show that even for graph classes with strong structure and powerful decompositions, the edge-colouring problem may be difficult. We discuss several surprising complexity dichotomies found in subclasses of C, and the concepts of separating problem proposed by David S. -
Arxiv:2011.12369V2 [Cs.DM] 28 Jun 2021
Fiedler vector analysis for particular cases of connected graphs Daniel Felisberto Tracin´aFilho P´os-gradua¸c˜ao em Sistemas e Computa¸c˜ao - Instituto Militar de Engenharia [email protected] Claudia Marcela Justel P´os-gradua¸c˜ao em Sistemas e Computa¸c˜ao - Instituto Militar de Engenharia [email protected] Abstract In this paper, some subclasses of block graphs are considered in order to analyze Fiedler vector of its members. Two families of block graphs with cliques of fixed size, the block-path and block-starlike graphs, are an- alyzed. Cases A and B of classification for both families were considered, as well as the behavior of the algebraic connectivity when some vertices and edges are added for particular cases of block-path graphs. Keyword: spectral graph theory, Fiedler vector, algebraic connectivity, block graphs. 1 Introduction We consider G = (V, E) an undirected, unweighted and simple graph. The sizes of its sets of vertices and edges are |V | = n, |E| = m. The Laplacian matrix of a graph G, L(G), is the symmetric and semidefinite positive matrix D(G)−A(G), arXiv:2011.12369v2 [cs.DM] 28 Jun 2021 where D(G) is the diagonal matrix with the degrees of the vertices of G and A(G) is the adjacency matrix of G. The eigenvalues of L(G), the roots of the characteristic polynomial of L(G), are n non-negative real numbers, and zero is always an eigenvalue of L(G). We denote them as 0 = λ1 ≤ λ2 ≤ .... ≤ λn. The second smallest eigenvalue of L(G), λ2(G), is called the algebraic connectivity of G. -
Linear-Time Approximation Algorithms for Unit Disk Graphs
Linear-Time Approximation Algorithms for Unit Disk Graphs Guilherme D. da Fonseca Vin´ıciusG. Pereira de S´a Celina M. H. de Figueiredo Universidade Federal do Rio de Janeiro, Brazil Abstract Numerous approximation algorithms for unit disk graphs have been proposed in the literature, exhibiting sharp trade-offs between running times and approximation ratios. We propose a method to obtain linear-time approximation algorithms for unit disk graph problems. Our method yields linear-time (4 + ")-approximations to the maximum-weight independent set and the minimum dominating set, as well as a linear-time approximation scheme for the minimum vertex cover, improving upon all known linear- or near-linear-time algorithms for these problems. 1 Introduction A unit disk graph is the intersection graph of unit disks in the plane. Unit disk graphs are often represented using the coordinates of the disk centers instead of explicit adjacency information. In this geometric setting, two vertices are adjacent if the corresponding points (the disk centers) are within Euclidean distance at most 2 from one another. Owing to their applicability in wireless networks [10, 13], numerous approximation algorithms for unit disk graphs have been proposed in the literature. Such approxima- tions are either graph-based algorithms, when they receive as input solely the adjacency representation of the graph, or geometric algorithms, when the input consists of a geo- metric representation of the graph. While the edges of a graph G(V; E), with n = V and m = E , can be obtained from the vertices' coordinates in O(n + m) time under thej j real-RAMj modelj with floor function and constant-time hashing [3], obtaining a geometric representation of a given unit disk graph is NP-hard [4]. -
Arxiv:Cs/0607092V3 [Cs.DM] 26 Mar 2008 ⋆⋆ Let Introduction 1 Keywords: Ne E.Teitreto Graph Intersection the Set
Representing graphs as the intersection of axis-parallel cubes (Extended Abstract) L. Sunil Chandran, Mathew C. Francis ⋆, and Naveen Sivadasan ⋆⋆ Abstract. A unit cube in k dimensional space (or k-cube in short) is de- fined as the Cartesian product R1 ×R2 ×···×Rk where Ri(for 1 ≤ i ≤ k) is a closed interval of the form [ai,ai + 1] on the real line. A k-cube rep- resentation of a graph G is a mapping of the vertices of G to k-cubes such that two vertices in G are adjacent if and only if their correspond- ing k-cubes have a non-empty intersection. The cubicity of G, denoted as cub(G), is the minimum k such that G has a k-cube representation. Roberts [17] showed that for any graph G on n vertices, cub(G) ≤ 2n/3. Many NP-complete graph problems have polynomial time deterministic algorithms or have good approximation ratios in graphs of low cubicity. In most of these algorithms, computing a low dimensional cube repre- sentation of the given graph is usually the first step. From a geometric embedding point of view, a k-cube representation of k G = (V,E) yields an embedding f : V → R such that for any two vertices u and v, ||f(u) − f(v)||∞ ≤ 1 if and only if (u, v) ∈ E. We present an efficient algorithm to compute the k-cube representation of G with maximum degree ∆ in O(∆ ln n) dimensions. We then further strengthen this bound by giving an algorithm that produces a k-cube representation of a given graph G with maximum degree ∆ in O(∆ ln b) dimensions where b is the bandwidth of G. -
Approximating Maximum Diameter-Bounded Subgraph in Unit Disk Graphs
Approximating Maximum Diameter-Bounded Subgraph in Unit Disk Graphs A. Karim Abu-Affash1 Software Engineering Department, Shamoon College of Engineering Beer-Sheva 84100, Israel [email protected] Paz Carmi2 Department of Computer Science, Ben-Gurion University Beer-Sheva 84105, Israel [email protected] Anil Maheshwari3 School of Computer Science, Carleton University Ottawa, Canada [email protected] Pat Morin4 School of Computer Science, Carleton University Ottawa, Canada [email protected] Michiel Smid5 School of Computer Science, Carleton University Ottawa, Canada [email protected] Shakhar Smorodinsky6 Department of Mathematics, Ben-Gurion University Beer-Sheva 84105, Israel [email protected] Abstract We consider a well studied generalization of the maximum clique problem which is defined as follows. Given a graph G on n vertices and an integer d ≥ 1, in the maximum diameter-bounded subgraph problem (MaxDBS for short), the goal is to find a (vertex) maximum subgraph of G of diameter at most d. For d = 1, this problem is equivalent to the maximum clique problem and thus it is NP-hard to approximate it within a factor n1−, for any > 0. Moreover, it is known that, for any d ≥ 2, it is NP-hard to approximate MaxDBS within a factor n1/2−, for any > 0. In this paper we focus on MaxDBS for the class of unit disk graphs. We provide a polynomial- time constant-factor approximation algorithm for the problem. The approximation ratio of our algorithm does not depend on the diameter d. Even though the algorithm itself is simple, its analysis is rather involved. -
Approximation Algorithms for Maximum Independent Set of a Unit Disk Graph ∗ Gautam K
Information Processing Letters 115 (2015) 439–446 Contents lists available at ScienceDirect Information Processing Letters www.elsevier.com/locate/ipl Approximation algorithms for maximum independent set of a unit disk graph ∗ Gautam K. Das a, Minati De b, Sudeshna Kolay c, Subhas C. Nandy d, , Susmita Sur-Kolay d a Dept. of Mathematics, Indian Institute of Technology Guwahati, Guwahati, India b Dept. of Computer Science, The Technion—Israel Institute of Technology, Israel c The Institute of Mathematical Sciences, Chennai, India d Indian Statistical Institute, Kolkata, India a r t i c l e i n f o a b s t r a c t Article history: We propose a 2-approximation algorithm for the maximum independent set problem for a 3 2 Received 21 November 2013 unit disk graph. The time and space complexities are O (n ) and O (n ), respectively. For a Received in revised form 5 November 2014 penny graph, our proposed 2-approximation algorithm works in O (n log n) time using O (n) Accepted 6 November 2014 space. We also propose a polynomial-time approximation scheme (PTAS) for the maximum Available online 15 November 2014 independent set problem for a unit disk graph. Given an integer k > 1, it produces a Communicated by R. Uehara solution of size 1 |OPT| in O (k4nσk log k + n logn) time and O (n + k logk) space, where + 1 2 (1 k ) Keywords: ≤ 7k + OPT is the subset of disks in an optimal solution and σk 3 2. For a penny graph, the Maximum independent set 1 | | 2σk + Unit disk graph proposed PTAS produces a solution of size + 1 OPT in O (2 nk n logn) time using (1 k ) Approximation algorithms O (2σk + n) space.