Solar Air-Conditioning Systems Impact on the Built Environment – a Thermodynamic Approach

Total Page:16

File Type:pdf, Size:1020Kb

Solar Air-Conditioning Systems Impact on the Built Environment – a Thermodynamic Approach C. Koroneos, E. Nanaki, G. Xydis, Solar Air-conditioning Systems Impact on the Built Environment - A Thermodynamic Approach. 45th ISOCARP Congress 2009 Solar Air-conditioning Systems Impact on the Built Environment – A Thermodynamic Approach 1. Introduction Energy consumption in European domestic and tertiary sectors represents about 40% of the annual EU-15 final energy use and about a third of greenhouse gas emissions. Among these, about two-thirds are concentrated in residential sector, the remaining part in commercial building. The household sector represents about 70% of total energy consumption in buildings sector [1]. During the last few decades energy consumption for cooling has increased dramatically in most European countries. The main reasons for the increasing energy demand for summer air- conditioning are the increased thermal loads, increased living standards and comfort demands in conjunction with architectural characteristics and trends. During the summer the demand for electricity in Greece increases due to the extensive use of heating ventilation and air conditioning systems, which increase the peak electric load, causing major problems in the electric supply. In the current practice, air conditioning is exclusively based in the use of electric energy, while the use of solar energy is limited at heating of domestic hot water and in limited applications for space heating and fewer for cooling. It has been estimated that the total energy consumption in Greece, in 2003, for central air conditioning systems was 2909 GWh/y [2], whereas the per capita consumption was estimated at 371 KWh/ y [3]. The extensive use of electrically driven compression cooling equipment is responsible for an increase of greenhouse gases emissions, due to the energy production or to the leakage of the cooling fluids; intensifying the cycle of climate change. The latter is of great significance, especially in the case of public buildings. The energy behavior of the public buildings in Greece varies according to the building’s age and its structural components [4]. Public buildings that have been constructed until 1940 are characterized by heavy structural components, lack of central heating, high energy consumption rates and satisfactory conditions of thermal comfort especially during the summer months. The majority of public buildings in Greece have been constructed during the period 1940-1980 (before 1973); these constructions are characterized by reinforced concrete, lack of thermal insulation, they usually have a central heating system, high energy consumption rates and medium thermal comfort. The energy behavior of the public buildings in Greece has significantly been improved, during the past 20 years, mainly due to the use of thermal insulation. In 1980 the buildings adsorbed 22% of total energy consumption; while in 1994 the absorbed energy came up to 30.9% [5].This increase can be attributed to the increase in the use of electrical energy. Taken into consideration the fact that the energy consumption in public buildings will be greater than 50 kWh/ m 2, coming up to a total of 250 kWh/ m 2; it is obvious the need for rational energy use so as to avoid the economic as well as environmental impacts. For this reason the development of trendsetting technologies for reliable, affordable and environmentally friendly energy is vital. The use of solar energy to drive cooling cycles for space conditioning of most buildings constitutes an attractive concept, since the cooling load coincides generally with solar energy availability and therefore cooling requirements of a building are roughly in phase with solar incidence. Solar cooling systems have the advantage of using harmless working fluids such as water, or solutions of certain salts. They are energy efficient and environmentally safe. They can be used, either as stand-alone systems or with conventional air conditioning, to improve the indoor air –quality of all types of buildings. The main goal is to utilize “zero emission” technologies to reduce energy consumption and CO 2 emissions. 1 C. Koroneos, E. Nanaki, G. Xydis, Solar Air-conditioning Systems Impact on the Built Environment - A Thermodynamic Approach. 45th ISOCARP Congress 2009 The continuous increase in the price of energies, associated with support systems set up by the majority of governments has made it possible for a significant solar thermal sector growth. In particular, the solar energy market in the EU presented significant growth (+12%); still at 1.089 MW th of newly installed capacity it remains below what would be needed to reach EU’s target for 2 2010: 70,000 MW th of solar thermal capacity (100 million m ). The solar thermal capacity in operation reached 9,525 MW th at the end of 2004, which provides 8,164 MW th of clean energy. As far as Greece is concerned, 151 MW th of new solar thermal capacity were installed in 2004 – an increase of 34% compared to 2003. For 2005 a continuation of the pre-2004 trend is expected, with sales in the area of 119 MW th [6]. Today approximately 120 solar thermal assisted cooling systems are presently installed worldwide, with a total cooling capacity estimated at 10MW [7,8].Their specific collector is ~ 3m 2/ Kw for water chillers or 10 m 2 per 1000 m 3/h of air volume flow in desiccant systems. Most of the systems have been installed in Germany, Spain as well as Greece [9].About 69% of theses systems use absorption chillers whereas about 10% of them adsorption chillers. Furthermore, in about 19% of the installations a solid desiccant cooling system is installed. It should be noted that their primary energy savings potential is between 30-60%; however these potentials are often unrealizable with the current systems, due to sub-optimal design, installation, and operation. Although a precise statement on the economic situation of a solar assisted air conditioning system depends on the specific system, in general the annual cost ( the complete cost including capital cost, operation and maintenance costs etc) of a solar assisted air conditioning system are currently above the annual cost of a conventional system. In the context of this paper, the potential for solar applications, mainly for solar cooling are investigated for a medical center in Northern-Western Greece. To be more specific, an exergy analysis is applied, to a solar air conditioning system, so as to analyze the performance of a cycle driven by solar energy. Additionally, an environmental and an economic evaluation of the solar cooling installation in the medical center are presented in this study. The environmental benefits of such a system outweigh the conventional ones. The results are of great significance, as they are indicative of the application prospects in the Greek market. 2. Solar Cooling Solar air conditioning refers to any air conditioning system that uses solar power. This can be done through passive solar, photovoltaic conversion or solar thermal energy conversion. Specifically, solar cooling technologies use solar thermal energy provided through solar collectors to power thermally driven cooling machines. A solar cooling installation consists of a typical solar thermal system made up of solar collectors, storage tank, control unit, pipes and pumps and a thermally driven cooling machine. A conventional energy source functions as auxiliary, mainly for the periods when the cooling load is not covered by the produced energy by the collectors. The schematic installation for the provision of solar air conditioning is presented in Figure 1 [10]. 2 C. Koroneos, E. Nanaki, G. Xydis, Solar Air-conditioning Systems Impact on the Built Environment - A Thermodynamic Approach. 45th ISOCARP Congress 2009 Cooling Refrigerant tower Refri gerant steams liquid Generator Condenser Solution heat exchanger Expansion valve LiBr LiBr/H 2O Absorption Evaporator Refrigerant Refrigerant liquid steams Figure 1: Schematic installation for the provision of solar air conditioning using as refrigerant water [ 10 ] The basic principle for production of cold by heat is based on the evaporation technique. The basic advantage of solar cooling is, that the greater heat exists the more cooling is produced, advantage that is excellently synchronized with the requirements for summer cooling in buildings. In Table 1, the basic operations characteristics of the main solar cooling techniques are summarized. 3 C. Koroneos, E. Nanaki, G. Xydis, Solar Air-conditioning Systems Impact on the Built Environment - A Thermodynamic Approach. 45th ISOCARP Congress 2009 Method Closed Open Cooling cycle Closed circulation of cooling Cooling means in contact with the means atmosphere Principle of method Cold water production Air humidification +evaporative cooling Absorption mean Solid Solid Liquid Liquid Cooling/absorption water/silica gel H2O/ LiBr, H2O/ silica gel, H2O/CaCl, mean NH3/ salt NH3/H2O H2O/ LiCl, H2O/ LiCl cellulose Available techniques Cooling Cooling Air-conditioning adsorption absorption based on ---- machines machines absorption (ABA) Available power 70-1050 kW 50 kW-5MW 30-350 kW (per (KW) (A) unit) ---- 250 Kw-5MW (B) Coefficient of 0.3 – 0.7 0.6 -0.75 (A) 0.5-1.0 >1.0 performance COP 1.0- 1.20 (B) Driving Temperature 60-90 0C 80-110 0C (A) 45-95 0C 45-95 0C 140-160 0C (B) Solar Collector Vacuum tube, Vacuum tube, Flat plate Flat plate flat plate flat plate collector, air collector, air collector selective collector collector collector Table 1 : Characteristics of solar cooling techniques [11] A classification is presented based on the type of thermal cycle –either open or closed- and absorption medium. The types of thermal cycles are distinguished to: • closed systems: thermally driven chillers that provide chilled water, which is either used in air handling units to supply conditioned air or that is distributed via a chilled water network to the designated rooms to operate decentralized room installations. These systems usually use cooling towers or similar equipment to reject heat. The market available machines for this purpose are the absorption chillers.
Recommended publications
  • Reference Guide
    Indoor Air Quality Tools for Schools REFERENCE GUIDE Indoor Air Quality (IAQ) U.S. Environmental Protection Agency Indoor Environments Division, 6609J 1200 Pennsylvania Avenue, NW Washington, DC 20460 (202) 564-9370 www.epa.gov/iaq American Federation of Teachers 555 New Jersey Avenue, NW Washington, DC 20001 (202) 879-4400 www.aft.org Association of School Business Officials 11401 North Shore Drive Reston, VA 22090 (703) 478-0405 www.asbointl.org National Education Association 1201 16th Steet, NW Washington, DC 20036-3290 (202) 833-4000 www.nea.org National Parent Teachers Association 330 North Wabash Avenue, Suite 2100 Chicago, IL 60611-3690 (312) 670-6782 www.pta.org American Lung Association 1740 Broadway New York, NY 10019 (212) 315-8700 www.lungusa.org EPA 402/K-07/008 I January 2009 I www.epa.gov/iaq/schools Introduction � U nderstanding the importance of good basic measurement equipment, hiring indoor air quality (IAQ) in schools is the professional assistance, and codes and backbone of developing an effective IAQ regulations. There are numerous resources program. Poor IAQ can lead to a large available to schools through EPA and other variety of health problems and potentially organizations, many of which are listed in affect comfort, concentration, and staff/ Appendix L. Use the information in this student performance. In recognition of Guide to create the best possible learning tight school budgets, this guidance is environment for students and maintain a designed to present practical and often comfortable, healthy building for school low-cost actions you can take to identify occupants. and address existing or potential air quality Refer to A Framework for School problems.
    [Show full text]
  • Solar Energy: State of the Art
    Downloaded from orbit.dtu.dk on: Sep 27, 2021 Solar energy: state of the art Furbo, Simon; Shah, Louise Jivan; Jordan, Ulrike Publication date: 2003 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Furbo, S., Shah, L. J., & Jordan, U. (2003). Solar energy: state of the art. BYG Sagsrapport No. SR 03-14 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Editors: Simon Furbo Louise Jivan Shah Ulrike Jordan Solar Energy State of the art DANMARKS TEKNISKE UNIVERSITET Internal Report BYG·DTU SR-03-14 2003 ISSN 1601 - 8605 Solar Energy State of the art Editors: Simon Furbo Louise Jivan Shah Ulrike Jordan Department of Civil Engineering DTU-bygning 118 2800 Kgs. Lyngby http://www.byg.dtu.dk 2003 PREFACE In June 2003 the Ph.D. course Solar Heating was carried out at Department of Civil Engineering, Technical University of Denmark.
    [Show full text]
  • Solar Heating and Cooling & Solar Air-Conditioning Position Paper
    Task 53 New Generation Solar Cooling & Heating Systems (PV or solar thermally driven systems) Solar Heating and Cooling & Solar Air-Conditioning Position Paper November 2018 Contents Executive Summary ............................................................. 3 Introduction and Relevance ................................................ 4 Status of the Technology/Industry ...................................... 5 Technical maturity and basic successful rules for design .............. 7 Energy performance for PV and Solar thermally driven systems ... 8 Economic viability and environmental benefits .............................. 9 Market status .................................................................................... 9 Potential ............................................................................. 10 Technical potential ......................................................................... 10 Costs and economics ..................................................................... 11 Market opportunities ...................................................................... 12 Current Barriers ................................................................. 12 Actions Needed .................................................................. 13 This document was prepared by Daniel Neyer1,2 and Daniel Mugnier3 with support by Alexander Thür2, Roberto Fedrizzi4 and Pedro G. Vicente Quiles5. 1 daniel neyer brainworks, Oberradin 50, 6700 Bludenz, Austria 2 University of Innsbruck, Technikerstr. 13, 6020 Innsbruck, Austria
    [Show full text]
  • A Comprehensive Thermal Comfort Analysis of the Cooling Effect of The
    sustainability Article A Comprehensive Thermal Comfort Analysis of the Cooling Effect of the Stand Fan Using Questionnaires and a Thermal Manikin Sun-Hye Mun y, Younghoon Kwak y, Yeonjung Kim and Jung-Ho Huh * Department of Architectural Engineering, University of Seoul, Seoul 02504, Korea; [email protected] (S.-H.M); [email protected] (Y.K.); [email protected] (Y.K.) * Correspondence: [email protected]; Tel.: +82-2-6490-2757 Contributed equally to this work. y Received: 14 August 2019; Accepted: 12 September 2019; Published: 17 September 2019 Abstract: In this study a quantitative analysis was performed on the effect on thermal comfort of the stand fan, a personal cooling device that creates local air currents. A total of 20 environmental conditions (indoor temperatures: 22, 24, 26, 28, and 30 ◦C; fan modes: off, low (L) mode, medium (M) mode, and high (H) mode) were analyzed using questionnaires on male and female subjects in their 20s and a thermal manikin test. The contents of the questionnaire consisted of items on thermal sensation, thermal comfort, thermal acceptability, and demands on changes to the air velocity. This step was accompanied by the thermal manikin test to analyze the convective heat transfer coefficient and cooling effect quantitatively by replicating the stand fan. Given that this study provides data on the cooling effect of the stand fan in quantitative values, it allows for a comparison of energy use with other cooling systems such as the air conditioner, and may be used as a primary data set for analysis of energy conservation rates.
    [Show full text]
  • A Review of Building Integrated Solar Thermal (Bist)
    enewa f R bl o e ls E a n t e n r e g Journal of y m a a n d d Zhang et al., n u A J Fundam Renewable Energy Appl 2015, 5:5 F p f p Fundamentals of Renewable Energy o l i l ISSN: 2090-4541c a a DOI: 10.4172/2090-4541.1000182 n t r i o u n o s J and Applications Review Article Open Access Building Integrated Solar Thermal (BIST) Technologies and Their Applications: A Review of Structural Design and Architectural Integration Xingxing Zhang*1, Jingchun Shen1, Llewellyn Tang*1, Tong Yang1, Liang Xia1, Zehui Hong1, Luying Wang1, Yupeng Wu2, Yong Shi1, Peng Xu3 and Shengchun Liu4 1Department of Architecture and Built Environment, University of Nottingham, Ningbo, China 2Department of Architecture and Built Environment, University of Nottingham, UK 3Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, China 4Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, China Abstract Solar energy has enormous potential to meet the majority of present world energy demand by effective integration with local building components. One of the most promising technologies is building integrated solar thermal (BIST) technology. This paper presents a review of the available literature covering various types of BIST technologies and their applications in terms of structural design and architectural integration. The review covers detailed description of BIST systems using air, hydraulic (water/heat pipe/refrigerant) and phase changing materials (PCM) as the working medium. The fundamental structure of BIST and the various specific structures of available BIST in the literature are described.
    [Show full text]
  • Thermal Comfort in a Naturally-Ventilated Educational Building
    Thermal Comfort in a Naturally-Ventilated Educational Building David Mwale Ogoli Judson College, Elgin, IL ABSTRACT: A comprehensive study of thermal comfort in a naturally ventilated education building (88,000 ft2) in a Chicago suburb will be conducted with 120 student subjects in 2007. This paper discusses some recent trends in worldwide thermal comfort studies and presents a proposal of research for this building through a series of questionnaire tables. Two research methods used in thermal comfort studies are field studies and laboratory experiments in climate-chambers. The various elements that constitute a “comfortable” thermal environment include physical factors (ambient air temperature, mean radiant temperature, air movement and humidity), personal factors (activity and clothing), classifications (gender, age, education, etc.) and psychological expectations (knowledge, experience, psychological effect of visual warmth by, say, a fireplace). Comparisons are made using data gathered from Nairobi, Kenya. Keywords: Comfort, temperature, humidity and ventilation INTRODUCTION The “comfort zone” is an appropriate design goal for a deterministic mechanical system but analysis of many international field studies by researchers has questioned its relevance to passive solar buildings (Humphreys, 1976; Auliciems, 1978; Forwood, 1995; Baker and Standeven, 1996; Standeven and Baker, 1995; Milne, 1995;). Givoni (1998) revised his already authoritative and notable work on the building bio-climatic chart having recognized this new position. These revisions reflect a paradigm shift in thermal comfort for people relative to their thermal environment. The American Society of Heating, Ventilating and Air-conditioning Engineers (ASHRAE) has been discussing how people adapt to higher indoor temperatures in naturally ventilated buildings (Olesen, 2000). There is mounting evidence (Humphreys, 1996; Karyono, 2000) that confirms that thermal perceptions are affected by factors that are not recognized by current comfort standards.
    [Show full text]
  • Solar Air-Conditioning and Refrigeration - Achievements and Challenges
    Solar air-conditioning and refrigeration - achievements and challenges Hans-Martin Henning Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg/Germany EuroSun 2010 September 28 – October 2, 2010 Graz - AUSTRIA © Fraunhofer ISE Outline Components and systems Achievements Solar thermal versus PV? Challenges and conclusion © Fraunhofer ISE Components and systems Achievements Solar thermal versus PV? Challenges and conclusion © Fraunhofer ISE Overall approach to energy efficient buildings Assure indoor comfort with a minimum energy demand 1. Reduction of energy demand Building envelope; ventilation 2. Use of heat sinks (sources) in Ground; outside air (T, x) the environment directly or indirectly; storage mass 3. Efficient conversion chains HVAC; combined heat, (minimize exergy losses) (cooling) & power (CH(C)P); networks; auxiliary energy 4. (Fractional) covering of the Solar thermal; PV; (biomass) remaining demand using renewable energies © Fraunhofer ISE Solar thermal cooling - basic principle Basic systems categories Closed cycles (chillers): chilled water Open sorption cycles: direct treatment of fresh air (temperature, humidity) © Fraunhofer ISE Open cycles – desiccant air handling units Solid sorption Liquid sorption Desiccant wheels Packed bed Coated heat exchangers Plate heat exchanger Silica gel or LiCl-matrix, future zeolite LiCl-solution: Thermochemical storage possible ECOS (Fraunhofer ISE) in TASK 38 © Fraunhofer ISE Closed cycles – water chillers or ice production Liquid sorption: Ammonia-water or Water-LiBr (single-effect or double-effect) Solid sorption: silica gel – water, zeolite-water Ejector systems Thermo-mechanical systems Turbo Expander/Compressor AC-Sun, Denmark in TASK 38 © Fraunhofer ISE System overview Driving Collector type System type temperature Low Open cycle: direct air treatment (60-90°C) Closed cycle: high temperature cooling system (e.g.
    [Show full text]
  • Characterization and Energy Performance of a Slurry PCM-Based Solar Thermal Collector: a Numerical Analysis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PORTO Publications Open Repository TOrino Politecnico di Torino Porto Institutional Repository [Article] Characterization and energy performance of a slurry PCM-based solar thermal collector: a numerical analysis Original Citation: Serale G.; Baronetto S.; Goia F.; Perino M. (2014). Characterization and energy performance of a slurry PCM-based solar thermal collector: a numerical analysis. In: ENERGY PROCEDIA, vol. 48, pp. 223-232. - ISSN 1876-6102 Availability: This version is available at : http://porto.polito.it/2592626/ since: February 2015 Publisher: Elsevier Published version: DOI:10.1016/j.egypro.2014.02.027 Terms of use: This article is made available under terms and conditions applicable to Open Access Policy Article ("Creative Commons: Attribution-Noncommercial-No Derivative Works 3.0") , as described at http: //porto.polito.it/terms_and_conditions.html Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters. Publisher copyright claim: This is the publisher’s version of a proceedings published on [pin missing: event_title], Publisher [pin missing: publisher], Vol 48 , Number UNSPECIFIED Year 2014 (ISSN epc:pin name ="issn"/> - ISBN [pin missing: isbn] )The present version is accessible on PORTO, the Open Access Repository of the Politecnico of Torino
    [Show full text]
  • Factors Affecting Indoor Air Quality
    Factors Affecting Indoor Air Quality The indoor environment in any building the categories that follow. The examples is a result of the interaction between the given for each category are not intended to site, climate, building system (original be a complete list. 2 design and later modifications in the Sources Outside Building structure and mechanical systems), con- struction techniques, contaminant sources Contaminated outdoor air (building materials and furnishings, n pollen, dust, fungal spores moisture, processes and activities within the n industrial pollutants building, and outdoor sources), and n general vehicle exhaust building occupants. Emissions from nearby sources The following four elements are involved n exhaust from vehicles on nearby roads Four elements— in the development of indoor air quality or in parking lots, or garages sources, the HVAC n loading docks problems: system, pollutant n odors from dumpsters Source: there is a source of contamination pathways, and or discomfort indoors, outdoors, or within n re-entrained (drawn back into the occupants—are the mechanical systems of the building. building) exhaust from the building itself or from neighboring buildings involved in the HVAC: the HVAC system is not able to n unsanitary debris near the outdoor air development of IAQ control existing air contaminants and ensure intake thermal comfort (temperature and humidity problems. conditions that are comfortable for most Soil gas occupants). n radon n leakage from underground fuel tanks Pathways: one or more pollutant pathways n contaminants from previous uses of the connect the pollutant source to the occu- site (e.g., landfills) pants and a driving force exists to move n pesticides pollutants along the pathway(s).
    [Show full text]
  • Thermodynamic Analysis of Human Heat and Mass Transfer and Their Impact on Thermal Comfort
    International Journal of Heat and Mass Transfer 48 (2005) 731–739 www.elsevier.com/locate/ijhmt Thermodynamic analysis of human heat and mass transfer and their impact on thermal comfort Matjaz Prek * Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, SI-1000 Ljubljana, Slovenia Received 26 April 2004 Available online 6 November 2004 Abstract In this paper a thermodynamic analysis of human heat and mass transfer based on the 2nd law of thermodynamics in presented. For modelling purposes the two-node human thermal model was used. This model was improved in order to establish the exergy consumption within the human body as a consequence of heat and mass transfer and/or conver- sion. It is shown that the human bodyÕs exergy consumption in relation to selected human parameters exhibit a minimal value at certain combinations of environmental parameters. The expected thermal sensation, determined by the PMV* value, shows that there is a correlation between exergy consumption and thermal sensation. Thus, our analysis repre- sents an improvement in human thermal modelling and gives even more information about the environmental impact on expected human thermal sensation. Ó 2004 Elsevier Ltd. All rights reserved. Keywords: Exergy; Human body; Heat transfer; Mass transfer; Thermal comfort 1. Introduction more than 30 years. These models range from simple one-dimensional, steady-state simulations to complex, Human body acts as a heat engine and thermody- transient finite element models [1–5]. The main similarity namically could be considered as an open system. The of most models is the application of energy balance to a energy and mass for the human bodyÕs vital processes simulated human body (based on the 1st law of thermo- are taken from external sources (food, liquids) and then dynamics) and the use of energy exchange mechanisms.
    [Show full text]
  • Solar Thermal Collector Component for High-Resolution Stochastic Bottom-Up Domestic Energy Demand Models
    322: Solar Thermal Collector Component for High-resolution Stochastic Bottom-up Domestic Energy Demand Models Paul H ENSHALL , Eoghan M CKENNA , Murray THOMSON , Philip E AMES Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, LE11 3TU, UK. [email protected] High-resolution stochastic ‘bottom-up’ domestic energy demand models can be used to assess the impact of low- carbon technologies, and can underpin energy analyses of aggregations of dwellings. The domestic electricity demand model developed by Loughborough University has these features and accounts for lighting, appliance usage, and photovoltaic micro-generation. Work is underway at Loughborough to extend the existing model into an integrated thermal-electrical domestic demand model that can provide a suitable basis for modelling the impact of low-carbon heating technologies. This paper describes the development of one of the new components of the integrated model: a solar thermal collector model that provides domestic hot water to the dwelling. The paper describes the overall architecture of the solar thermal model and how it integrates with the broader thermal model, and includes a description of the control logic and thermal-electrical equivalent network used to model the solar collector heat output. Keywords: Solar thermal collector, domestic, energy demand, dynamic. 14 th International Conference on Sustainable Energy Technologies – SET 2015 25 th - 27 th of August 2015, Nottingham, UK 1. INTRODUCTION Urban areas currently use over two-thirds of the world’s energy and account for over 70% of global greenhouse gas emissions (International Energy Agency 2008). Furthermore, increasing urbanisation means that the proportion of the population living in urban areas is expected to rise from around 50% today to more than 60% in 2030, with urban energy use and emissions expected to rise as a consequence.
    [Show full text]
  • Fabrication of Solar Energy for Air Conditioning System
    Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396 FABRICATION OF SOLAR ENERGY FOR AIR CONDITIONING SYSTEM Mohankumar.G 1, Vijay.A2, Sasikumar R3, Kanagaraj.M4 1,2,3,4 PG Scholars, Department of Mechanical Engineering, Gnanamani College of Technology, Namakkal, Tamilnadu, India. ABSTRACT Air-conditioning is one of the major consumers of electrical energy in many parts of the world today and already today air- conditioning causes energy shortage in for example China. The demand can be expected to increase because of changing working times, increased comfort expectations and global warming. Air-conditioning systems in use are most often built around a vapor compression systems driven by grid-electricity. However, most ways of generating the electricity today, as well as the refrigerants being used in traditional vapor compression systems, have negative impact on the environment.Solar air-conditioning might be a way to reduce the demand for electricity. In addition many solar air-conditioning systems are constructed in ways that eliminate the need for CFC, HCFC or HFC refrigerants. An aim of the report is to describe and explain the working principles of the components and subsystem in such general terms that the report is usable not only to those specifically interested in solar air conditioning, but to anyone interested in air conditioning, heat driven air-conditioning and solar energy. The last section of the report briefly deals with how the components can be combined to form a complete solar air-conditioning system. Keyword: Air conditioning, Renewable energy, solar energy. 1.INTRODUCTION: Energy is the primary and most universal measure of all kinds of work by human beings and nature.
    [Show full text]