Triangulated Categories, T
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Mathematical Genealogy of the Wellesley College Department Of
Nilos Kabasilas Mathematical Genealogy of the Wellesley College Department of Mathematics Elissaeus Judaeus Demetrios Kydones The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society. http://www.genealogy.math.ndsu.nodak.edu/ Georgios Plethon Gemistos Manuel Chrysoloras 1380, 1393 Basilios Bessarion 1436 Mystras Johannes Argyropoulos Guarino da Verona 1444 Università di Padova 1408 Cristoforo Landino Marsilio Ficino Vittorino da Feltre 1462 Università di Firenze 1416 Università di Padova Angelo Poliziano Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo 1477 Università di Firenze 1433 Constantinople / Università di Mantova Università di Mantova Leo Outers Moses Perez Scipione Fortiguerra Demetrios Chalcocondyles Jacob ben Jehiel Loans Thomas à Kempis Rudolf Agricola Alessandro Sermoneta Gaetano da Thiene Heinrich von Langenstein 1485 Université Catholique de Louvain 1493 Università di Firenze 1452 Mystras / Accademia Romana 1478 Università degli Studi di Ferrara 1363, 1375 Université de Paris Maarten (Martinus Dorpius) van Dorp Girolamo (Hieronymus Aleander) Aleandro François Dubois Jean Tagault Janus Lascaris Matthaeus Adrianus Pelope Johann (Johannes Kapnion) Reuchlin Jan Standonck Alexander Hegius Pietro Roccabonella Nicoletto Vernia Johannes von Gmunden 1504, 1515 Université Catholique de Louvain 1499, 1508 Università di Padova 1516 Université de Paris 1472 Università di Padova 1477, 1481 Universität Basel / Université de Poitiers 1474, 1490 Collège Sainte-Barbe -
Odd Primary Exponents of Moore Spaces
Contemporary Mathematics Odd primary exponents of Moore spaces Joseph Neisendorfer Dedicated to the memory of John Coleman Moore Contents 1. Introduction 1 2. Tools for odd primary exponent theory 5 3. Decompositions of suspensions into bouquets 7 4. Splittings which lead to exponents for odd primary Moore spaces 9 5. Proof of the geometric exponent theorems for odd primary Moore spaces 12 6. An exponent for the odd primary Moore spaces which works for all odd primes 14 7. The adjoint form of the semi-splitting 15 8. A cofibration sequence 16 9. Acyclic envelopes 17 10. Geometric acyclic envelopes 18 11. Proof of the semi-splitting 20 References 22 1. Introduction If p is a prime and A is an abelian group, then A is said to have exponent pn at the prime p if pn annihilates the p torsion of A and it is the least such power. A topological space X has exponent pn if if this is the least power which annihilates the p torsion in all the homotopy groups of X. The proof of the exact result for the homotopy exponent of an odd primary Moore space is one which always made me feel uneasy. You know you are on dangerous ground when you have trouble recalling why some of things you have written are true. It was with some trepidation that I dealt with Brayton Gray's questions about this work. Some serious mistakes were found. But they were not fatal, except for the 3-primary case. Modulo the 3-primary case, the proof has survived this test and it has even improved under Brayton's insightful questioning. -
Mathematical Genealogy of the Wellesley College Department of Mathematics in Mathematics Frederic W
Georgios Gemistos Plethon Constantinople / Edirne / Bursa 1380, 1393 Basilios Bessarion Mystras 1436 Johannes Argyropoulos Università di Padova 1444 Cristoforo Landino Marsilio Ficino Università di Firenze 1462 Heinrich von Langenstein Angelo Poliziano Université de Paris 1363, 1375 Università di Firenze 1477 Johannes von Gmunden Leo Outers Theodoros Gazes Moses Perez Scipione Fortiguerra Universität Wien 1406 Université Catholique de Louvain 1485 Constantinople / Università di Mantova 1433 Università di Firenze 1493 Georg von Peuerbach Rudolf Agricola Jacob ben Jehiel Loans Maarten (Martinus Dorpius) van Dorp Girolamo (Hieronymus Aleander) Aleandro Jean Tagault François Dubois Demetrios Chalcocondyles Universität Wien 1440 Università degli Studi di Ferrara 1478 Université Catholique de Louvain 1504, 1515 Università di Padova 1499, 1508 Université de Paris 1516 Mystras / Accademia Romana 1452 Luca Pacioli Johannes (Johann Müller) Regiomontanus Alexander Hegius Jan Standonck Johann (Johannes Kapnion) Reuchlin Matthaeus Adrianus Petrus (Pieter de Corte) Curtius Rutger Rescius Jacobus (Jacques Dubois) Sylvius Janus Lascaris Georgius Hermonymus Universität Leipzig / Universität Wien 1457 1474 Collège Sainte-Barbe / Collège de Montaigu 1474, 1490 Universität Basel / Université de Poitiers 1477, 1481 Université Catholique de Louvain 1513, 1530 Université de Paris 1513 Université de Paris / Université de Montpellier 1530 Università di Padova 1472 Bonifazius Erasmi Domenico Maria Novara da Ferrara Leonhard (Leonard Vitreatoris z Dobczyc) von -
BIBLIOGRAPHY References
BIBLIOGRAPHY References [AB57] Maurice Auslander and David A. Buchsbaum, Homological dimension in local rings, Trans. Amer. Math. Soc. 85 (1957), 390–405. [Abb00] Ahmed Abbes, Réduction semi-stable des courbes d’après Artin, Deligne, Grothendieck, Mumford, Saito, Winters, ..., Courbes semi-stables et groupe fonda- mental en géométrie algébrique (Luminy, 1998), Progr. Math., vol. 187, Birkhäuser, Basel, 2000, pp. 59–110. [Abb10] , Éléments de géométrie rigide. Volume I, Progress in Mathematics, vol. 286, Birkhäuser/Springer Basel AG, Basel, 2010. [ABD+66] Michael Artin, Jean-Etienne Bertin, Michel Demazure, Alexander Grothendieck, Pierre Gabriel, Michel Raynaud, and Jean-Pierre Serre, Schémas en groupes, Sémi- naire de Géométrie Algébrique de l’Institut des Hautes Études Scientifiques, Institut des Hautes Études Scientifiques, Paris, 1963/1966. [ACGH85] Enrico Arbarello, Maurizio Cornalba, Philip Augustus Griffiths, and Joseph Daniel Harris, Geometry of algebraic curves: Volume I, Grundlehren der mathematischen Wissenschaften, no. 267, Springer-Verlag, 1985. [Ach17] Piotr Achinger, Wild ramification and K(π, 1) spaces, Invent. Math. 210 (2017), no. 2, 453–499. [ACV03] Dan Abramovich, Alessio Corti, and Angelo Vistoli, Twisted bundles and admissible covers, Communications in Algebra 31 (2003), no. 8, 3547–3618, Special issue in honor of Steven L. Kleiman. [AD83] Michael Artin and Jan Denef, Smoothing of a ring homomorphism along a section, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Mass., 1983, pp. 5–31. [AGV71] Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier, Theorie de topos et cohomologie etale des schemas I, II, III, Lecture Notes in Mathematics, vol. 269, 270, 305, Springer, 1971. [AGV08] Dan Abramovich, Tom Graber, and Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, American Journal of Mathematics 130 (2008), no.