Runtime Checking C Programs
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
A Status Update of BEAMJIT, the Just-In-Time Compiling Abstract Machine
A Status Update of BEAMJIT, the Just-in-Time Compiling Abstract Machine Frej Drejhammar and Lars Rasmusson <ffrej,[email protected]> 140609 Who am I? Senior researcher at the Swedish Institute of Computer Science (SICS) working on programming tools and distributed systems. Acknowledgments Project funded by Ericsson AB. Joint work with Lars Rasmusson <[email protected]>. What this talk is About An introduction to how BEAMJIT works and a detailed look at some subtle details of its implementation. Outline Background BEAMJIT from 10000m BEAMJIT-aware Optimization Compiler-supported Profiling Future Work Questions Just-In-Time (JIT) Compilation Decide at runtime to compile \hot" parts to native code. Fairly common implementation technique. McCarthy's Lisp (1969) Python (Psyco, PyPy) Smalltalk (Cog) Java (HotSpot) JavaScript (SquirrelFish Extreme, SpiderMonkey, J¨agerMonkey, IonMonkey, V8) Motivation A JIT compiler increases flexibility. Tracing does not require switching to full emulation. Cross-module optimization. Compiled BEAM modules are platform independent: No need for cross compilation. Binaries not strongly coupled to a particular build of the emulator. Integrates naturally with code upgrade. Project Goals Do as little manual work as possible. Preserve the semantics of plain BEAM. Automatically stay in sync with the plain BEAM, i.e. if bugs are fixed in the interpreter the JIT should not have to be modified manually. Have a native code generator which is state-of-the-art. Eventually be better than HiPE (steady-state). Plan Use automated tools to transform and extend the BEAM. Use an off-the-shelf optimizer and code generator. Implement a tracing JIT compiler. BEAM: Specification & Implementation BEAM is the name of the Erlang VM. -
HALO: Post-Link Heap-Layout Optimisation
HALO: Post-Link Heap-Layout Optimisation Joe Savage Timothy M. Jones University of Cambridge, UK University of Cambridge, UK [email protected] [email protected] Abstract 1 Introduction Today, general-purpose memory allocators dominate the As the gap between memory and processor speeds continues landscape of dynamic memory management. While these so- to widen, efficient cache utilisation is more important than lutions can provide reasonably good behaviour across a wide ever. While compilers have long employed techniques like range of workloads, it is an unfortunate reality that their basic-block reordering, loop fission and tiling, and intelligent behaviour for any particular workload can be highly subop- register allocation to improve the cache behaviour of pro- timal. By catering primarily to average and worst-case usage grams, the layout of dynamically allocated memory remains patterns, these allocators deny programs the advantages of largely beyond the reach of static tools. domain-specific optimisations, and thus may inadvertently Today, when a C++ program calls new, or a C program place data in a manner that hinders performance, generating malloc, its request is satisfied by a general-purpose allocator unnecessary cache misses and load stalls. with no intimate knowledge of what the program does or To help alleviate these issues, we propose HALO: a post- how its data objects are used. Allocations are made through link profile-guided optimisation tool that can improve the fixed, lifeless interfaces, and fulfilled by -
Architectural Support for Scripting Languages
Architectural Support for Scripting Languages By Dibakar Gope A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical and Computer Engineering) at the UNIVERSITY OF WISCONSIN–MADISON 2017 Date of final oral examination: 6/7/2017 The dissertation is approved by the following members of the Final Oral Committee: Mikko H. Lipasti, Professor, Electrical and Computer Engineering Gurindar S. Sohi, Professor, Computer Sciences Parameswaran Ramanathan, Professor, Electrical and Computer Engineering Jing Li, Assistant Professor, Electrical and Computer Engineering Aws Albarghouthi, Assistant Professor, Computer Sciences © Copyright by Dibakar Gope 2017 All Rights Reserved i This thesis is dedicated to my parents, Monoranjan Gope and Sati Gope. ii acknowledgments First and foremost, I would like to thank my parents, Sri Monoranjan Gope, and Smt. Sati Gope for their unwavering support and encouragement throughout my doctoral studies which I believe to be the single most important contribution towards achieving my goal of receiving a Ph.D. Second, I would like to express my deepest gratitude to my advisor Prof. Mikko Lipasti for his mentorship and continuous support throughout the course of my graduate studies. I am extremely grateful to him for guiding me with such dedication and consideration and never failing to pay attention to any details of my work. His insights, encouragement, and overall optimism have been instrumental in organizing my otherwise vague ideas into some meaningful contributions in this thesis. This thesis would never have been accomplished without his technical and editorial advice. I find myself fortunate to have met and had the opportunity to work with such an all-around nice person in addition to being a great professor. -
Using JIT Compilation and Configurable Runtime Systems for Efficient Deployment of Java Programs on Ubiquitous Devices
Using JIT Compilation and Configurable Runtime Systems for Efficient Deployment of Java Programs on Ubiquitous Devices Radu Teodorescu and Raju Pandey Parallel and Distributed Computing Laboratory Computer Science Department University of California, Davis {teodores,pandey}@cs.ucdavis.edu Abstract. As the proliferation of ubiquitous devices moves computation away from the conventional desktop computer boundaries, distributed systems design is being exposed to new challenges. A distributed system supporting a ubiquitous computing application must deal with a wider spectrum of hardware architectures featuring structural and functional differences, and resources limitations. Due to its architecture independent infrastructure and object-oriented programming model, the Java programming environment can support flexible solutions for addressing the diversity among these devices. Unfortunately, Java solutions are often associated with high costs in terms of resource consumption, which limits the range of devices that can benefit from this approach. In this paper, we present an architecture that deals with the cost and complexity of running Java programs by partitioning the process of Java program execution between system nodes and remote devices. The system nodes prepare a Java application for execution on a remote device by generating device-specific native code and application-specific runtime system on the fly. The resulting infrastructure provides the flexibility of a high-level programming model and the architecture independence specific to Java. At the same time the amount of resources consumed by an application on the targeted device are comparable to that of a native implementation. 1 Introduction As a result of the proliferation of computation into the physical world, ubiquitous computing [1] has become an important research topic. -
CDC Build System Guide
CDC Build System Guide Java™ Platform, Micro Edition Connected Device Configuration, Version 1.1.2 Foundation Profile, Version 1.1.2 Optimized Implementation Sun Microsystems, Inc. www.sun.com December 2008 Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries. U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. This distribution may include materials developed by third parties. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, Java, Solaris and HotSpot are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the United States and other countries. The Adobe logo is a registered trademark of Adobe Systems, Incorporated. Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. -
Runtime Detection of C-Style Errors in UPC Code
Runtime Detection of C-Style Errors in UPC Code Peter Pirkelbauer Chunhua Liao Thomas Panas Lawrence Livermore National Lawrence Livermore National Microsoft Laboratory Laboratory Parallel Data Warehousing [email protected] [email protected] [email protected] Dan Quinlan Lawrence Livermore National Laboratory [email protected] Abstract Software frequently contains flaws, and the size and complexity Unified Parallel C (UPC) extends the C programming language of modern software makes the detection of such flaws difficult. Re- (ISO C 99) with explicit parallel programming support for the parti- ducing the number of software flaws is an effort that permeates tioned global address space (PGAS), which provides a global mem- all stages in software development. For example, adopting rigid ory space with localized partitions to each thread. Like its ancestor coding standards and restricting programming languages to a safe C, UPC is a low-level language that emphasizes code efficiency. subset can eliminate error-prone coding techniques. Static and dy- The absence of dynamic (and static) safety checks allows program- namic code analysis tools that operate on source or binary code mer oversights and software flaws that can be hard to spot. are also used to reduce software flaws. Static analysis tools uti- In this paper, we present an extension of a dynamic analysis lize source code (style) analysis or formal analysis techniques such tool, ROSE-Code Instrumentation and Runtime Monitor (ROSE- as dataflow analysis, abstract interpretation, and model checking. CIRM), for UPC to help programmers find C-style errors involving Static analysis tools do not influence the running programs but of- the global address space. -
EXE: Automatically Generating Inputs of Death
EXE: Automatically Generating Inputs of Death Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, Dawson R. Engler Computer Systems Laboratory Stanford University Stanford, CA 94305, U.S.A {cristic, vganesh, piotrek, dill, engler} @cs.stanford.edu ABSTRACT 1. INTRODUCTION This paper presents EXE, an effective bug-finding tool that Attacker-exposed code is often a tangled mess of deeply- automatically generates inputs that crash real code. Instead nested conditionals, labyrinthine call chains, huge amounts of running code on manually or randomly constructed input, of code, and frequent, abusive use of casting and pointer EXE runs it on symbolic input initially allowed to be “any- operations. For safety, this code must exhaustively vet in- thing.” As checked code runs, EXE tracks the constraints put received directly from potential attackers (such as sys- on each symbolic (i.e., input-derived) memory location. If a tem call parameters, network packets, even data from USB statement uses a symbolic value, EXE does not run it, but sticks). However, attempting to guard against all possible instead adds it as an input-constraint; all other statements attacks adds significant code complexity and requires aware- run as usual. If code conditionally checks a symbolic ex- ness of subtle issues such as arithmetic and buffer overflow pression, EXE forks execution, constraining the expression conditions, which the historical record unequivocally shows to be true on the true branch and false on the other. Be- programmers reason about poorly. cause EXE reasons about all possible values on a path, it Currently, programmers check for such errors using a com- has much more power than a traditional runtime tool: (1) bination of code review, manual and random testing, dy- it can force execution down any feasible program path and namic tools, and static analysis. -
Wind River® Vxworks® 7 Third Party License Notices
Wind River® VxWorks® 7 Third Party License Notices This document contains third party intellectual property (IP) notices for the BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY Wind River® VxWorks® 7 distribution. Certain licenses and license notices THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, may appear in other parts of the product distribution in accordance with the OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN license requirements. ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Trademarks All company, product and service names used in this software are for ACPICA identification purposes only. Version: 20170303 Component(s): Runtime Wind River and VxWorks are registered trademarks of Wind River Systems. Description: Provides code to implement ACPI specification in VxWorks. UNIX is a registered trademark of The Open Group. IBM and Bluemix are registered trademarks of the IBM Corporation. NOTICES: All other third-party trademarks are the property of their respective owners. 1. Copyright Notice Some or all of this work - Copyright (c) 1999 - 2016, Intel Corp. All rights reserved. Third Party Notices 2. License 2.1. This is your license from Intel Corp. under its intellectual property rights. You may have additional license terms from the party that provided you this software, covering your right to use that party's intellectual property rights. 64-Bit Dynamic Linker Version: 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a copy Component(s): Runtime of the source code appearing in this file ("Covered Code") an irrevocable, Description: The dynamic linker is used to load shared libraries. -
An Opencl Runtime System for a Heterogeneous Many-Core Virtual Platform Kuan-Chung Chen and Chung-Ho Chen Inst
An OpenCL Runtime System for a Heterogeneous Many-Core Virtual Platform Kuan-Chung Chen and Chung-Ho Chen Inst. of Computer & Communication Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C. [email protected], [email protected] Abstract—We present a many-core full system is executed on a Linux PC while the kernel code execution is simulation platform and its OpenCL runtime system. The simulated on an ESL many-core system. OpenCL runtime system includes an on-the-fly compiler and resource manager for the ARM-based many-core The rest of this paper consists of the following sections. In platform. Using this platform, we evaluate approaches of Section 2, we briefly introduce the OpenCL execution model work-item scheduling and memory management in and our heterogeneous full system simulation platform. Section OpenCL memory hierarchy. Our experimental results 3 discusses the OpenCL runtime implementation in detail and show that scheduling work-items on a many-core system its enhancements. Section 4 presents the evaluation system and using general purpose RISC CPU should avoid per work- results. We conclude this paper in Section 5. item context switching. Data deployment and work-item coalescing are the two keys for significant speedup. II. OPENCL MODEL AND VIRTUAL PLATFORM Keywords—OpenCL; runtime system; work-item coalescing; In this section, we first introduce the OpenCL programming full system simulation; heterogeneous integration; model and followed by our SystemC-based virtual platform architecture. I. INTRODUCTION A. OpenCL Platform Overview OpenCL is a data parallel programming model introduced Fig. 1 shows a conceptual OpenCL platform which has two for heterogeneous system architecture [1] which may include execution components: a host processor and the compute CPUs, GPUs, or other accelerator devices. -
Matrox Imaging Library (MIL) 10.0 MIL 10 Processing Pack 3 Release Notes (C) Copyright Matrox Electronic Systems Ltd., 1992-2018
------------------------------------------------------------------------------- Matrox Imaging Library (MIL) 10.0 MIL 10 Processing Pack 3 Release Notes (c) Copyright Matrox Electronic Systems Ltd., 1992-2018. ------------------------------------------------------------------------------- Main table of contents Section 1 : Differences between MIL 10 Processing Pack 3 and MIL 10 Processing Pack 2 with Update 63 Section 2 : Differences between MIL 10 Processing Pack 2 with Update 63 and MIL 10 Processing Pack 2 Section 3 : Differences between MIL 10 Processing Pack 2 and MIL 10 Processing Pack 1 Section 4 : Differences between MIL 10 Processing Pack 1 and MIL 10 Section 5 : Differences between MIL 10 and MIL 9 Processing Pack 2 with Update 56 Section 6 : Differences between MIL 9 Processing Pack 2 with Update 56 and MIL 9 Processing Pack 2 Section 7 : Differences between MIL 9 Processing Pack 2 with Update 45 and MIL 9 Processing Pack 2 Section 8 : Differences between MIL 9 Processing Pack 2 and MIL 9 Processing Pack 1 Section 9 : Differences between MIL 9 Processing Pack 1 and MIL 9 Section 10 : Differences between MIL 9 and MIL 8 Processing Pack 4 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- Section 1: Differences between MIL 10 Processing Pack 3 and MIL 10 Processing Pack 2 with with Update 63 Table of Contents for Section 1 1. Overview 2. New functionalities and improvements 2.01 MIL processing specific examples 2.02 Classification module 2.03 Blob module 2.04 Calibration module 2.05 SureDotOCR® module 2.06 Registration module 2.07 Pattern Matching module 2.08 Model Finder module 2.09 Metrology module 2.10 3dMap module 2.11 Code Reader module 2.12 Measurement module 2.13 String Reader module 2.14 Color module 2.15 Primitives 2.16 Graphics 2.17 General 3. -
DETECTING BUFFER OVERFLOWS USING TESTCASE SYNTHESIS and CODE INSTRUMENTATION by MICHAEL A
DETECTING BUFFER OVERFLOWS USING TESTCASE SYNTHESIS AND CODE INSTRUMENTATION by MICHAEL A. ZHIVICH S.B., Electrical Engineering and Computer Science (2004) Massachusetts Institute of Technology SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2005 c Massachusetts Institute of Technology 2005. All rights reserved. Author............................................................................ Department of Electrical Engineering and Computer Science May 19, 2005 Certified by........................................................................ Richard Lippmann Senior Scientist, MIT Lincoln Laboratory Thesis Supervisor Accepted by....................................................................... Arthur C. Smith Chairman, Department Committee on Graduate Students 2 Detecting Buffer Overflows Using Testcase Synthesis and Code Instrumentation by Michael A. Zhivich Submitted to the Department of Electrical Engineering and Computer Science on May 19, 2005, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science Abstract The research presented in this thesis aims to improve existing approaches to dynamic buffer overflow detection by developing a system that utilizes code instrumentation and adap- tive test case synthesis to find buffer overflows and corresponding failure-inducing -
C/C++ Runtime Error Detection Using Source Code Instrumentation
FRIEDRICH-ALEXANDER-UNIVERSITAT¨ ERLANGEN-NURNBERG¨ INSTITUT FUR¨ INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl f¨urInformatik 10 (Systemsimulation) C/C++ Runtime Error Detection Using Source Code Instrumentation Martin Bauer Bachelor Thesis C/C++ Runtime Error Detection Using Source Code Instrumentation Martin Bauer Bachelor Thesis Aufgabensteller: Prof. Dr. U. R¨ude Betreuer: M.Sc. K. Iglberger Dr. T. Panas Bearbeitungszeitraum: 01.10.2009 - 19.3.2010 Erkl¨arung: Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ¨ahnlicher Form noch keiner anderen Prufungsbeh¨ ¨orde vorgelegen hat und von dieser als Teil einer Prufungs-¨ leistung angenommen wurde. Alle Ausfuhrungen,¨ die w¨ortlich oder sinngem¨aß ubernommen¨ wurden, sind als solche gekennzeichnet. Erlangen, den 19. M¨arz 2010 . Abstract The detection and removal of software errors is an expensive component of the total software development cost. Especially hard to remove errors are those which occur during the execution of a program, so called runtime errors. Therefore tools are needed to detect these errors reliably and give the programmer a good hint how to fix the problem. In the first part of the thesis different types of runtime errors, which can occur in C/C++ are explored, and methods are shown how to detect them. The goal of this thesis is to present an implementation of a system which detects runtime errors using source code instrumentation. and to compare it to common binary instrumentation tools. First the ROSE source-to-source compiler is introduced which is used to do the instrumentation.