ACR–AIUM–SIR–SRU Practice Parameter for the Performance Of

Total Page:16

File Type:pdf, Size:1020Kb

ACR–AIUM–SIR–SRU Practice Parameter for the Performance Of The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields. The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized. Revised 2017 (Resolution 17)* ACR–AIUM–SIR–SRU PRACTICE PARAMETER FOR THE PERFORMANCE OF PHYSIOLOGIC EVALUATION OF EXTREMITY ARTERIES PREAMBLE This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care1 For these reasons and those set forth below, the American College of Radiology and our collaborating medical specialty societies caution against the use of these documents in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the practitioner in light of all the circumstances presented. Thus, an approach that differs from the guidance in this document, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in this document when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of this document. However, a practitioner who employs an approach substantially different from the guidance in this document is advised to document in the patient record information sufficient to explain the approach taken. The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to the guidance in this document will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of this document is to assist practitioners in achieving this objective. 1Iowa Medical Society and Iowa Society of Anesthesiologists v. Iowa Board of Nursing, 831 N.W.2d 826 (Iowa 2013) Iowa Supreme Court refuses to find that the ACR Technical Standard for Management of the Use of Radiation in Fluoroscopic Procedures (Revised 2008) sets a national standard for who may perform fluoroscopic procedures in light of the standard’s stated purpose that ACR standards are educational tools and not intended to establish a legal standard of care. See also, Stanley v. McCarver, 63 P.3d 1076 (Ariz. App. 2003) where in a concurring opinion the Court stated that “published standards or guidelines of specialty medical organizations are useful in determining the duty owed or the standard of care applicable in a given situation” even though ACR standards themselves do not establish the standard of care. PRACTICE PARAMETER 1 Physiologic Evaluation of Extremity Arteries I. INTRODUCTION The clinical aspects contained in specific sections of this practice parameter (Introduction, Indications, Specifications of the Examination, and Equipment Specifications) were developed collaboratively by the American College of Radiology (ACR), the American Institute of Ultrasound in Medicine (AIUM), the Society of Interventional Radiology (SIR), and the Society of Radiologists in Ultrasound (SRU). Recommendations for physician requirements, written request for the examination, procedure documentation, and quality control vary among the organizations and may be addressed by each separately. This practice parameter has been revised to assist physicians and allied health care professionals performing a nonimaging physiologic examination of the extremity arteries. Although it is not possible to detect every abnormality with physiologic testing, following this practice parameter will maximize the detection of abnormalities of arterial blood supply to the extremities. II. INDICATIONS/CONTRAINDICATIONS Indications for the examination include, but are not limited to: 1. Evaluation of exercise-induced limb pain (claudication) [1] 2. Assessment of digital or extremity ulceration, gangrene, and/or pain at rest [1,2] 3. Follow-up of surgical and endovascular procedures [3] 4. Evaluation of wound healing potential [1] 5. Preprocedure assessment of patients with chronic kidney disease requiring dialysis [4,5] 6. Evaluation of cold sensitivity or discoloration of extremities or digits [6] 7. Evaluation of suspected thoracic outlet syndrome [6] 8. Evaluation of suspected steal distal to an arteriovenous fistula or graft [7,8] 9. Preoperative assessment for arterial harvesting [9,10] 10. Assessment for the presence of peripheral vascular disease as part of an assessment of overall atherosclerosis burden [2,11,12] 11. Preoperative assessment for renal transplantation There are no absolute contraindications for this examination. III. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL Core Privileging: This procedure is considered part of or amendable to image-guided core privileging. Each organization will address this section in its document. ACR language is as follows: See the ACR–SPR–SRU Practice Parameter for Performing and Interpreting Diagnostic Ultrasound Examinations [13]. IV. WRITTEN REQUEST FOR THE EXAMINATION Each organization will address this section in its document. ACR language is as follows: The written or electronic request for a physiologic evaluation of extremity arteries should provide sufficient information to demonstrate the medical necessity of the procedure and allow for its proper performance and interpretation. Documentation that satisfies medical necessity includes 1) signs and symptoms, 2) relevant history (including known diagnoses), and/or 3) prior imaging. Additional information regarding the specific reason for the procedure or a provisional diagnosis would be helpful and may at times be needed to allow for the proper performance and interpretation of the procedure. PRACTICE PARAMETER 2 Physiologic Evaluation of Extremity Arteries The request for the procedure must be originated by a physician or other appropriately licensed health care provider. The accompanying clinical information should be provided by a physician or other appropriately licensed health care provider familiar with the patient’s clinical problem or question and consistent with the state scope of practice requirements. (ACR Resolution 35, adopted in 2006) V. SPECIFICATIONS OF THE EXAMINATION Physiologic tests are indirect tests. Results are used to infer the presence or absence of disease and its severity. Specific locations in the arterial tree are less directly assessed with physiologic techniques as compared with duplex ultrasound. See the ACR–AIUM–SRU Practice Parameter for the Performance of Peripheral Arterial Ultrasound Using Color and Spectral Doppler [14] for duplex evaluation of the arteries. Duplex Doppler ultrasound permits direct assessment of the arterial segments that may be involved with disease. The physiologic examination may be done at 1 level only (eg, the ankles) or at multiple levels of the extremity. Whether done at 1 level or at multiple levels, the examination should be bilateral when possible so that flow in the 2 limbs can be compared. Physiologic testing of the extremities should include pulse volume recordings (PVRs) or continuous wave (CW) Doppler waveforms at the ankle or wrist to allow the accuracy of the ankle-brachial index (ABI) at the ankle to be internally validated. This is particularly helpful in cases of non-compressible calcified arteries. The examination is best performed in a warm room so that the effects of peripheral vasoconstriction
Recommended publications
  • CMS Limitations Guide - Radiology Services
    CMS Limitations Guide - Radiology Services Starting October 1, 2015, CMS will update their It is the responsibility of the provider to code to the existing medical necessity limitations on tests and highest level specified in the ICD-10-CM. The correct procedures to correspond to ICD-10 codes. This use of an ICD-10-CM code listed below does not limitations guide provides you with the latest assure coverage of a service. The service must be changes. reasonable and necessary in the specific case and must meet the criteria specified in this This guide is not an all-inclusive list of National determination. Coverage Documents (NCD) and Local Coverage Documents (LCD). You can search by LCD or NCD or We will continue to update this list as new CMS keyword and region on the CMS website at: limitations are announced. You can always find the https://www.cms.gov/medicare-coverage- most current list at: database/overview-and-quick- www.munsonhealthcare.org/medicalnecessity. search.aspx?clickon=search. If you have any questions, please contact Kari Smith, CMS will deny payment if the correct diagnosis Office Coordinator, at (231) 935-2296, or Karen codes are not entered on the order form, and your Popa, Director, Patient Access Services, at (231) 935- 7493. patient’s test or procedure will not be covered. We compiled this information in one location to make it easier for you to find the proper codes for medically necessary diagnoses. CMS Limitations Guide – Radiology Services (L35761) Non-Invasive Peripheral Arterial Vascular Studies USV Lower Arterial ABI Only (93922) USV Lower Arterial W/ABI Non (93925) USV Upper Arterial W/ABI Non (93923) CPT Code Description 93922 Limited bilateral noninvasive physiologic studies of upper or lower extremity arteries, (e.g.
    [Show full text]
  • Assessment of Lower Extremity Perfusion: What Do the Test Results Mean?
    ASSESSMENT OF LOWER EXTREMITY PERFUSION: WHAT DO THE TEST RESULTS MEAN? William P. Robinson, III MD Associate Professor of Surgery Program Director, Vascular Surgery Fellowship Division of Vascular and Endovascular Surgery University of Virginia School of Medicine Charlottesville, VA Objectives •What are the non-invasive tests for lower extremity PAD and how should we interpret them? • What do the results mean for the patient and how should we use them to treat the patient? Purpose of Noninvasive Arterial Testing • Objectively confirm presence of PAD/ arterial ischemia • Provide quantitative and reproducible physiological data concerning its severity • Document location and hemodynamic significance of individual arterial lesions • Monitor the progression of disease and impact of revascularization • Monitor for restenosis after revascularization • Comprehensive evaluation of PAD requires integration of Clinical (history and physical exam), Physiologic, and Anatomic (Imaging) information Noninvasive Arterial Testing • Direct • Duplex scanning of arteries (patency and flow in individual vessels) • Indirect • Provide crucial physiologic information about the perfusion of the whole limb • Use inference from accessible vessels to estimate degree of stenosis and disease • Analysis of velocity waveforms, pressure measurements, plethysmography Non-Invasive Physiologic Vascular Testing • “Pencil” Doppler • Ankle-brachial indices • Segmental pressures • Toe-brachial indices • Pulse volume recordings • Exercise Stress Testing • Duplex Imaging • Transcutaneous Oxygen Tension • Other Doppler Ultrasound • Detect blood flow velocity • Hand-held continuous wave doppler detect frequency shifts, amplify it, and send it speakers • Velocity of blood flow is proportional to frequency shifts and is heard a change in pitch of the audio signal Doppler Analysis • Aural Qualitative Interpretation (Bedside) • Absence of flow •Triphasic: normal artery • ↑pitch= ↑ velocity= luminal narrowing • normal triphasic signal vs.
    [Show full text]
  • Practical Arterial Evaluation of the Lower Extremity
    Practical Arterial Evaluation of the Lower Extremity Practical Arterial Evaluation of the Lower Extremity Abstract Sonographic examination of the lower extremity arterial system can be time- consuming and arduous if performed in its entirety on every patient that is referred to the Vascular Ultrasound Laboratory. In fact, most patients can benefit from a tailored non-invasive arterial examination that integrates clinical, physiological and imaging/Doppler modalities in answering the referring physician’s questions. This paper provides an algorithm for assessing the type and level of information needed for most patients arriving in the ultrasound suite with known or suspected peripheral arterial disease. Abbreviations used in this text AK Above the knee ABI Ankle brachial index BK Below the knee CDI Color Doppler imaging CFA Common femoral artery DP Dorsalis pedis artery LM Lateral malleolar artery PAD Peripheral arterial disease prn As needed, as required PSV Peak systolic Doppler velocity PT Posterior tibial artery q Every (ex q3mon –every three months SBP Segmental blood pressures SFA Superficial femoral artery Journal of Diagnostic Medical Sonography 20:5-13, Jan/Feb 2004. 1 Practical Arterial Evaluation of the Lower Extremity Clinical Assessment Patient history pertinent to referral Medical History By obtaining a limited medical history from a patient, pertinent to the lower extremity complaints, the examiner is attempting to identify risk factors, disease states and vascular history commonly associated with arterial, venous or comorbid (non-vascular) pathology. For example, there is a higher probability of ultimately diagnosing arterial disease in a diabetic, hypertensive patient presenting with post-exercise calf pain than in a patient with a history of ligation and stripping of varicose veins.
    [Show full text]
  • Peripheral Vascular Disease Assessment in the Lower Limb: a Review of Current and Emerging Non‑Invasive Diagnostic Methods
    Shabani Varaki et al. BioMed Eng OnLine (2018) 17:61 https://doi.org/10.1186/s12938-018-0494-4 BioMedical Engineering OnLine REVIEW Open Access Peripheral vascular disease assessment in the lower limb: a review of current and emerging non‑invasive diagnostic methods Elham Shabani Varaki1* , Gaetano D. Gargiulo1, Stefania Penkala2 and Paul P. Breen1,3 *Correspondence: e.shabaniv@westernsydney. Abstract edu.au Background: Worldwide, at least 200 million people are afected by peripheral 1 The MARCS Institute for Brain, Behaviour & vascular diseases (PVDs), including peripheral arterial disease (PAD), chronic venous Development, Western insufciency (CVI) and deep vein thrombosis (DVT). The high prevalence and seri- Sydney University, Penrith, ous consequences of PVDs have led to the development of several diagnostic tools NSW 2750, Australia Full list of author information and clinical guidelines to assist timely diagnosis and patient management. Given the is available at the end of the increasing number of diagnostic methods available, a comprehensive review of avail- article able technologies is timely in order to understand their limitations and direct future development efort. Main body: This paper reviews the available diagnostic methods for PAD, CVI, and DVT with a focus on non-invasive modalities. Each method is critically evaluated in terms of sensitivity, specifcity, accuracy, ease of use, procedure time duration, and training requirements where applicable. Conclusion: This review emphasizes the limitations of existing methods, highlighting a latent need for the development of new non-invasive, efcient diagnostic methods. Some newly emerging technologies are identifed, in particular wearable sensors, which demonstrate considerable potential to address the need for simple, cost-efec- tive, accurate and timely diagnosis of PVDs.
    [Show full text]
  • Peripheral Artery Disease. Part 1: Clinical Evaluation and Noninvasive Diagnosis Joe F
    REVIEWS Peripheral artery disease. Part 1: clinical evaluation and noninvasive diagnosis Joe F. Lau, Mitchell D. Weinberg and Jeffrey W. Olin Abstract | Peripheral artery disease (PAD) is a marker of systemic atherosclerosis. Most patients with PAD also have concomitant coronary artery disease (CAD), and a large burden of morbidity and mortality in patients with PAD is related to myocardial infarction, ischemic stroke, and cardiovascular death. PAD patients without clinical evidence of CAD have the same relative risk of death from cardiac or cerebrovascular causes as those diagnosed with prior CAD, consistent with the systemic nature of the disease. The same risk factors that contribute to CAD and cerebrovascular disease also lead to the development of PAD. Because of the high prevalence of asymptomatic disease and because only a small percentage of PAD patients present with classic claudication, PAD is frequently underdiagnosed and thus undertreated. Health care providers may have difficulty differentiating PAD from other diseases affecting the limb, such as arthritis, spinal stenosis or venous disease. In Part 1 of this Review, we explain the epidemiology of and risk factors for PAD, and discuss the clinical presentation and diagnostic evaluation of patients with this condition. Lau, J. F. et al. Nat. Rev. Cardiol. 8, 405–418 (2011); published online 31 May 2011; doi:10.1038/nrcardio.2011.66 of systemic atherosclerosis and is, therefore, associated Continuing Medical Education online with substantial morbidity and mortality.1–2 The major‑ This activity has been planned and implemented in accordance ity of patients with PAD also have concomitant coronary with the Essential Areas and policies of the Accreditation Council artery disease (CAD), and a large burden of morbidity and for Continuing Medical Education through the joint sponsorship of mortality in patients with PAD is related to myo­cardial Medscape, LLC and Nature Publishing Group.
    [Show full text]
  • Blue Cross Medicare Advantage: Radiology Code List
    Blue Cross Medicare Advantage: Radiology Code List Product Category CPT® Code CPT® Code Description Radiology ULTRASOUND 76496 Unlisted fluoroscopic procedure (eg, diagnostic, interventional) Radiology ULTRASOUND 76930 Ultrasonic guidance for pericardiocentesis, imaging supervision and interpretation Radiology ULTRASOUND 76932 Ultrasonic guidance for endomyocardial biopsy, imaging supervision and interpretation Ultrasound guidance for vascular access requiring ultrasound evaluation of potential access sites, documentation of selected vessel patency, concurrent realtime ultrasound visualization of vascular Radiology ULTRASOUND 76937 needle entry, with permanent recording and reporting (List separately in addition to code for primary procedure) Radiology ULTRASOUND 76940 Ultrasound guidance for, and monitoring of, parenchymal tissue ablation Ultrasonic guidance for intrauterine fetal transfusion or cordocentesis, imaging supervision and Radiology ULTRASOUND 76941 interpretation Ultrasonic guidance for needle placement (eg, biopsy, aspiration, injection, localization device), imaging Radiology ULTRASOUND 76942 supervision and interpretation Radiology ULTRASOUND 76945 Ultrasonic guidance for chorionic villus sampling, imaging supervision and interpretation Radiology ULTRASOUND 76946 Ultrasonic guidance for amniocentesis, imaging supervision and interpretation Radiology ULTRASOUND 76948 Ultrasonic guidance for aspiration of ova, imaging supervision and interpretation Ultrasound, pregnant uterus, real time with image documentation, fetal and
    [Show full text]
  • Lower Extremity Arterial Evaluation: Are Segmental Arterial Blood Pressures Worthwhile?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Lower extremity arterial evaluation: Are segmental arterial blood pressures worthwhile? Steven S. Gale, MD, Robert P. Scissons, RVT, Sergio X. Salles-Cunha, PhD, Steven M. Dosick, MD, Ralph C. Whalen, MD, John P. Pigott, MD, and Hugh G. Beebe, MD, Toledo, Ohio Purpose: Physiologic observations with blood flow waveform analysis and pressure mea- surements can document the severity of lower extremity arterial disease. Segmental blood pressures (SEGPs) taken at the thigh, calf, and ankle are commonly used, but their utility has seldom been studied. We quantified improvements in accuracy compared with arteriography when ankle pressures alone (ABI) or SEGP data were added to veloc- ity waveforms obtained by Doppler ultrasound. Methods: Continuous-wave Doppler velocity waveforms were recorded at common femoral (CFA), popliteal (POP), and dorsal pedal and posterior tibial (TIB) arterial lev- els. Systolic SEGP data were obtained with appropriately sized upper thigh, upper calf, and ankle cuffs. Waveforms, waveforms plus ABI, and waveforms plus SEGP data from 81 patients were randomly interpreted by 14 technologists or physicians from four insti- tutions blinded to clinical and arteriographic data. Arteriograms were assigned negative or significant, severe (≥75% diameter stenosis) values for four segments: iliofemoral (CFA), superficial femoral (SFA), popliteal (POP), and infrapopliteal (TIB) arteries. A total of 9072 segmental interpretations were analyzed. Results: Compared with arteriography, the accuracy of waveform analysis was 83% for severe disease at and proximal to the CFA, 79% for SFA disease, 64% for POP disease, and 73% for TIB disease.
    [Show full text]
  • Ankle Brachial Pressure Index (ABPI): an Update for Practitioners
    Vascular Health and Risk Management Dovepress open access to scientific and medical research Open Access Full Text Article R E V IEW Ankle Brachial Pressure Index (ABPI): An update for practitioners Mo Al-Qaisi1 Abstract: Peripheral vascular disease affects some 12%–14% of the general population, and David M Nott1 the majority of people with the disease are asymptomatic. The Ankle Brachial Pressure Index David H King2 (ABPI) test is widely used by a diverse range of practitioners (in the community and hospital Sam Kaddoura1 setting) in order to screen asymptomatic patients, diagnose patients with clinical symptoms, and to monitor patients who have had radiological or surgical intervention. This paper explains 1Imperial College, London, UK; the theoretical basis of the ABPI test, as well as the relevance of the common modifications 2Broomfield Hospital, Chelmsford, Essex, UK of the test. It explores the background to the quoted normal ranges for the ABPI test. It reviews the large body of literature that has developed on the association between ABPI and cardiovascu- lar risk, as well as ABPI as a predictor for cardiovascular morbidity and mortality, highlighting For personal use only. the evidence that can inform practice. The review looks critically at the limitations of the ABPI test, providing practitioners with an evidence-based update on the importance and challenges of standardizing ABPI methodology. This paper highlights the influence of the key technical aspects of the ABPI test that all practitioners need to consider in order to be able to make more reliable and informed management decisions based on ABPI findings. Keywords: ankle, brachial, pressure, index, ABPI, update Introduction The Ankle Brachial Pressure Index (ABPI) test is widely used in the setting of peripheral vascular disease by a diverse range of practitioners.
    [Show full text]
  • Segmental Pressure and Ankle-Brachial Index (ABI) The
    Practical Arterial Evaluation of the Lower Extremity Non-invasive examination Segmental pressure and Ankle-Brachial Index (ABI) The segmental blood pressure (SBP) examination is a simple, noninvasive method for diagnosing and localizing arterial disease. This method was first introduced by Winsor in 195014 and still remains a very sensitive indicator of arterial disease. Typically, pressure cuffs Ankle Brachial Index (ABI) are placed around the patient’s ankles, Calculation below the knee (BK), above the knee (AK) Ankle systolic pressure and at one or more locations in the thigh. = ABI The SBP may be obtained using standard Brachial systolic pressure pneumatic cuffs with a hand-held aneroid manometer. However, considering the time involved for multiple measurements, in some clinical settings where multiple cuffs are used, is may be advisable to use an automated, computerized system. In addition to multiple pressure measurements, a full SBP examination also includes obtaining and evaluating Doppler waveforms at various levels in the leg usually in the pedal, popliteal, superficial femoral and common femoral arteries. SBPs are not a routine part of the protocol presented in this paper. Instead, clinical symptomatology and pulse palpation direct the examiner’s attention to the most likely segment, or level, of disease in the arterial tree. The ankle-brachial index (ABI) is a simple, reliable index that is essentially free of technical artifacts and that defines the severity of arterial disease in the lower extremities quickly, inexpensively and relatively easily. It is simply the ratio between the systolic pressure in a pedal artery (dorsalis pedis (DP), posterior tibial (PT), lateral malleolar (LM)) to the systolic pressure in the arm (brachial artery).
    [Show full text]
  • Type of Article 1
    Original Research Article A study to correlate arterial doppler sonography with ankle branchial index among diabetics and hypertensive in tertiary care hospital Rahul J Shirol1, Venkatesh Karanth2* 1Assistant professor, 2Associate professor, Department of Radiology, GIMS, GADAG, Karnataka, INDIA. Email: [email protected] Abstract Background and Objectives: Diabetes and hypertension are common causes of peripheral arterial disease. It is important to diagnose peripheral arterial disease at its earliest and start treatment to prevent complications. Ankle brachial index is a non invasive and easy method to diagnose peripheral arterial disease. Our objective is to compare ankle brachial index with arterial doppler sonography, to determine the relationship between ankle brachial index with the duration and severity of peripheral arterial disease in diabetics and hypertensives. Methods: A study is a hospital based prospective study. We measured ABI in all patients referred to us for arterial doppler sonography who are diabetics and hypertensives. Results: There is strong correlation between ABI and arterial doppler sonography. The severity of lower limb arterial disease increases with the duration of diabetes and hypertension. The duration and severity of PVD can be calculated by ABI. ABI has a sensitivity of 88.64% and a specificity of 90.62% in diagnosing peripheral arterial disease. Interpretation and Conclusion: BI can be used as an effective screening tool for peripheral arterial disease. Key Word: ankle brachial index, lower limb ischemia *Address for Correspondence: Dr. Venkatesh Karanth, Associate professor, Department of radiology, GIMS, Gadag, Karnataka, INDIA. Email: [email protected] Received Date: 04/01/2019 Revised Date: 30/01/2019 Accepted Date: 10/02/2019 DOI: https://doi.org/10.26611/1013925 adults was 12.1 percent.
    [Show full text]
  • 1-9 Davidson:Gabbia
    The Journal of Vascular Access 2008; 9: 1-9 REVIEW Duplex ultrasound evaluation for dialysis access selection and maintenance: a practical guide I. DAVIDSON1, D. CHAN2, B. DOLMATCH2, M. HASAN3, D. NICHOLS4, R. SAXENA5, S. SHENOY6, M. VAZQUEZ5, M. GALLIENI7 1Division of Transplant, Department of Surgery, Parkland Memorial Hospital University of Texas Southwestern Medical Center, Dallas - USA 2Division of Interventional Radiology, University of Texas Southwestern Medical Center, Dallas - USA 3Baptist Cardiac & Vascular Institute, Miami, Florida - USA 4Vascular Center, Medical City Hospital Dallas - USA 5Division of Nephrology, Department of internal medicine, University of Texas Southwestern Medical Center, Dallas - USA 6Section of Transplantation, Department of Surgery, Washington University School of Medicine, St Louis - USA 7Renal Unit San, Paolo Hospital, University of Milano, Milano - Italy Abstract: Detailed case directed history and examination is the mainstay of dialysis access modality selection, ie site and type of access, as well as for maintenance of dialysis access for longevity. As a logical step following hi- story and physical examination, duplex ultrasound evaluation (DUE) is the most cost effective and non-invasive screening tool for evaluation for access placement and for assessment of an established access. Pre-operative va- scular mapping allows selection of the optimal dialysis access modality and site. In established accesses, duplex ultrasound testing will diagnose the majority of vascular access complications and direct proper surgical or inter- ventional radiology management. This review outlines a practical decision-making algorithm using DUE for choo- sing and managing the dialysis access. (J Vasc Access 2008; 9: 1-9) Key words: Duplex ultrasound, Hemodialysis access, Algorithm, Vascular mapping, Hand ischemia INTRODUCTION placement and when evaluating an established access with problems.
    [Show full text]
  • Tobacco Education: Reduced Risk for Peripheral Artery Disease
    icine- O ed pe M n l A a c n c r e e s t s n I ISSN: 2165-8048 Internal Medicine: Open Access Research Article Tobacco Education: Reduced Risk for Peripheral Artery Disease Blessings Wiyeh Fanka*, Susan Chaney Texas Woman's University, Denton, Texas, USA ABSTRACT Peripheral arterial (vascular) disease (PAD/PVD) in its association with significant mortality and morbidity rates has become a significant public health concern. One of the most influential risk factors for PAD is tobacco use, which carries a 3-4-fold increased risk for PAD often presenting as severe disease. The diagnosis of PAD is usually made a decade earlier in smokers than nonsmokers. The amputation rates in patients with PAD who smoke is twice higher than those that have never smoked. Smoking elevates the risk for PAD several folds and approximately 90% of persons with PAD have a history of smoking. Although the precise mechanism by which chronic smoking induces vascular disease is not entirely understood, growing evidence shows that impairment of endothelial morphology and function plays a crucial role in the pathogenesis of vascular disease. Oxidants, delivered by cigarette and deposited in pulmonary vessels through the systemic vasculature, activate superoxide producing enzymes within the vascular wall via oxidative stress and might be the cause of endothelial dysfunction and dysregulation of endothelial barrier. The World Health Organization (WHO) estimates that there are currently 1.1 billion tobacco smokers’ worldwide ages 15 years and older. Recently, smoking-related death have been said to account for 4.9 million persons per year worldwide.
    [Show full text]