Conceptual Design of an Unloading System for Continuous Tracks
Total Page:16
File Type:pdf, Size:1020Kb
DEGREE PROJECT IN MECHANICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 Conceptual Design of an Unloading System for Continuous Tracks How to increase the load capacity of tracks with the use of hydraulic cylinders JONAS TORSTENSSON KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT Conceptual Design of an Unloading System for Continuous Tracks How to increase the load capacity of tracks with the use of hydraulic cylinders Jonas Torstensson Master of Science Thesis MMK 2017:45 MKN 197 KTH Industrial Engineering and Management Department of Machine Design SE-100 44 Stockholm Master of Science Thesis MMK 2017:45 MKN 197 Conceptual Design of an Unloading System for Continuous Tracks Jonas Torstensson KTH Industrial Engineering and Management Approved Examiner Supervisor 2017-05-31 Ulf Sellgren Ulf Sellgren Commissioner Contact person Svea Teknik Jacob Wollberg Abstract This report presents the result of a Master thesis course done at the Machine Design department at KTH. The thesis was written at the company Svea Teknik in collaboration with the tunnel boring machine manufacturer Atlas Copco. The high longitudinal force needed when the Remote Vein Miner is boring is achieved by the friction when clamping the machine between the tunnels ceiling and ground using hydraulic cylinders mounted on the top and bottom of the machine. A new generation of machines doesn’t allow for the bottom cylinders to be fitted on the machine. The pair of continuous tracks used to propel the machine must bear these loads but the tracks aren’t strong enough to alone support the weight of the boring machine. This creates the need for an unloading system which unloads the inner wheels of the track so they don’t fail. Concepts were generated using a morphological matrix with the load sharing unit broken down to sub functions with several solutions paired to each. The iterative process led to nine concepts, where two proved more promising than the others when they were subjected to a Pugh’s evaluation matrix. The two concepts were developed further where a feasibility analysis indicated that only one concept was feasible with the dimensions given in a CAD model together with the load provided by Atlas Copco. The remaining concept is based on hydraulic cylinders lifting the inner wheels of the track to unload them while the machine is boring. The machine is then resting on a skid mounted inside the track. A CAD model was made of the new concept and the new components strength was analyzed using FEM-models. Keywords: Hydraulic unloading system, continuous track, load capacity tracks iii Examensarbete MMK 2017:45 MKN 197 Konceptkonstruktion av ett avlastningssystem för bandenheter Jonas Torstensson KTH Industrial Engineering and Management Godkänt Examinator Handledare 2017-05-31 Ulf Sellgren Ulf Sellgren Uppdragsgivare Kontaktperson Svea Teknik Jacob Wollberg Sammanfattning I denna uppsats presenteras resultatet av ett examensarbete för masterprogrammet Maskinkonstruktion på KTH. Arbetet utfördes på förtaget Svea Teknik tillsammans med tunnelborrmaskintillverkaren Atlas Copco. De stora longitudinella krafterna som krävs när tunnelborrmaskiner borrar erhålls med hjälp av hydraulcylindrar monterade både på ovan- och undersidan av maskinen som klämmer fast maskinen mellan tunnelns golv och tak. En ny generation maskiner från Atlas Copco tillåter inte hydraulcylindrar monterade framtill på undersidan av maskinen. Istället tar de båda bandenheterna som är avsedd att driva maskinen framåt upp dessa krafter. Bandenheterna är inte tillräckligt starka för dessa laster utan en avlastningslösning för hjulen inne i bandenheten behövs. Problemet delades upp i subfunktioner som sattes in i en morfologisk matris för att generera koncept. Den iterativa processen ledde till nio koncept där två av dem visades mest lovade efter en konceptutvärdering med hjälp av en Pugh’s matris. De båda koncepten arbetades vidare till en mer detaljerad nivå där en rimlighetsanalys visade att endast ett koncept var fysiskt möjligt att applicera med de givna begräsningarna som gavs av utrymmet i den givna CAD-modellen tillsammans med de givna lasterna. Det kvarstående konceptet baseras på hydrauliska kolvar som monteras på hjulen i bandenheten. Dessa förflyttar hjulen uppåt tills de inte är i kontakt med bandenhetens kedja längre. Kedjan vilar då på en stödstruktur som är stark nog för lasterna. En CAD-modell gjordes på konceptet och de nya komponenternas hållfasthet analyserades med hjälp av FEM-modeller. Nyckelord: Hydraulisk avlastare, bandenhet, lastkapacitet band v Acknowledgments I would like to thank the employees of Svea Teknik and Atlas Copco for making this thesis possible, with special thanks to Jacob Wollberg, Bengt Johansson and Jerk Back. I would also like to thank Ulf Sellgren at KTH for being my supervisor. A huge thank you to my dear friends Oscar Hällfors and Elin Skoog for the years at KTH together. Your input writing this thesis while sharing an office with you has been invaluable. Most of all, thank you mother for always being there and thank you for all the support twin brother. I know what I can be. Let me tell you how I feel - I’m alright, I’m alive vii Contents Abstract iii Sammanfattning v Acknowledgments vii Glossary xi Acronyms xiii Nomenclature xv 1 Introduction 1 1.1 Background . 1 1.2 Purpose . 2 1.3 Problem Description . 2 1.4 Scope . 3 1.5 Delimitations . 3 1.6 Product Design Specification . 4 1.7 Methodology . 5 2 Frame of Reference 7 2.1 The Remote Vein Miner . 7 2.1.1 Tramming . 7 2.1.2 Boring . 9 2.2 Tracks . 9 2.2.1 External loads acting on the track . 10 2.3 Belleville Springs . 10 3 Concept Stage 13 3.1 Concept Generation . 13 3.2 Concept Evaluation . 14 3.3 Feasibility Analysis . 16 3.3.1 Compression Springs . 16 3.3.2 Belleville Springs . 17 3.3.3 Hydraulics . 19 3.4 Patent Search . 20 ix 4 Detailed Concept 21 4.1 The Skid . 22 4.2 The Fork . 23 4.3 The Frame . 24 4.4 The Cylinders . 27 4.5 PDS evaluation . 28 5 Discussion and Conclusion 31 5.1 Discussion . 31 5.1.1 Skid Discussion . 31 5.1.2 Fork Discussion . 32 5.1.3 Frame Discussion . 32 5.1.4 Cylinders Discussion . 32 5.1.5 Method Discussion . 32 5.2 Conclusion . 33 6 Future Work 35 References 37 Appendices 39 A The Elements of the Product Design Specification . 39 B The Gantt chart . 43 C The Criteria of Pugh’s Evaluation Matrix . 47 D The MATLAB script used for calculation of the Belleville spring . 49 E Pictures of the final design . 53 x Glossary ANSYS A Finite Element Software used to numerically calculate solid me- chanics Atlas Copco A Swedish company produc- ing tunnel boring machines DIN 17222 A industrial standard spec- ifying material data of steel used when manufacturing Belleville springs KTH Kungliga Tekniska Högskolan (Royal Institute of Technology), university in Stockholm, Sweden MATLAB A computer software used for writing scripts for solving mathe- matical problems xi Acronyms FEA Finite Element Analysis FEM Finite Element Method, a method used in solid mechanics to numerically analyze structures to see the stresses of the structure MTTF Mean Time to Failure, the mean time a system takes to fail MTTR Mean Time to Repair, the mean time it takes to repair the system PDS Product Design Specification RVM Remote Vein Miner, a machine boring tunnels to mine minerals TBM Tunnel Boring Machine, a machine boring tunnels in a mine xiii Nomenclature hBW Height of a Belleville spring washer Px Required axial load of each track tBW Thickness of a Belleville spring washer Py Required longitudinal load capac- ity of each track DiBW Inner diameter of a Belleville spring washer Pz Required horizontal load capacity of each track DoBW Outer diameter of a Belleville spring washer g The gravitation acceleration con- 2 stant, set to g=9.81 m/s δ The deflection of a spring rsprocket The effective radius of the hy- E Young’s modulus draulic motor in the tracks µ Poisson’s ratio TM The tracks max hydraulic motor torque, turn on spot + inclina- FBW The spring force from a Belleville tion spring µt Friction coefficient between the Fflat The load of where a Belleville ground and the track’s shoes spring washer is flattened mfront The weight of the front wagon of h0 Cup height of a Belleville the Remote Vein Miner, a machine spring boring tunnels to mine minerals (RVM) Nsprings Number of springs stacked in a Belleville spring stack Pwz The forces acting on the joint con- necting the front and back wagon κ The quota of the spring thick- of the RVM ness and height of a Belleville spring mequiv The equivalent mass acting on the tracks when the RVM is tram- σuts The maximum stress of a material ming before it breaks xv Lstack The height of a Belleville spring pskid,b Pressure transferred from the skid stack to the chain δtot Total horizontal displacement of the track’s inner wheel ηmin Ratio of the pre-tension length as a quota of the cup height in a Belleville spring ηmax Ratio of the maximum deflection length as a quota of the cup height in a Belleville spring hpre The cup height of a pre-tensioned Belleville spring δBW,max The maximum allowed deflection of a Belleville spring psystem Hydraulic system pressure dpiston Diameter of a hydraulic pis- ton pop,max The maximum operation pressure of a hydraulic cylinder αg The tilt angle of the ground Lb The width of the mounting surface of the track’s inner wheels Lh The height of the mounting surface of the track’s inner wheels Fsm The maximum force the spring in Concept 2 needs to with- stand PzF Z Total load capacity of the tracks using the hydraulic cylinder FZ 250 -80 50 01 201 32 PyF Z Total allowable side load of the sys- tem using hydraulic cylinders FZ 250 -80 50 01 201 32 Askid,b Area of the surface where skid is in contact with the chain xvi Chapter 1 Introduction This thesis describes the process of creating a conceptual design of an unloading system for continuous tracks used in the Tunnel Boring Machine, a machine boring tunnels in a mine (TBM) developed by Atlas Copco.