medRxiv preprint doi: https://doi.org/10.1101/2021.03.10.21253054; this version posted March 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . KidneyNetwork: Using kidney-derived gene expression data to predict and prioritize novel genes involved in kidney disease Floranne Boulogne1#, Laura R. Claus2#, Henry Wiersma1##, Roy Oelen1##, Floor Schukking1, Niek de Klein1, Shuang Li1,3, Harm-Jan Westra1, Bert van der Zwaag2, Franka van Reekum4, Dana Sierks5, Ria Schönauer5, Jan Halbritter5, Nine V.A.M. Knoers1, Genomics England Research Consortium, Patrick 1,2### 1### 2### Deelen , Lude Franke , Albertien M. van Eerde 1 Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands 2 Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands 3 Genomics Coordination Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands 4 Department of Nephrology, University Medical Center Utrecht, Utrecht, the Netherlands. 5 Medical Department III - Endocrinology, Nephrology, Rheumatology Department of Internal Medicine, Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany # equal contribution ## equal contribution ### equal contribution Corresponding author: Albertien M. van Eerde Email address:
[email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2021.03.10.21253054; this version posted March 17, 2021.