Circadian and Homeostatic Modulation of Multi-Unit Activity in Midbrain Dopaminergic Structures Received: 12 January 2018 Karim Fifel 1,2, Johanna H

Total Page:16

File Type:pdf, Size:1020Kb

Circadian and Homeostatic Modulation of Multi-Unit Activity in Midbrain Dopaminergic Structures Received: 12 January 2018 Karim Fifel 1,2, Johanna H www.nature.com/scientificreports OPEN Circadian and Homeostatic Modulation of Multi-Unit Activity in Midbrain Dopaminergic Structures Received: 12 January 2018 Karim Fifel 1,2, Johanna H. Meijer1 & Tom Deboer1 Accepted: 24 April 2018 Although the link between sleep disturbances and dopamine (DA)-related neurological and Published: xx xx xxxx neuropsychiatric disorders is well established, the impact of sleep alterations on neuronal activity of midbrain DA-ergic structures is currently unknown. Here, using wildtype C57Bl mice, we investigated the circadian- and sleep-related modulation of electrical neuronal activity in midbrain ventral- tegmental-area (VTA) and substantia nigra (SN). We found no signifcant circadian modulation of activity in SN while VTA displayed a low amplitude but signifcant circadian modulation with increased fring rates during the active phase. Combining neural activity recordings with electroencephalogram (EEG) recordings revealed a strong vigilance state dependent modulation of neuronal activity with increased activity during wakefulness and rapid eye movement sleep relative to non-rapid eye movement sleep in both SN and VTA. Six-hours of sleep deprivation induced a signifcant depression of neuronal activity in both areas. Surprisingly, these alterations lasted for up to 48 hours and persisted even after the normalization of cortical EEG waves. Our results show that sleep and sleep disturbances signifcantly afect neuronal activity in midbrain DA structures. We propose that these changes in neuronal activity underlie the well-known relationship between sleep alterations and several disorders involving dysfunction of the DA circuitry such as addiction and depression. Located in the mesencephalon, the ventral tegmental area (VTA) and Substantia nigra (SN) are the main sources of dopamine (DA) in the basal ganglia and forebrain1. Within these structures dopaminergic (70%), GABAergic (30%) and glutamatergic (2–3% only in the VTA) neurons are anatomically intermingled and electrophysio- logically connected2. Functionally, these clusters of neurochemically diverse neurons control and/or modulate a broad range of behaviors including goal-directed behavior, motor actions, motivation, response to reward, learning, working memory, attention and decision-making3. Recently, growing interest has been shown towards the investigation of the role of VTA- and SN-dopaminergic and GABAergic neurons in the regulation of sleep and wakefulness4–9. Tis interest has been partially sparked by the recognition of sleep/wake cycle alterations in many neurological disorders in which VTA and SN function, including DA release, is compromised, such as Parkinson’s disease (PD)10,11. Inversely, alterations of the sleep-wake cycle are associated with risks for a wide variety of medi- cal conditions directly or indirectly modulated by DA neurocircuitry12–15. Sleep deprivation (SD) adversely afects cognitive performances16, impairs judgment and decision making16, biases values computations by increasing the emphasis on gain outcomes relative to losses17–21, intensifes drug abuse and increases the likelihood of relapse afer withdrawal22,23. Recent animal studies as well as imaging studies in humans have shown that SD produces aberrant function- ing in multiple sites of the dopaminergic reward circuitry and that these alterations were signifcantly correlated with SD-related behavioral and functional alterations17–21. Moreover, the modulation of the DA neurotransmis- sion has been implicated in the therapeutic efects of SD in major depression24 as well as in the motor benefts experienced by a subset of patients with PD25. The sensitivity of different brain structures to SD is variable26–28 suggesting that some brain structures belonging to the reward neuronal network might be more responsive to SD than others. Although some of the brain areas afected by SD are part of the DA circuitry26–28, the underlying mechanism(s) by which SD afects the 1Department of Molecular Cell Biology, Neurophysiology unit, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands. 2Present address: International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305–8575, Japan. Correspondence and requests for materials should be addressed to K.F. (email: [email protected]) SCIENTIFIC REPORTS | (2018) 8:7765 | DOI:10.1038/s41598-018-25770-5 1 www.nature.com/scientificreports/ mesocorticolimbic reward circuitry remain poorly understood. Additionally, whether sleep loss afects the elec- trophysiology of midbrain VTA and SN structures is unknown. We therefore set out to assess the acute and long-term efects of a 6-hour sleep deprivation on electrical impulse frequency, also called multi-unit activity (MUA), as a measure of activity of neurons in the VTA and SN. In addition, electroencephalogram (EEG) and electromyogram (EMG) recordings were performed to investigate changes in the characteristics of sleep and waking before, during and afer SD and their correlation with neuronal activity in VTA and SN. Given that SD afects DA neurotransmission29, we hypothesize that SD will alter the electrical activity of these midbrain structures. Materials and Methods Animals and locomotor activity recordings. Te experiments were performed in rooms with monitored constant temperature and humidity conditions. Food and water were available ad libitum. A total of 17 adult male C57Bl/6JOlaHsd mice (16–20 weeks age old at the time of experiments) were used for this study. Te animals were purchased from Harlan (Te Netherlands). All the experiments were approved by of the Ethics Committee of Leiden University Medical Center and were carried out in accordance with the EU Directive 2010/63/EU on the protection of animals used for scientifc purposes. Animal cages were equipped with passive infrared motion sensors to record general locomotor activity. In vivo multi-unit activity, EEG, and EMG recordings. In vivo multiunit activity (MUA) and EEG and EMG were recorded as described previously30. In brief, for the MUA recordings, stainless steel tripolar electrodes (0.125 mm diameter; Plastics One, Inc., Roanoke, VA) were implanted in each animal under deep anaesthesia. For diferential recordings, two electrodes were directed toward the targeted midbrain structure with 0.4-mm space between the electrodes. Te third electrode was placed in the cortex as a reference electrode. Measurements were performed from one electrode at a time. Te electrodes were placed to record from the ventral tegmental area (VTA, relative to Bregma: 3.16 mm posterior and 0.59 mm lateral; depth: 4.37 mm), medial substantia nigra (SNM, relative to Bregma: 3.16 mm posterior and 1.11 mm lateral; depth: 4.22 mm) and lateral substantia nigra (SNL, relative to Bregma: 3.16 mm posterior and 1.75 mm lateral; depth: 3.7 mm). Te coordinates were adapted from ref.31 (Supplemental Fig. S1). For EEG, electrodes were screwed into the skull above the dura over the right cortex (2.0 mm lateral to the midline and 3.5 mm posterior to Bregma) and cerebellum (at the midline and 1.5 mm posterior to lambda). For EMG recordings, two wires with suture patches were inserted in the tissue between the skin and the neck muscle. Te animals were connected to the recording system via a fexible cable and counterbalanced swivel system, and the animals were acclimated to the setup under similar (12:12 L:D, food ad libitum) conditions. Te animals’ behavioural activity (drinking and locomotion) was recorded continuously in order to obtain an estimate of the circadian rhythm. Neuronal activity in the midbrain structures was amplifed approximately 40,000X, band-pass fltered (500– 5,000 Hz, −40 dB/decade). Online, a window discriminator converted the action potentials into electronic pulses. A second window discriminator was set at a higher level to detect artefacts caused by the animal’s movements. Action potentials and movement-related artefacts were counted in 10-s epochs. Te analogue EEG and EMG signals, which were recorded continuously, were amplifed approximately 2,000X, band-pass fltered (0.5–30 Hz, −40 dB/decade), and digitized at 100 Hz. All data were recorded simultaneously and stored on a computer hard disk. Te stability of the multi-unit signal and EEG recording was evaluated daily by visually inspecting the sig- nals. Te circadian rhythm in the signal and the amplitude of the EEG were monitored before the baseline data were collected. As soon as the signals were stable, experimental recordings were started. Afer the experiments, the animals were sacrifced to verify the recording sites. To mark the location of the electrode tip, current was passed through the electrode, and the brain was perfused with a bufered solution containing 4% paraformalde- hyde and 8% potassium ferrocyanide. Te brains were removed, post-fxed overnight in 4% paraformaldehyde, and cryo-protected in 30% sucrose solution. Free-foating coronal sections (40 μm thickness) were cut on a freezing microtome. Te sections were stained with cresyl violet, mounted on gelatinized slides, dried, dehydrated in increasing gradients of ethanol, cleared in toluene, and cover-slipped with Depex. Ofine, the EEG power density spectra were calculated in 10-s epochs corresponding to the 10-s epochs of the action potentials of the targeted hypothalamic structure using a fast Fourier transform (FFT) routine within the frequency range of 0–25.0 Hz in 0.1-Hz bins. EMG signals were integrated over 10-s epochs. Tree
Recommended publications
  • Detecting Seizures in EEG Recordings Using Conformal Prediction
    Proceedings of Machine Learning Research 1:1{16, 2018 COPA 2018 Detecting seizures in EEG recordings using Conformal Prediction Charalambos Eliades [email protected] Harris Papadopoulos [email protected] Dept. of Computer Science and Engineering Frederick University 7 Y. Frederickou St., Palouriotisa, Nicosia 1036, Cyprus Editor: Alex Gammerman, Vladimir Vovk, Zhiyuan Luo, Evgueni Smirnov and Ralf Peeters Abstract This study examines the use of the Conformal Prediction (CP) framework for the provi- sion of confidence information in the detection of seizures in electroencephalograph (EEG) recordings. The detection of seizures is an important task since EEG recordings of seizures are of primary interest in the evaluation of epileptic patients. However, manual review of long-term EEG recordings for detecting and analyzing seizures that may have occurred is a time-consuming process. Therefore a technique for automatic detection of seizures in such recordings is highly beneficial since it can be used to significantly reduce the amount of data in need of manual review. Additionally, due to the infrequent and unpredictable occurrence of seizures, having high sensitivity is crucial for seizure detection systems. This is the main motivation for this study, since CP can be used for controlling the error rate of predictions and therefore guaranteeing an upper bound on the frequency of false negatives. Keywords: EEG, Seizure, Confidence, Credibility, Prediction Regions 1. Introduction Epileptic seizures reflect the clinical signs of the synchronized discharge of brain neurons. The effects of this situation can be characterized by disturbances of mental function and/or movements of body (Lehnertz et al., 2003). This neurological disorder occurs in approx- imately 0:6 − 0:8% of the entire population.
    [Show full text]
  • Rice Bran Extract Supplement Improves Sleep Efficiency
    www.nature.com/scientificreports OPEN Rice bran extract supplement improves sleep efciency and sleep onset in adults with sleep Received: 22 October 2018 Accepted: 7 August 2019 disturbance: A randomized, Published: xx xx xxxx double-blind, placebo-controlled, polysomnographic study Min Young Um1, Hyejin Yang1, Jin Kyu Han2, Jin Young Kim3, Seung Wan Kang3, Minseok Yoon1, Sangoh Kwon4 & Suengmok Cho5 We previously reported that rice bran extract supplement (RBS) administration to mice decreased sleep latency and induced non-rapid eye movement (NREM) sleep via inhibition of the histamine H1 receptor. Based on this, we performed the frst clinical trial to investigate whether RBS would be benefcial to subjects with disturbed sleep. We performed a randomized, double-blinded, placebo-controlled, 2-week study. Fifty subjects with sleep disturbance were enrolled and received either RBS (1,000 mg/day) or placebo. Polysomnography was performed, and Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale (ESS), and Fatigue Severity Scale were administered at the initiation and termination of the study. Compared with the placebo, RBS led to signifcant polysomnographic changes, including decreased sleep latency (adjusted, P = 0.047), increased total sleep time (P = 0.019), and improved sleep efciency (P = 0.010). Additionally, the amount of stage 2 sleep signifcantly increased in the RBS group. When adjusted for cafeine intake, wakefulness after sleep onset, total wake time, and delta activity tended to decrease in the RBS group. RBS administration decreased ESS scores. There were no reported serious adverse events in both groups. RBS improved sleep in adults with sleep disturbance. Trial registration: WHO ICTRP, KCT0001893.
    [Show full text]
  • Music Genre Preference and Tempo Alter Alpha and Beta Waves in Human Non-Musicians
    Page 1 of 11 Impulse: The Premier Undergraduate Neuroscience Journal 2013 Music genre preference and tempo alter alpha and beta waves in human non-musicians. Nicole Hurless1, Aldijana Mekic1, Sebastian Peña1, Ethan Humphries1, Hunter Gentry1, 1 David F. Nichols 1Roanoke College, Salem, Virginia 24153 This study examined the effects of music genre and tempo on brain activation patterns in 10 non- musicians. Two genres (rock and jazz) and three tempos (slowed, medium/normal, and quickened) were examined using EEG recording and analyzed through Fast Fourier Transform (FFT) analysis. When participants listened to their preferred genre, an increase in alpha wave amplitude was observed. Alpha waves were not significantly affected by tempo. Beta wave amplitude increased significantly as the tempo increased. Genre had no effect on beta waves. The findings of this study indicate that genre preference and artificially modified tempo do affect alpha and beta wave activation in non-musicians listening to preselected songs. Abbreviations: BPM – beats per minute; EEG – electroencephalography; FFT – Fast Fourier Transform; ERP – event related potential; N2 – negative peak 200 milliseconds after stimulus; P3 – positive peak 300 milliseconds after stimulus Keywords: brain waves; EEG; FFT. Introduction For many people across cultures, music The behavioral relationship between is a common form of entertainment. Dillman- music preference and other personal Carpentier and Potter (2007) suggested that characteristics, such as those studied by music is an integral form of human Rentfrow and Gosling (2003), is evident. communication used to relay emotion, group However, the neurological bases of preference identity, and even political information. need to be studied more extensively in order to Although the scientific study of music has be understood.
    [Show full text]
  • Quantitative EEG (QEEG) Analysis of Emotional Interaction Between Abusers and Victims in Intimate Partner Violence: a Pilot Study
    brain sciences Article Quantitative EEG (QEEG) Analysis of Emotional Interaction between Abusers and Victims in Intimate Partner Violence: A Pilot Study Hee-Wook Weon 1, Youn-Eon Byun 2 and Hyun-Ja Lim 3,* 1 Department of Brain & Cognitive Science, Seoul University of Buddhism, Seoul 08559, Korea; [email protected] 2 Department of Youth Science, Kyonggi University, Suwon 16227, Korea; [email protected] 3 Department of Community Health & Epidemiology, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada * Correspondence: [email protected] Abstract: Background: The perpetrators of intimate partner violence (IPV) and their victims have different emotional states. Abusers typically have problems associated with low self-esteem, low self-awareness, violence, anger, and communication, whereas victims experience mental distress and physical pain. The emotions surrounding IPV for both abuser and victim are key influences on their behavior and their relationship. Methods: The objective of this pilot study was to examine emotional and psychological interactions between IPV abusers and victims using quantified electroencephalo- gram (QEEG). Two abuser–victim case couples and one non-abusive control couple were recruited from the Mental Image Recovery Program for domestic violence victims in Seoul, South Korea, from Citation: Weon, H.-W.; Byun, Y.-E.; 7–30 June 2017. Data collection and analysis were conducted using BrainMaster and NeuroGuide. Lim, H.-J. Quantitative EEG (QEEG) The emotional pattern characteristics between abuser and victim were examined and compared to Analysis of Emotional Interaction those of the non-abusive couple. Results: Emotional states and reaction patterns were different for between Abusers and Victims in the non-abusive and IPV couples.
    [Show full text]
  • QUANTITATIVE BRAIN ELECTRICAL ACTIVITY in the INITIAL SCREENING of MILD TRAUMATIC BRAIN INJURIES AFTER BLAST By
    Wayne State University Wayne State University Theses 1-1-2015 Quantitative Brain Electrical Activity In The nitI ial Screening Of Mild Traumatic Brain Injuries After Blast Chengpeng Zhou Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Zhou, Chengpeng, "Quantitative Brain Electrical Activity In The nitI ial Screening Of Mild Traumatic Brain Injuries After Blast" (2015). Wayne State University Theses. Paper 442. This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Theses by an authorized administrator of DigitalCommons@WayneState. QUANTITAITVE BRAIN ELECTRICAL ACTIVITY IN THE INITIAL SCREENING OF MILD TRAUMATIC BRAIN INJURIES AFTER BLAST by CHENGPENG ZHOU THESIS Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE 2015 MAJOR: BIOMEDICAL ENGINEERING Approved by: ____________________________________ Advisor Date © COPYRIGHT BY CHENGPENG ZHOU 2015 All Rights Reserved DEDICATION I dedicate my work to my family ii ACKNOWLEDGEMENTS First and foremost, I would like to thank God for giving me the strength to go through the Master journey in Biomedical Engineering. I would like to thank my mother, Mrs. Jurong Chen, for her love and constant support. I can finish my work today, because she was always ready to give everything! Thank you for your selfless love; you give me strength to continue my work and study. I would like to thank Dr. Chaoyang Chen, my mentor and my advisor, for giving me the chance to work in his lab.
    [Show full text]
  • The Electroencephalogram (EEG)
    iWorx Physiology Lab Experiment Experiment HP-1 The Electroencephalogram (EEG) Note: The lab presented here is intended for evaluation purposes only. iWorx users should refer to the User Area on www.iworx.com for the most current versions of labs and LabScribe2 Software. iWorx Systems, Inc. www.iworx.com iWorx Systems, Inc. 62 Littleworth Road, Dover, New Hampshire 03820 (T) 800-234-1757 / 603-742-2492 (F) 603-742-2455 LabScribe2 is a trademark of iWorx Systems, Inc. ©2013 iWorx Systems, Inc. Experiment HP-1: The Electroencephalogram (EEG) Background The living brain produces a continuous output of small electrical signals, often referred to as brain waves. The recording of these signals, called an electroencephalogram (EEG), is the summation of all the postsynaptic potentials (EPSPs and IPSPs) of the neurons in the cerebral cortex. The amplitudes of these signals are so small that they are measured in microvolts which are millionths of a volt or thousandths of a millivolt. Though they are small, the signals can be accurately detected and recorded. The electrodes that pick up these signals are attached to the surface of the scalp. The signals are then amplified many thousands of times. The amplified signals are then recorded with an electroencephalograph, which is a device for recording brain waves. The iWorx data recording unit will function as both an amplifier and an electroencephalograph for the experiments in this chapter. EEG Parameters The electroencephalograph is a continuous recording of waves of varying frequency and amplitude. The number of wave cycles or peaks that occurs in a EEG pattern in a set period of time is its frequency.
    [Show full text]
  • Learning Alters Theta-Nested Gamma Oscillations in Inferotemporal Cortex
    Learning alters theta-nested gamma oscillations in inferotemporal cortex Keith M Kendrick1, Yang Zhan1, Hanno Fischer1 Ali U Nicol1 Xuejuan Zhang 2 & Jianfeng Feng3 1Cognitive and Behavioural Neuroscience, The Babraham Institute, Cambridge, CB22 3AT, UK 2Mathematics Department, Zhejiang Normal University, Jinhua 321004, Zhejian Province, PR China 3Department of Computer Science, Warwick University, Coventry CV4 7AL UK and Centre for Computational Systems Biology, Fudan University, Shanghai, PR China. Corresponding authors: [email protected] [email protected] 1 How coupled brain rhythms influence cortical information processing to support learning is unresolved. Local field potential and neuronal activity recordings from 64- electrode arrays in sheep inferotemporal cortex showed that visual discrimination learning increased the amplitude of theta oscillations during stimulus presentation. Coupling between theta and gamma oscillations, the theta/gamma ratio and the regularity of theta phase were also increased, but not neuronal firing rates. A neural network model with fast and slow inhibitory interneurons was developed which generated theta nested gamma. By increasing N-methyl-D-aspartate receptor sensitivity similar learning-evoked changes could be produced. The model revealed that altered theta nested gamma could potentiate downstream neuron responses by temporal desynchronization of excitatory neuron output independent of changes in overall firing frequency. This learning-associated desynchronization was also exhibited by inferotemporal cortex neurons. Changes in theta nested gamma may therefore facilitate learning-associated potentiation by temporal modulation of neuronal firing. The functions of both low and high frequency oscillations in the brain have been the subject of considerable speculation1. Low frequency theta oscillations (4-8Hz) have been observed to increase in terms of power and phase-locked discharge of single neurons in a visual memory task2.
    [Show full text]
  • Measuring Sleep Quality from EEG with Machine Learning Approaches
    Measuring Sleep Quality from EEG with Machine Learning Approaches Li-Li Wang, Wei-Long Zheng, Hai-Wei Ma, and Bao-Liang Lu∗ Center for Brain-like Computing and Machine Intelligence Department of Computer Science and Engineering Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Brain Science and Technology Research Center Shanghai Jiao Tong University, Shanghai, 200240, China Abstract—This study aims at measuring last-night sleep quality Index [2], Epworth Sleep Scale [3], and Sleep Diaries [4]. from electroencephalography (EEG). We design a sleep ex- However, we have no way of knowing whether the respondents periment to collect waking EEG signals from eight subjects are honest, conscientious, responsible for self assessment and under three different sleep conditions: 8 hours sleep, 6 hours sleep, and 4 hours sleep. We utilize three machine learning related records and in many cases they may provide false approaches, k-Nearest Neighbor (kNN), support vector machine information or fill in the questionnaire not seriously. Secondly, (SVM), and discriminative graph regularized extreme learning the subjective evaluation method is more troublesome, time- machine (GELM), to classify extracted EEG features of power consuming and laborious, which requires participants to se- spectral density (PSD). The accuracies of these three classi- riously think about, a detailed answer, record relevant infor- fiers without feature selection are 36.68%, 48.28%, 62.16%, respectively. By using minimal-redundancy-maximal-relevance mation in time, in the meantime, experiment personnel also (MRMR) algorithm and the brain topography, the classification need a manual investigation and analysis of the information accuracy of GELM with 9 features is improved largely and in order to give a sleep quality evaluation and judgment of increased to 83.57% in average.
    [Show full text]
  • Rhythmic Masticatory Muscle Activity During Sleep: Etiology and Clinical Perspectives
    Université de Montréal Rhythmic Masticatory Muscle Activity during Sleep: Etiology and Clinical Perspectives par Maria Clotilde Carra Programme de Sciences Biomédicales Faculté de Médecine Thèse présentée à la Faculté de Médecine en vue de l’obtention du grade de Doctorat en Sciences Biomédicales option générale Juin, 2012 © Maria Clotilde Carra, 2012 Université de Montréal Faculté des études supérieures et postdoctorales Cette thèse intitulée: Rhythmic Masticatory Muscle Activity during Sleep: Etiology and Clinical Perspectives Présentée par: Maria Clotilde Carra a été évaluée par un jury composé des personnes suivantes : Dr Arlette Kolta, président-rapporteur Dr Gilles Lavigne, directeur de recherche Dr Roger Godbout, membre du jury Dr Celyne Bastien, examinateur externe Dr Antonio Zadra, représentant du doyen de la FES i Résumé L’activité rythmique des muscles masticateurs (ARMM) pendant le sommeil se retrouve chez environ 60% de la population générale adulte. L'étiologie de ce mouvement n'est pas encore complètement élucidée. Il est cependant démontré que l’augmentation de la fréquence des ARMM peut avoir des conséquences négatives sur le système masticatoire. Dans ce cas, l'ARMM est considérée en tant que manifestation d'un trouble moteur du sommeil connue sous le nom de bruxisme. Selon la Classification Internationale des Troubles du Sommeil, le bruxisme est décrit comme le serrement et grincement des dents pendant le sommeil. La survenue des épisodes d’ARMM est associée à une augmentation du tonus du système nerveux sympathique, du rythme cardiaque, de la pression artérielle et elle est souvent en association avec une amplitude respiratoire accrue. Tous ces événements peuvent être décrits dans le contexte d’un micro-éveil du sommeil.
    [Show full text]
  • Michelia Essential Oil Inhalation Increases Fast Alpha Wave Activity
    Scientia Pharmaceutica Article Michelia Essential Oil Inhalation Increases Fast Alpha Wave Activity Phanit Koomhin 1,2,3,*, Apsorn Sattayakhom 2,4, Supaya Chandharakool 4, Jennarong Sinlapasorn 4, Sarunnat Suanjan 4, Sarawoot Palipoch 1, Prasit Na-ek 1, Chuchard Punsawad 1 and Narumol Matan 2,5 1 School of Medicine, Walailak University, Nakhonsithammarat 80160, Thailand; [email protected] (S.P.); [email protected] (P.N.-e.); [email protected] (C.P.) 2 Center of Excellence in Innovation on Essential oil, Walailak University, Nakhonsithammarat 80160, Thailand; [email protected] (A.S.); [email protected] (N.M.) 3 Research Group in Applied, Computational and Theoretical Science (ACTS), Walailak University, Nakhonsithammarat 80160, Thailand 4 School of Allied Health Sciences, Walailak University, Nakhonsithammarat 80160, Thailand; [email protected] (S.C.); [email protected] (J.S.); [email protected] (S.S.) 5 School of Agricultural Technology, Walailak University, Nakhonsithammarat 80160, Thailand * Correspondence: [email protected]; Tel.: +66-95295-0550 Received: 13 February 2020; Accepted: 6 May 2020; Published: 9 May 2020 Abstract: Essential oils are volatile fragrance liquids extracted from plants, and their compound annual growth rate is expected to expand to 8.6% from 2019 to 2025, according to Grand View Research. Essential oils have several domains of application, such as in the food and beverage industry, in cosmetics, as well as for medicinal use. In this study, Michelia alba essential oil was extracted from leaves and was rich in linalool components as found in lavender and jasmine oil.
    [Show full text]
  • Diagnosing and Treating Trigeminal Neuralgia in General Dentistry
    general practice feature Chasing Pain Diagnosing and Treating Trigeminal Neuralgia in General Dentistry by Steven Olmos, DDS, DABCP, DABCDSM, DABDSM, DAAPM, FAAOP, FAACP, FICCMO, FADI, FIAO As dentists, we know quite a bit about tooth and gum pain, but when it comes to chronic facial pain and neuropathic pain, our dental school education leaves us unprepared. The objective of this article is to explain the differences between men and women with chronic orofacial pain and the relationship to proper functional breathing, using a case study as demonstration. 34 JANUARY 2016 // dentaltown.com general practice feature the United States, nearly half research published in Chest 2015 demonstrates that of all adults lived with chronic respiratory-effort-related arousal may be the most pain in 2011. Of 353,000 adults likely cause (nasal obstruction or mouth breath- 11 aged 18 years or older who were ing). Rising C02 (hypercapnia) in a patient with a surveyed by Gallup-Health- sleep-breathing disorder (including mouth breath- ways, 47 percent reported having at least one of ing) specifically stimulates the superficial masseter three types of chronic pain: neck or back pain, muscles to contract.12 knee or leg pain, or recurring pain.2 Identifying the structural area of obstruction A study published in The Journal of the Amer- (Four Points of Obstruction; Fig. 1) of the air- ican Dental Association October 2015 stated: way will insure the most effective treatment for a “One in six patients visiting a general dentist had sleep-breathing disorder and effectively reduce the experienced orofacial pain during the last year.
    [Show full text]
  • Psychological Construct
    Psychological construct A psychological construct, or hypothetical construct, is a concept that is ‘constructed’ to describe specific ‘psychological’ activity, or a pattern of activity, that is believed to occur or exist but cannot be directly observed. In studying an individual’s state of consciousness, researchers typically rely on: • Information provided by the individual (e.g. self-reports), and/or • Behaviour that is demonstrated (e.g. responses during experimental research), and/or • Physiological changes that can be measured (e.g. recording brain activity). Consciousness Consciousness is the awareness of objects and events in the external world, and of our sensations, mental experiences and own existence at any given moment. Whatever we are aware of at any given moment is commonly referred to as the contents of consciousness. The contents of consciousness can include anything you think, feel and physically or mentally experience; for example: • Your awareness of your internal sensations, such as your breathing and the beating of your heart. • Your awareness of your surroundings, such as your perceptions of where you are, who you are with and what you see, hear, feel or smell. • Your awareness of yourself as the unique person having these sensory and perceptual experiences. • The memories of personal experiences throughout your life. • The comments you make to yourself. • Your beliefs and attitudes. • Your plans for activities later in the day. Consciousness is an experience — a moment by moment experience that is essential to what it means to be human. The experience is commonly described as being personal, selective, continuous and changing. Consciousness is personal because it is your subjective (‘personalised’) understanding of both your unique internal world and the external environment — it is individual to you.
    [Show full text]