Efficient Cryptanalysis of Homophonic Substitution Ciphers
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Enhancing the Security of Caesar Cipher Substitution Method Using a Randomized Approach for More Secure Communication
International Journal of Computer Applications (0975 – 8887) Volume 129 – No.13, November2015 Enhancing the Security of Caesar Cipher Substitution Method using a Randomized Approach for more Secure Communication Atish Jain Ronak Dedhia Abhijit Patil Dept. of Computer Engineering Dept. of Computer Engineering Dept. of Computer Engineering D.J. Sanghvi College of D.J. Sanghvi College of D.J. Sanghvi College of Engineering Engineering Engineering Mumbai University, Mumbai, Mumbai University, Mumbai, Mumbai University, Mumbai, India India India ABSTRACT communication can be encoded to prevent their contents from Caesar cipher is an ancient, elementary method of encrypting being disclosed through various techniques like interception plain text message into cipher text protecting it from of message or eavesdropping. Different ways include using adversaries. However, with the advent of powerful computers, ciphers, codes, substitution, etc. so that only the authorized there is a need for increasing the complexity of such people can view and interpret the real message correctly. techniques. This paper contributes in the area of classical Cryptography concerns itself with four main objectives, cryptography by providing a modified and expanded version namely, 1) Confidentiality, 2) Integrity, 3) Non-repudiation for Caesar cipher using knowledge of mathematics and and 4) Authentication. [1] computer science. To increase the strength of this classical Cryptography is divided into two types, Symmetric key and encryption technique, the proposed modified algorithm uses Asymmetric key cryptography. In Symmetric key the concepts of affine ciphers, transposition ciphers and cryptography a single key is shared between sender and randomized substitution techniques to create a cipher text receiver. The sender uses the shared key and encryption which is nearly impossible to decode. -
Simple Substitution and Caesar Ciphers
Spring 2015 Chris Christensen MAT/CSC 483 Simple Substitution Ciphers The art of writing secret messages – intelligible to those who are in possession of the key and unintelligible to all others – has been studied for centuries. The usefulness of such messages, especially in time of war, is obvious; on the other hand, their solution may be a matter of great importance to those from whom the key is concealed. But the romance connected with the subject, the not uncommon desire to discover a secret, and the implied challenge to the ingenuity of all from who it is hidden have attracted to the subject the attention of many to whom its utility is a matter of indifference. Abraham Sinkov In Mathematical Recreations & Essays By W.W. Rouse Ball and H.S.M. Coxeter, c. 1938 We begin our study of cryptology from the romantic point of view – the point of view of someone who has the “not uncommon desire to discover a secret” and someone who takes up the “implied challenged to the ingenuity” that is tossed down by secret writing. We begin with one of the most common classical ciphers: simple substitution. A simple substitution cipher is a method of concealment that replaces each letter of a plaintext message with another letter. Here is the key to a simple substitution cipher: Plaintext letters: abcdefghijklmnopqrstuvwxyz Ciphertext letters: EKMFLGDQVZNTOWYHXUSPAIBRCJ The key gives the correspondence between a plaintext letter and its replacement ciphertext letter. (It is traditional to use small letters for plaintext and capital letters, or small capital letters, for ciphertext. We will not use small capital letters for ciphertext so that plaintext and ciphertext letters will line up vertically.) Using this key, every plaintext letter a would be replaced by ciphertext E, every plaintext letter e by L, etc. -
Classifying Classic Ciphers Using Machine Learning
San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 5-20-2019 Classifying Classic Ciphers using Machine Learning Nivedhitha Ramarathnam Krishna San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects Part of the Artificial Intelligence and Robotics Commons, and the Information Security Commons Recommended Citation Krishna, Nivedhitha Ramarathnam, "Classifying Classic Ciphers using Machine Learning" (2019). Master's Projects. 699. DOI: https://doi.org/10.31979/etd.xkgs-5gy6 https://scholarworks.sjsu.edu/etd_projects/699 This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. Classifying Classic Ciphers using Machine Learning A Project Presented to The Faculty of the Department of Computer Science San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Nivedhitha Ramarathnam Krishna May 2019 © 2019 Nivedhitha Ramarathnam Krishna ALL RIGHTS RESERVED The Designated Project Committee Approves the Project Titled Classifying Classic Ciphers using Machine Learning by Nivedhitha Ramarathnam Krishna APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE SAN JOSÉ STATE UNIVERSITY May 2019 Dr. Mark Stamp Department of Computer Science Dr. Thomas Austin Department of Computer Science Professor Fabio Di Troia Department of Computer Science ABSTRACT Classifying Classic Ciphers using Machine Learning by Nivedhitha Ramarathnam Krishna We consider the problem of identifying the classic cipher that was used to generate a given ciphertext message. -
Provable Security Evaluation of Structures Against Impossible Differential and Zero Correlation Linear Cryptanalysis ⋆
Provable Security Evaluation of Structures against Impossible Differential and Zero Correlation Linear Cryptanalysis ⋆ Bing Sun1,2,4, Meicheng Liu2,3, Jian Guo2, Vincent Rijmen5, Ruilin Li6 1 College of Science, National University of Defense Technology, Changsha, Hunan, P.R.China, 410073 2 Nanyang Technological University, Singapore 3 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, P.R. China, 100093 4 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing, P.R. China, 100878 5 Dept. Electrical Engineering (ESAT), KU Leuven and iMinds, Belgium 6 College of Electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, P.R.China, 410073 happy [email protected] [email protected] [email protected] [email protected] [email protected] Abstract. Impossible differential and zero correlation linear cryptanal- ysis are two of the most important cryptanalytic vectors. To character- ize the impossible differentials and zero correlation linear hulls which are independent of the choices of the non-linear components, Sun et al. proposed the structure deduced by a block cipher at CRYPTO 2015. Based on that, we concentrate in this paper on the security of the SPN structure and Feistel structure with SP-type round functions. Firstly, we prove that for an SPN structure, if α1 → β1 and α2 → β2 are possi- ble differentials, α1|α2 → β1|β2 is also a possible differential, i.e., the OR “|” operation preserves differentials. Secondly, we show that for an SPN structure, there exists an r-round impossible differential if and on- ly if there exists an r-round impossible differential α → β where the Hamming weights of both α and β are 1. -
Theory and Practice of Cryptography: Lecture 1
Theory and Practice of Cryptography From Classical to Modern About this Course All course materials: http://saweis.net/crypto.shtml Four Lectures: 1. History and foundations of modern cryptography. 2. Using cryptography in practice and at Google. 3. Theory of cryptography: proofs and definitions. 4. A special topic in cryptography. Classic Definition of Cryptography Kryptósgráfo , or the art of "hidden writing", classically meant hiding the contents or existence of messages from an adversary. Informally, encryption renders the contents of a message unintelligible to anyone not possessing some secret information. Steganography, or "covered writing", is concerned with hiding the existence of a message -- often in plain sight. Scytale Transposition Cipher Caesar Substitution Cipher Zodiac Cipher Vigenère Polyalphabetic Substitution Key: GOOGLE Plaintext: BUYYOUTUBE Ciphertext: HIMEZYZIPK Rotor-based Polyalphabetic Ciphers Steganography He rodotus tattoo and wax tablets Inv is ible ink Mic rodots "Th e Finger" Priso n gang codes Low-order bits Codes Codes replace a specific piece of plaintext with a predefined code word. Codes are essentially a substitution cipher, but can replace strings of symbols rather than just individual symbols. Examples: "One if by land, two if by sea." Beale code Numbers stations ECB Mode Kerckhoffs' Principle A cryptosystem should be secure even if everything about it is public knowledge except the secret key. Do not rely on "security through obscurity". One-Time Pads Generate a random key of equal length to your message, then exclusive-or (XOR) the key with your message. This is information theoretically secure...but: "To transmit a large secret message, first transmit a large secret message" One time means one time. -
Recommendation for Block Cipher Modes of Operation Methods
NIST Special Publication 800-38A Recommendation for Block 2001 Edition Cipher Modes of Operation Methods and Techniques Morris Dworkin C O M P U T E R S E C U R I T Y ii C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 December 2001 U.S. Department of Commerce Donald L. Evans, Secretary Technology Administration Phillip J. Bond, Under Secretary of Commerce for Technology National Institute of Standards and Technology Arden L. Bement, Jr., Director iii Reports on Information Security Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication 800-series reports on ITL’s research, guidance, and outreach efforts in computer security, and its collaborative activities with industry, government, and academic organizations. Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. -
Polish Mathematicians Finding Patterns in Enigma Messages
Fall 2006 Chris Christensen MAT/CSC 483 Machine Ciphers Polyalphabetic ciphers are good ways to destroy the usefulness of frequency analysis. Implementation can be a problem, however. The key to a polyalphabetic cipher specifies the order of the ciphers that will be used during encryption. Ideally there would be as many ciphers as there are letters in the plaintext message and the ordering of the ciphers would be random – an one-time pad. More commonly, some rotation among a small number of ciphers is prescribed. But, rotating among a small number of ciphers leads to a period, which a cryptanalyst can exploit. Rotating among a “large” number of ciphers might work, but that is hard to do by hand – there is a high probability of encryption errors. Maybe, a machine. During World War II, all the Allied and Axis countries used machine ciphers. The United States had SIGABA, Britain had TypeX, Japan had “Purple,” and Germany (and Italy) had Enigma. SIGABA http://en.wikipedia.org/wiki/SIGABA 1 A TypeX machine at Bletchley Park. 2 From the 1920s until the 1970s, cryptology was dominated by machine ciphers. What the machine ciphers typically did was provide a mechanical way to rotate among a large number of ciphers. The rotation was not random, but the large number of ciphers that were available could prevent depth from occurring within messages and (if the machines were used properly) among messages. We will examine Enigma, which was broken by Polish mathematicians in the 1930s and by the British during World War II. The Japanese Purple machine, which was used to transmit diplomatic messages, was broken by William Friedman’s cryptanalysts. -
Index-Of-Coincidence.Pdf
The Index of Coincidence William F. Friedman in the 1930s developed the index of coincidence. For a given text X, where X is the sequence of letters x1x2…xn, the index of coincidence IC(X) is defined to be the probability that two randomly selected letters in the ciphertext represent, the same plaintext symbol. For a given ciphertext of length n, let n0, n1, …, n25 be the respective letter counts of A, B, C, . , Z in the ciphertext. Then, the index of coincidence can be computed as 25 ni (ni −1) IC = ∑ i=0 n(n −1) We can also calculate this index for any language source. For some source of letters, let p be the probability of occurrence of the letter a, p be the probability of occurrence of a € b the letter b, and so on. Then the index of coincidence for this source is 25 2 Isource = pa pa + pb pb +…+ pz pz = ∑ pi i=0 We can interpret the index of coincidence as the probability of randomly selecting two identical letters from the source. To see why the index of coincidence gives us useful information, first€ note that the empirical probability of randomly selecting two identical letters from a large English plaintext is approximately 0.065. This implies that an (English) ciphertext having an index of coincidence I of approximately 0.065 is probably associated with a mono-alphabetic substitution cipher, since this statistic will not change if the letters are simply relabeled (which is the effect of encrypting with a simple substitution). The longer and more random a Vigenere cipher keyword is, the more evenly the letters are distributed throughout the ciphertext. -
The Enigma Cipher Machine
The Enigma Cipher Machine Anna Hurlbut 2018-11-27 Abstract The Enigma cipher machine was invented in the early 1920s to help businesses protect commercial secrets, but the German military soon saw its potential application to military communications. By the mid-1930s, every branch of the German military was using Enigma for nearly all their encrypted communications. The electromechanical cipher machine works using a system of wires, rotors, a reflector and a plugboard to send an electrical signal from the keyboard to the lampboard, encrypting each message letter by letter. Enigma masterfully balances ease of use and security, the opposing forces of any cryptosystem. The key space is ap- proximately 15 million million million, and it could be compared to a Vigen´erecipher with a key length of 16900. Though it seemed infallible, the infamous machine eventually failed. While the cryptosystem did have inherent technical flaws, its defeat was mainly a result of errors in human operation. British intelligence at Bletchley Park was able to find patterns in German messages and used these patterns as cracks to break into the entire system. Enigma represents a vital moment in the field of cryptogra- phy. It initiated the transition from by-hand methods to automated and mechanized methods and acted as a catalyst for the development of com- puters. Additionally, Enigma's ultimate failure illustrated the inadequacy of security through obscurity and pointed the future of cryptography to- wards more advanced methods. 1 Contents 1 Historical Context 3 2 Cryptography Basics and Simple Substitution Ciphers 4 2.1 Caesar Cipher . 6 3 The Vigen´ereCipher 6 3.1 Vigen´ereCryptanalysis . -
Secure Communications One Time Pad Cipher
Cipher Machines & Cryptology © 2010 – D. Rijmenants http://users.telenet.be/d.rijmenants THE COMPLETE GUIDE TO SECURE COMMUNICATIONS WITH THE ONE TIME PAD CIPHER DIRK RIJMENANTS Abstract : This paper provides standard instructions on how to protect short text messages with one-time pad encryption. The encryption is performed with nothing more than a pencil and paper, but provides absolute message security. If properly applied, it is mathematically impossible for any eavesdropper to decrypt or break the message without the proper key. Keywords : cryptography, one-time pad, encryption, message security, conversion table, steganography, codebook, message verification code, covert communications, Jargon code, Morse cut numbers. version 012-2011 1 Contents Section Page I. Introduction 2 II. The One-time Pad 3 III. Message Preparation 4 IV. Encryption 5 V. Decryption 6 VI. The Optional Codebook 7 VII. Security Rules and Advice 8 VIII. Appendices 17 I. Introduction One-time pad encryption is a basic yet solid method to protect short text messages. This paper explains how to use one-time pads, how to set up secure one-time pad communications and how to deal with its various security issues. It is easy to learn to work with one-time pads, the system is transparent, and you do not need special equipment or any knowledge about cryptographic techniques or math. If properly used, the system provides truly unbreakable encryption and it will be impossible for any eavesdropper to decrypt or break one-time pad encrypted message by any type of cryptanalytic attack without the proper key, even with infinite computational power (see section VII.b) However, to ensure the security of the message, it is of paramount importance to carefully read and strictly follow the security rules and advice (see section VII). -
John F. Byrne's Chaocipher Revealed
John F. Byrne’s Chaocipher Revealed John F. Byrne’s Chaocipher Revealed: An Historical and Technical Appraisal MOSHE RUBIN1 Abstract Chaocipher is a method of encryption invented by John F. Byrne in 1918, who tried unsuccessfully to interest the US Signal Corp and Navy in his system. In 1953, Byrne presented Chaocipher-encrypted messages as a challenge in his autobiography Silent Years. Although numerous students of cryptanalysis attempted to solve the challenge messages over the years, none succeeded. For ninety years the Chaocipher algorithm was a closely guarded secret known only to a handful of persons. Following fruitful negotiations with the Byrne family during the period 2009-2010, the Chaocipher papers and materials have been donated to the National Cryptologic Museum in Ft. Meade, MD. This paper presents a comprehensive historical and technical evaluation of John F. Byrne and his Chaocipher system. Keywords ACA, American Cryptogram Association, block cipher encryption modes, Chaocipher, dynamic substitution, Greg Mellen, Herbert O. Yardley, John F. Byrne, National Cryptologic Museum, Parker Hitt, Silent Years, William F. Friedman 1 Introduction John Francis Byrne was born on 11 February 1880 in Dublin, Ireland. He was an intimate friend of James Joyce, the famous Irish writer and poet, studying together in Belvedere College and University College in Dublin. Joyce based the character named Cranly in Joyce’s A Portrait of the Artist as a Young Man on Byrne, used Byrne’s Dublin residence of 7 Eccles Street as the home of Leopold and Molly Bloom, the main characters in Joyce’s Ulysses, and made use of real-life anecdotes of himself and Byrne as the basis of stories in Ulysses. -
An Upper Bound of the Longest Impossible Differentials of Several Block Ciphers
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 1, Jan. 2019 435 Copyright ⓒ 2019 KSII An Upper Bound of the Longest Impossible Differentials of Several Block Ciphers Guoyong Han1,2, Wenying Zhang1,* and Hongluan Zhao3 1 School of Information Science and Engineering, Shandong Normal University, Jinan, China [e-mail: [email protected]] 2 School of Management Engineering, Shandong Jianzhu University, Jinan, China [e-mail: [email protected]] 3 School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China *Corresponding author: Wenying Zhang Received January 29, 2018; revised June 6, 2018; accepted September 12, 2018; published January 31, 2019 Abstract Impossible differential cryptanalysis is an essential cryptanalytic technique and its key point is whether there is an impossible differential path. The main factor of influencing impossible differential cryptanalysis is the length of the rounds of the impossible differential trail because the attack will be more close to the real encryption algorithm with the number becoming longer. We provide the upper bound of the longest impossible differential trails of several important block ciphers. We first analyse the national standard of the Russian Federation in 2015, Kuznyechik, which utilizes the 16-byte LFSR to achieve the linear transformation. We conclude that there is no any 3-round impossible differential trail of the Kuznyechik without the consideration of the specific S-boxes. Then we ascertain the longest impossible differential paths of several other important block ciphers by using the matrix method which can be extended to many other block ciphers. As a result, we show that, unless considering the details of the S-boxes, there is no any more than or equal to 5-round, 7-round and 9-round impossible differential paths for KLEIN, Midori64 and MIBS respectively.