Identification of Differentially Expressed Genes in Actinic Keratosis Samples Treated with Ingenol Mebutate Gel

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Differentially Expressed Genes in Actinic Keratosis Samples Treated with Ingenol Mebutate Gel PLOS ONE RESEARCH ARTICLE Identification of differentially expressed genes in actinic keratosis samples treated with ingenol mebutate gel Sonia Segura1, Alejandra Gadea2,3, Lara Nonell4, Evelyn Andrades2, Silvia SaÂnchez2, 1 2 5,6 Ramon Pujol , Inmaculada HernaÂndez-Muñoz , Agustõ TollID * 1 Department of Dermatology, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain, 2 Group of Inflamatory and Neoplasic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, a1111111111 Spain, 3 Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Paul Pascal (CRPP), a1111111111 Universite de Bordeaux, Pessac, France, 4 MARGenomics, IMIM (Hospital del Mar Medical Research a1111111111 Institute), Barcelona, Spain, 5 Department of Dermatology, Hospital ClõÂnic de Barcelona, University of a1111111111 Barcelona, Barcelona, Spain, 6 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain a1111111111 * [email protected] OPEN ACCESS Abstract Citation: Segura S, Gadea A, Nonell L, Andrades E, Actinic keratosis is a common skin disease that may progress to invasive squamous cell car- SaÂnchez S, Pujol R, et al. (2020) Identification of cinoma if left untreated. Ingenol mebutate has demonstrated efficacy in field treatment of differentially expressed genes in actinic keratosis samples treated with ingenol mebutate gel. PLoS actinic keratosis. However, molecular mechanisms on ingenol mebutate response are not ONE 15(5): e0232146. https://doi.org/10.1371/ yet fully understood. In this study, we evaluated the gene expression profiles of actinic kera- journal.pone.0232146 tosis lesions before and after treatment with ingenol mebutate using microarray technology. Editor: Liang Liu, University of Minnesota, UNITED Actinic keratoses on face/scalp of 15 immunocompetent patients were identified and evalu- STATES ated after treatment with topical ingenol mebutate gel 0.015%, applied once daily for 3 con- Received: December 18, 2019 secutive days. Diagnostic and clearance of lesions was determined by clinical, Accepted: April 7, 2020 dermoscopic, and reflectance confocal microscopy criteria. Lesional and non-lesional skin biopsies were subjected to gene expression analysis profiled by Affymetrix microarray. Dif- Published: May 15, 2020 ferentially expressed genes were identified, and enrichment analyses were performed using Copyright: © 2020 Segura et al. This is an open STRING database. At 8 weeks post-treatment, 60% of patients responded to ingenol mebu- access article distributed under the terms of the Creative Commons Attribution License, which tate therapy, achieving complete clearance in 40% of cases. A total of 128 differentially permits unrestricted use, distribution, and expressed genes were identified following treatment, and downregulated genes (114 of reproduction in any medium, provided the original 128) revealed changes in pathways important to epidermal development, keratinocyte dif- author and source are credited. ferentiation and cornification. In responder patients, 388 downregulated genes (of 450 differ- Data Availability Statement: All microarray data entially expressed genes) were also involved in development/differentiation of the files are available from the Gene Expression epidermis, and immune system-related pathways, such as cytokine and interleukin signal- Omnibus database (accession number GSE142108). ing. Cluster analysis revealed two relevant clusters showing upregulated profile patterns in pre-treatment actinic keratoses of responders, as compared to non-responders. Again, dif- Funding: Funding Source: This study was sponsored by LEO Pharma S.A. (http://www.leo- ferentially expressed genes were mainly associated with cornification, keratinization and pharma.es/). The sponsor had no role in study keratinocyte differentiation. Overall, the present study provides insight into the gene expres- design, collection and analysis, decisioÂn to publish, sion profile of actinic keratoses after treatment with ingenol mebutate, as well as identifica- or preparation of the manuscript. tion of genetic signatures that could predict treatment response. Competing interests: Agustõ Toll received research funds from LEO Pharma S.A. for this work. The PLOS ONE | https://doi.org/10.1371/journal.pone.0232146 May 15, 2020 1 / 20 PLOS ONE Gene profiles of ingenol-treated actinic keratoses other authors have indicated they have no financial Introduction relationships or conflicts of interest to disclose. This does not alter our adherence to PLOS ONE Actinic keratosis (AK) is a common skin disease characterized by thick, scaly, cutaneous policies on sharing data and materials. lesions on chronic sun-exposed areas, and histologically by atypical keratinocytes extending to the basal layer of the epidermis, that may progress to invasive squamous cell carcinoma (SCC) if left untreated [1,2]. The risk to develop a cutaneous SCC is approximately 0.03±20% per year for any single lesion [3±6], and the risk of malignant progression for a patient affected by mul- tiple AK lesions has been estimated within a wide range between 0.15% and 80% [7]. The high- est malignant transformation rates are found in males, elderly patients, individuals with phototypes I and II, human papillomavirus infection, a family history of skin cancer, and in immune-suppressed individuals [8±10]. However, despite the advances in the recognition of clinic, dermoscopic and histologic patterns, it is not yet possible to predict which lesions will advance to SCC [11]. For this reason, an early diagnosis and effective treatment are recommended. There are many variables that may influence the therapy choice in an individual, such as the number and location of lesions, age and immunological status of the patient, personal his- tory of previous skin lesions and previous treatments [11]. Nevertheless, since AKs are usually multiple and often subclinical, a field-directed approach is suggested to remove clinically visi- ble as well as non-visible lesions within the treatment area to prevent the development to inva- sive SCC [12]. Among the topical field therapies available, ingenol mebutate (IM) has demonstrated to be an ef-fective and well tolerated option for the treatment of AK, with a simple dosing regimen and a short treating course [13,14]. However, the precise mechanism of action by which the drug induces cell death is not fully understood, neither are the molecular mechanisms involved in the lack of response to IM. Herein, we report the results of a prospective study investigating the transcriptomic profile of AK lesions before and after treatment with IM gel. Our study included clinical and dermo- scopic evaluations together with a monitoring of the histological patterns of AKs by in vivo reflectance confocal microscopy (RCM), a non-invasive imaging technique. We also per- formed a comparative analysis of gene expression profiles of AKs responsive and unresponsive to the study treatment, in order to gain a better understanding of the molecular mechanisms involved and to identify potential genetic signatures of response to IM therapy. Materials and methods Study design and patient population This was a single-center, single-arm, prospective observational study conducted in Hospital del Mar in Barcelona from April 2016 to April 2018, to evaluate the mRNA expression profile of AKs before and after treatment with IM. We prospectively enrolled fifteen immunocompe- tent adult patients aged � 18 years, who were clinically diagnosed with at least one AK (grade I-II, according to Olsen's classification [15]) on the head and/or scalp larger than 8 mm in diameter. All patients were regularly being followed-up for previous history of non-melanoma skin cancer at the Skin Cancer Clinic of the Hospital del Mar. Patients could not have received any pharmacological treatment for AK within 6 months before inclusion. Subjects were excluded if they were pregnant, breastfeeding, or planning on becoming pregnant during the course of the trial. All individual participants received written and verbal information con- cerning the study, provided signed written informed consent, and allowed photographs of the selected treatment areas to be taken. Data confidentiality and anonymity will be ensured, according to the provisions of the Spanish Organic Law 3/2018, of December 5, on Personal PLOS ONE | https://doi.org/10.1371/journal.pone.0232146 May 15, 2020 2 / 20 PLOS ONE Gene profiles of ingenol-treated actinic keratoses Data Protection and Digital Rights, and the provisions of Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016. The study was approved by the local ethics committee (Comite EÂtico de InvestigacioÂn ClõÂnica- Parc de Salut Mar, nÊ 2016/6597/I) and conducted in accordance with the Declaration of Helsinki (Fortaleza, Brazil, October 2013). Study assessments At the initial screening visit (visit 0), participants provided informed consent, and study der- matologists collected demographic data and performed a clinical evaluation of the lesions on the head suggestive of AK. AK lesions larger than 8 mm in diameter were identified, evaluated, and subsequently monitored at the pre-treatment visit (visit 1), at 4±2 days after treatment (visit 2), and at 8±1 weeks after treatment (visit 3). Clinical assessment of AKs and photographs with a digital camera (Canon Powershot G101, OÅ ita, Japan) were made at each study visit. At visits 1 and 3, dermoscopic images (DermliteFoto1, 3Gen, San Juan
Recommended publications
  • Serpinb1 Controls Encephalitogenic T Helper Cells in Neuroinflammation
    SerpinB1 controls encephalitogenic T helper cells in neuroinflammation Lifei Houa,b,1,2, Deepak A. Raoc,d, Koichi Yukie,f, Jessica Cooleya, Lauren A. Hendersonb,g, A. Helena Jonssonc,d, Dion Kaisermanh, Mark P. Gormanb,i, Peter A. Nigrovicc,d,g, Phillip I. Birdh, Burkhard Becherj, and Eileen Remold-O’Donnella,b,k,2 aThe Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115; bDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115; cDivision of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115; dDepartment of Medicine, Harvard Medical School, Boston, MA 02115; eDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115; fDepartment of Anesthesiology, Harvard Medical School, Boston, MA 02115; gDivision of Immunology, Boston Children’s Hospital, Boston, MA 02115; hDepartment of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia; iDepartment of Neurology, Boston Children’s Hospital, Boston, MA 02115; jInflammation Unit, Institute of Experimental Immunology, University of Zurich, CH-8057 Zurich, Switzerland; and kDepartment of Hematology/Oncology, Harvard Medical School, Boston, MA 02115 Edited by Jean Laurent-Casanova, Rockefeller University, New York, NY, and approved August 27, 2019 (received for review April 5, 2019) SerpinB1, a protease inhibitor and neutrophil survival factor, was flammatory tissue injury and neutrophil death, and in naïve mice, recently linked with IL-17–expressing T cells. Here, we show that preserves the bone marrow reserve of mature neutrophils by serpinB1 (Sb1) is dramatically inducedinasubsetofeffector restricting spontaneous cell death mediated by the granule serine CD4 cells in experimental autoimmune encephalomyelitis (EAE).
    [Show full text]
  • Old Data and Friends Improve with Age: Advancements with the Updated Tools of Genenetwork
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445383; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Old data and friends improve with age: Advancements with the updated tools of GeneNetwork Alisha Chunduri1, David G. Ashbrook2 1Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India 2Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA Abstract Understanding gene-by-environment interactions is important across biology, particularly behaviour. Families of isogenic strains are excellently placed, as the same genome can be tested in multiple environments. The BXD’s recent expansion to 140 strains makes them the largest family of murine isogenic genomes, and therefore give great power to detect QTL. Indefinite reproducible genometypes can be leveraged; old data can be reanalysed with emerging tools to produce novel biological insights. To highlight the importance of reanalyses, we obtained drug- and behavioural-phenotypes from Philip et al. 2010, and reanalysed their data with new genotypes from sequencing, and new models (GEMMA and R/qtl2). We discover QTL on chromosomes 3, 5, 9, 11, and 14, not found in the original study. We narrowed down the candidate genes based on their ability to alter gene expression and/or protein function, using cis-eQTL analysis, and variants predicted to be deleterious. Co-expression analysis (‘gene friends’) and human PheWAS were used to further narrow candidates.
    [Show full text]
  • Biomarkers of Neonatal Skin Barrier Adaptation Reveal Substantial Differences Compared to Adult Skin
    www.nature.com/pr CLINICAL RESEARCH ARTICLE OPEN Biomarkers of neonatal skin barrier adaptation reveal substantial differences compared to adult skin Marty O. Visscher1,2, Andrew N. Carr3, Jason Winget3, Thomas Huggins3, Charles C. Bascom3, Robert Isfort3, Karen Lammers1 and Vivek Narendran1 BACKGROUND: The objective of this study was to measure skin characteristics in premature (PT), late preterm (LPT), and full-term (FT) neonates compared with adults at two times (T1, T2). METHODS: Skin samples of 61 neonates and 34 adults were analyzed for protein biomarkers, natural moisturizing factor (NMF), and biophysical parameters. Infant groups were: <34 weeks (PT), 34–<37 weeks (LPT), and ≥37 weeks (FT). RESULTS: Forty proteins were differentially expressed in FT infant skin, 38 in LPT infant skin, and 12 in PT infant skin compared with adult skin at T1. At T2, 40 proteins were differentially expressed in FT infants, 38 in LPT infants, and 54 in PT infants compared with adults. All proteins were increased at both times, except TMG3, S100A7, and PEBP1, and decreased in PTs at T1. The proteins are involved in filaggrin processing, protease inhibition/enzyme regulation, and antimicrobial function. Eight proteins were decreased in PT skin compared with FT skin at T1. LPT and FT proteins were generally comparable at both times. Total NMF was lower in infants than adults at T1, but higher in infants at T2. CONCLUSIONS: Neonates respond to the physiological transitions at birth by upregulating processes that drive the production of lower pH of the skin and water-binding NMF components, prevent protease activity leading to desquamation, and increase the 1234567890();,: barrier antimicrobial properties.
    [Show full text]
  • A Truncating Mutation in SERPINB6 Is Associated with Autosomal-Recessive Nonsyndromic Sensorineural Hearing Loss
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REPORT A Truncating Mutation in SERPINB6 Is Associated with Autosomal-Recessive Nonsyndromic Sensorineural Hearing Loss Aslı Sırmacı,1,2 Seyra Erbek,3 Justin Price,1,2 Mingqian Huang,4 Duygu Duman,5 F. Basxak Cengiz,5 Gu¨ney Bademci,1,2 Suna Tokgo¨z-Yılmaz,5 Burcu Hisxmi,5 Hilal O¨ zdag˘,6 Banu O¨ ztu¨rk,7 Sevsen Kulaksızog˘lu,8 Erkan Yıldırım,9 Haris Kokotas,10 Maria Grigoriadou,10 Michael B. Petersen,10 Hashem Shahin,11 Moien Kanaan,11 Mary-Claire King,12 Zheng-Yi Chen,4 Susan H. Blanton,1,2 Xue Z. Liu,2,13 Stephan Zuchner,1,2 Nejat Akar,5 and Mustafa Tekin1,2,* More than 270 million people worldwide have hearing loss that affects normal communication. Although astonishing progress has been made in the identification of more than 50 genes for deafness during the past decade, the majority of deafness genes are yet to be identified. In this study, we mapped a previously unknown autosomal-recessive nonsyndromic sensorineural hearing loss locus (DFNB91) to chromo- some 6p25 in a consanguineous Turkish family. The degree of hearing loss was moderate to severe in affected individuals. We subsequently identified a nonsense mutation (p.E245X) in SERPINB6, which is located within the linkage interval for DFNB91 and encodes for an intra- cellular protease inhibitor. The p.E245X mutation cosegregated in the family as a completely penetrant autosomal-recessive trait and was absent in 300 Turkish controls. The mRNA expression of SERPINB6 was reduced and production of protein was absent in the peripheral leukocytes of homozygotes, suggesting that the hearing loss is due to loss of function of SERPINB6.
    [Show full text]
  • Leukaemia Section
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Leukaemia Section Short Communication t(4;9)(q21.22;p24) SEC31A/JAK2 Julie Sanford Biggerstaff Idaho Cytogenetics Diagnostic Laboratory, Boise, ID 83706, USA; [email protected] Published in Atlas Database: April 2017 Online updated version : http://AtlasGeneticsOncology.org/Anomalies/t0409q21p24ID1682.html Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/68905/04-2017-t0409q21p24ID1682.pdf DOI: 10.4267/2042/68905 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2018 Atlas of Genetics and Cytogenetics in Oncology and Haematology Abstract Cytogenetics Review on t(4;9)(q21.22;p24) SEC31A/JAK2, with data on clinics, and the genes involved. Cytogenetics morphological KEYWORDS JAK2 breakapart (commonly available). Chromosome 4; chromosome 9; translocation; SEC31A; JAK2; Hodgkin Lymphoma Genes involved and Clinics and pathology proteins SEC31A (SEC31 homolog A, COPII Disease coat complex component) Hodgkin Lymphoma Location Phenotype/cell stem origin 4q21.22 Hodgkin and Reed-Sternberg cells, which derive DNA/RNA from pre-apoptotic crippled germinal center (GC) B- gene is 72,606 bp with 25 exons; transcribed from cells, are positive for CD30, CD15, CD40 and the - strand; coding region is 62,863 bp with 24 IRF4/MUM1 exons Epidemiology Protein Hodgkin lymphoma itself is common, but this 1166 amnio acids. Protein transport protein SEC31A particular translocation may be rare within the is ubiquitously expressed and forms part of the coat disorder. However, it is not often assayed for; found protein complex II (COPII) which is comprised of at in 2/131 cHL cases examined: a M/31 with nodular least four other proteins in addition to SEC31A this sclerosis cHL, alive 60 mths after diagnosis; and a complex is involved in formation of transport M/83 with lymphocyte-depleted cHL who died at vesicles from the ER to Golgi.
    [Show full text]
  • Low P66shc with High Serpinb3 Levels Favors Necroptosis and Better Survival in Hepatocellular Carcinoma
    biology Article Low P66shc with High SerpinB3 Levels Favors Necroptosis and Better Survival in Hepatocellular Carcinoma Silvano Fasolato 1, Mariagrazia Ruvoletto 1 , Giorgia Nardo 2, Andrea Rasola 3, Marco Sciacovelli 3, Giacomo Zanus 4,5, Cristian Turato 6 , Santina Quarta 1 , Liliana Terrin 1, Gian Paolo Fadini 1 , Giulio Ceolotto 1, Maria Guido 1, Umberto Cillo 4,7, Stefano Indraccolo 2,4, Paolo Bernardi 3 and Patrizia Pontisso 1,* 1 Department of Medicine, University of Padua, Via Giustiniani, 2, 35128 Padua, Italy; [email protected] (S.F.); [email protected] (M.R.); [email protected] (S.Q.); [email protected] (L.T.); [email protected] (G.P.F.); [email protected] (G.C.); [email protected] (M.G.) 2 Istituto Oncologico Veneto IOV- IRCCS, 35128 Padua, Italy; [email protected] (G.N.); [email protected] (S.I.) 3 Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; [email protected] (A.R.); [email protected] (M.S.); [email protected] (P.B.) 4 Department of Surgical, Oncological and Gastroenterological Sciences-DISCOG, University of Padua, 35128 Padua, Italy; [email protected] (G.Z.); [email protected] (U.C.); [email protected] (S.I) 5 Hepatobiliary and Pancreatic Surgery Unit-Treviso Hospital, 31100 Treviso, Italy 6 Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; [email protected] 7 Unit of Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, 35128 Padua, Italy * Correspondence: [email protected]; Tel.: +39-049-821-7872; Fax: +39-049-875-4179 Citation: Fasolato, S.; Ruvoletto, M.; Simple Summary: Cell proliferation and escape from apoptosis are important pathological features Nardo, G.; Rasola, A.; Sciacovelli, M.; of hepatocellular carcinoma, one of the tumors with the highest mortality rate worldwide.
    [Show full text]
  • SERPINB3/4 Polyclonal Antibody
    PRODUCT DATA SHEET Bioworld Technology,Inc. SERPINB3/4 polyclonal antibody Catalog: BS60990 Host: Rabbit Reactivity: Human,Mouse,Rat BackGround: Swiss-Prot: Metastasis of a primary tumor to a distant site is deter- P29508/P48594 mined through signaling cascades that break down inter- Purification&Purity: actions between the cell and extracellular matrix proteins. The antibody was affinity-purified from rabbit antiserum Among the proteins mediating metastasis are serine by affinity-chromatography using epitope-specific im- prote-ases, such as neutrophil elastase. In 1985, Dr. Jim munogen and the purity is > 95% (by SDS-PAGE). Travis and Dr. R.W. Carrell designated an emerging fam- Applications: ily of serine protease inhibitors as the serpin fam-ily, WB: 1:500~1:1000 which share homology in both primary amino acid se- Storage&Stability: quence and tertiary structure. Serpins contain a stretch of Store at 4°C short term. Aliquot and store at -20°C long peptide that mimics a true substrate for a corresponding term. Avoid freeze-thaw cycles. serine protease. Serine proteases bind to this substrate Specificity: mimic in a 1:1 stoichiometric fashion and become cata- SERPINB3/4 polyclonal antibody detects endogenous lytically inactive. Aberrant ex-pression of serpin family levels of SERPINB3/4 protein. members can contribute to a number of conditions, in- DATA: cluding emphysema (a-1 antitrypsin deficiency), fatal bleeding (elastase to thrombin specificity) and thrombosis (antithrombin deficiency), and are indicators of cancer stage phenotypes (circulating levels of squamous cell car- cinoma antigen, known as SCCA1, increase in advancing stages of some cervical, lung, esophageal and head and neck cancers).
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Plakophilin-2 Haploinsufficiency Causes Calcium Handling
    International Journal of Molecular Sciences Article Plakophilin-2 Haploinsufficiency Causes Calcium Handling Deficits and Modulates the Cardiac Response Towards Stress Chantal J.M. van Opbergen 1 , Maartje Noorman 1, Anna Pfenniger 2, Jaël S. Copier 1, Sarah H. Vermij 2,3 , Zhen Li 2, Roel van der Nagel 1, Mingliang Zhang 2, Jacques M.T. de Bakker 1,4, Aaron M. Glass 5, Peter J. Mohler 6,7, Steven M. Taffet 5, Marc A. Vos 1, Harold V.M. van Rijen 1, Mario Delmar 2 and Toon A.B. van Veen 1,* 1 Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584CM Utrecht, The Netherlands 2 Division of Cardiology, NYU School of Medicine, New York, NY 10016, USA 3 Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland 4 Department of Medical Biology, Academic Medical Center Amsterdam, 1105AZ Amsterdam, The Netherlands 5 Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA 6 Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA 7 Departments of Physiology & Cell Biology and Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University College of Medicine Wexner Medical Center, Columbus, OH 43210, USA * Correspondence: [email protected] Received: 1 August 2019; Accepted: 19 August 2019; Published: 21 August 2019 Abstract: Human variants in plakophilin-2 (PKP2) associate with most cases of familial arrhythmogenic cardiomyopathy (ACM). Recent studies show that PKP2 not only maintains intercellular coupling, but also regulates transcription of genes involved in Ca2+ cycling and cardiac rhythm.
    [Show full text]
  • 1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
    xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A
    [Show full text]
  • Fra-2 Overexpression Upregulates Pro-Metastatic Cell-Adhesion
    Fra-2 Overexpression Upregulates Pro-metastatic Cell-adhesion Molecules, Promotes Pulmonary Metastasis and Reduces Survival in a Spontaneous Xenograft Model of Human Breast Cancer Sabrina Arnold University Medical Center Hamburg-Eppendorf: Universitatsklinikum Hamburg-Eppendorf Jan Kortland University Medical Center Hamburg-Eppendorf: Universitatsklinikum Hamburg-Eppendorf Diana V. Maltseva National Faculty of Biology and Biotechnology, National Research University Higher School of Economics Timur R. Samatov Evotec International GmbH Susanne Lezius University Medical Center Hamburg-Eppendorf: Universitatsklinikum Hamburg-Eppendorf Alexander G. Tonevitsky Far Eastern Federal University Karin Milde-Langosch University Medical Center Hamburg-Eppendorf: Universitatsklinikum Hamburg-Eppendorf Daniel Wicklein University Medical Center Hamburg-Eppendorf: Universitatsklinikum Hamburg-Eppendorf Udo Schumacher University Medical Center Hamburg-Eppendorf: Universitatsklinikum Hamburg-Eppendorf Christine Stürken ( [email protected] ) endorf: Universitatsklinikum Hamburg-Eppendorf https://orcid.org/0000-0003-3997-3304 Research Article Keywords: Breast Cancer, Transcription factor, AP-1, Fra-2, Metastasis Posted Date: June 15th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-592522/v1 Page 1/33 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/33 Abstract Purpose: The transcription factor Fra-2 affects the invasive potential of breast cancer cells by dysregulating adhesion molecules in vitro. Previous results suggested that it upregulates the expression of E- and P- selectin ligands. Such selectin ligands are important members of the leukocyte adhesion cascade, which govern the adhesion and transmigration of cancer cells into the stroma of the host organ of metastasis. As so far, no in vivo data are available, this study was designed to elucidate the role of Fra-2 expression in a spontaneous breast cancer metastasis xenograft model.
    [Show full text]