Introduction to Xgrid: Cluster Computing for Everyone
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Getting Started on a Mac with Macgamut Download
Getting started on a Macintosh computer with MacGAMUT 6 (Download) These step-by-step instructions will get you started on any Macintosh OS X computer, when you make a Download purchase of MacGAMUT 6 from the MacGAMUT website. Getting started with MacGAMUT 6 is EASY, but it's still a good idea to follow these printed instructions as you proceed step by step, marking off each step as you complete it. Follow these steps to install MacGAMUT 6 as a download: 1. First, download and install the MacGAMUT 6 software. Yes, you can complete the download and installation even before you make your online purchase. You just won’t be able to use the installed program until you’ve paid for it! a. From the Home page at www.macgamut.com, follow the links from the Installers link on the left-hand side of the screen to go to the MacGAMUT Web Installers page. b. Read the “How-to” Videos paragraph before scrolling down to click the appropriate installer for your computer and system. c. You’ll find the downloaded Installer in your Macintosh’s Downloads folder. (If you are not working on your own computer, you can copy the Installer to a flash drive so you can install it later on your computer.) d. The Installer will start automatically when you open the Installer package. Just follow the instructions to complete your installation. e. If you are installing MacGAMUT 6 for the first time, you will need to restart your computer after the installation process is finished. f. The program installs in a folder labeled MacGAMUT 6 in your computer’s Applications folder. -
Task Scheduling Balancing User Experience and Resource Utilization on Cloud
Rochester Institute of Technology RIT Scholar Works Theses 7-2019 Task Scheduling Balancing User Experience and Resource Utilization on Cloud Sultan Mira [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Mira, Sultan, "Task Scheduling Balancing User Experience and Resource Utilization on Cloud" (2019). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Task Scheduling Balancing User Experience and Resource Utilization on Cloud by Sultan Mira A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Software Engineering Supervised by Dr. Yi Wang Department of Software Engineering B. Thomas Golisano College of Computing and Information Sciences Rochester Institute of Technology Rochester, New York July 2019 ii The thesis “Task Scheduling Balancing User Experience and Resource Utilization on Cloud” by Sultan Mira has been examined and approved by the following Examination Committee: Dr. Yi Wang Assistant Professor Thesis Committee Chair Dr. Pradeep Murukannaiah Assistant Professor Dr. Christian Newman Assistant Professor iii Dedication I dedicate this work to my family, loved ones, and everyone who has helped me get to where I am. iv Abstract Task Scheduling Balancing User Experience and Resource Utilization on Cloud Sultan Mira Supervising Professor: Dr. Yi Wang Cloud computing has been gaining undeniable popularity over the last few years. Among many techniques enabling cloud computing, task scheduling plays a critical role in both efficient resource utilization for cloud service providers and providing an excellent user ex- perience to the clients. -
Resource Access Control Facility (RACF) General User's Guide
----- --- SC28-1341-3 - -. Resource Access Control Facility -------_.----- - - --- (RACF) General User's Guide I Production of this Book This book was prepared and formatted using the BookMaster® document markup language. Fourth Edition (December, 1988) This is a major revision of, and obsoletes, SC28-1341- 3and Technical Newsletter SN28-l2l8. See the Summary of Changes following the Edition Notice for a summary of the changes made to this manual. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change. This edition applies to Version 1 Releases 8.1 and 8.2 of the program product RACF (Resource Access Control Facility) Program Number 5740-XXH, and to all subsequent versions until otherwise indicated in new editions or Technical Newsletters. Changes are made periodically to the information herein; before using this publication in connection with the operation of IBM systems, consult the latest IBM Systemj370 Bibliography, GC20-0001, for the editions that are applicable and current. References in this publication to IBM products or services do not imply that IBM· intends to make these available in all countries in which IBM operates. Any reference to an IBM product in this publication is not intended to state or imply that only IBM's product may be used. Any functionally equivalent product may be used instead. This statement does not expressly or implicitly waive any intellectual property right IBM may hold in any product mentioned herein. Publications are not stocked at the address given below. Requests for IBM publications should be made to your IBM representative or to the IBM branch office serving your locality. -
3.A Fixed-Priority Scheduling
2017/18 UniPD - T. Vardanega 10/03/2018 Standard notation : Worst-case blocking time for the task (if applicable) 3.a Fixed-Priority Scheduling : Worst-case computation time (WCET) of the task () : Relative deadline of the task : The interference time of the task : Release jitter of the task : Number of tasks in the system Credits to A. Burns and A. Wellings : Priority assigned to the task (if applicable) : Worst-case response time of the task : Minimum time between task releases, or task period () : The utilization of each task ( ⁄) a-Z: The name of a task 2017/18 UniPD – T. Vardanega Real-Time Systems 168 of 515 The simplest workload model Fixed-priority scheduling (FPS) The application is assumed to consist of tasks, for fixed At present, the most widely used approach in industry All tasks are periodic with known periods Each task has a fixed (static) priority determined off-line This defines the periodic workload model In real-time systems, the “priority” of a task is solely derived The tasks are completely independent of each other from its temporal requirements No contention for logical resources; no precedence constraints The task’s relative importance to the correct functioning of All tasks have a deadline equal to their period the system or its integrity is not a driving factor at this level A recent strand of research addresses mixed-criticality systems, with Each task must complete before it is next released scheduling solutions that contemplate criticality attributes All tasks have a single fixed WCET, which can be trusted as The ready tasks (jobs) are dispatched to execution in a safe and tight upper-bound the order determined by their (static) priority Operation modes are not considered Hence, in FPS, scheduling at run time is fully defined by the All system overheads (context-switch times, interrupt handling and so on) are assumed absorbed in the WCETs priority assignment algorithm 2017/18 UniPD – T. -
Episode Podcast Tech Brief
Episode Podcast Integration with Podcast Producer Adds video and audio format support to Appleʼs Leopard Server Podcast Producer for all popular platforms and mobile devices. Features Episode Podcast allows Podcast Producer to accept any popular file format in a workflow • Multi-format video and audio sup- and repurpose the media for access regardless of platform or personal device chosen. port in and out, including all lead- Episode Podcast addresses a growing need for educators to provide all students, ing formats on the market. whether PC or Mac users, with anytime, anywhere access to content on mobile and • Enables distribution of the media personal devices. Episode Podcast enables Podcast Producer to repurpose media to all to everyone, regardless of pre- leading distribution formats, including Windows Media, Flash 8, MP3, 3GPP, VC-1, H. ferred platform or personal de- 264 and many more. vice. • Seamlessly integrates with Pod- How does Episode Podcast work with Podcast Producer? cast Producerʼs Xgrid architec- ture. Automatic media generation Episode Podcast seamlessly integrates with the Podcast Producer Xgrid architecture. in different formats through the Podcast Producer workflow. 1 2 3 4 • Fully scalable • Future-proof solution with formats Publishing servers continually being added • Encoding algorithms ensure high- est quality • Easy-to-use Episode application External for managing encoding settings network • Over 600 settings templates cre- ated by encoding experts Recording or manual fi le Podcast Producer system Distribute to any platform submission and Episode Podcast or personal device • Includes extensive media proc- essing options such as water- From a user point of view, Episode Podcast simply adds the ability to handle more marks, bumpers, trailers, color formats in a Podcast Producer workflow. -
The CICS/MQ Interface
1 2 Each application program which will execute using MQ call statements require a few basic inclusions of generated code. The COPY shown are the one required by all applications using MQ functions. We have suppressed the list of the CMQV structure since it is over 20 pages of COBOL variable constants. The WS‐VARIABLES are the minimum necessary to support bot getting and putting messages from and to queues. The MQ‐CONN would normally be the handle acquired by an MQCONN function, but that call along with the MQDISC call are ignored by CICS / MQ interface. It is CICS itself that has performed the MQCONN to the queue manager. The MQ‐HOBJ‐I and MQ‐HOBJ‐O represent the handles, acquired on MQOPEN for a queue, used to specify which queue the other calls relate to. The MQ‐COMPCODE and MQ‐REASON are the variables which the application must test after every MQ call to determine its success. 3 This slide contains the message input and output areas used on the MQGET and MQPUT calls. Our messages are rather simple and limited in size. SO we have put the data areas in the WORKING‐STORAGE SECTION. Many times you will have these as copy books rather than native COBOL variables. Since the WORKING‐STORAGE area is being copied for each task using the program, we recommend that larger messages areas be put into the LINKAGE SECTION. Here we use a size of 200‐300 K as a suggestion. However, that size will vary depending upon your CICS environment. When the application is using message areas in the LINKAGE SECTION, it will be responsible to perform a CICS GETMAIN command to acquire the storage for the message area. -
Chapter 1. Origins of Mac OS X
1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years. -
Well Known TCP and UDP Ports Used by Apple Software Products
Well known TCP and UDP ports used by Apple Languages English software products Symptoms Learn more about TCP and UDP ports used by Apple products, such as OS X, OS X Server, Apple Remote Desktop, and iCloud. Many of these are referred to as "well known" industry standard ports. Resolution About this table The Service or Protocol Name column lists services registered with the Internet Assigned Numbers Authority (http://www.iana.org/), except where noted as "unregistered use." The names of Apple products that use these services or protocols appear in the Used By/Additional Information column. The RFC column lists the number of the Request For Comment document that defines the particular service or protocol, which may be used for reference. RFC documents are maintained by RFC Editor (http://www.rfc- editor.org/). If multiple RFCs define a protocol, there may only be one listed here. This article is updated periodically and contains information that is available at time of publication. This document is intended as a quick reference and should not be regarded as comprehensive. Apple products listed in the table are the most commonly used examples, not a comprehensive list. For more information, review the Notes below the table. Tip: Some services may use two or more ports. It is recommend that once you've found an instance of a product in this list, search on the name (Command-F) and then repeat (Command-G) to locate all occurrences of the product. For example, VPN service may use up to four diferent ports: 500, 1701, 1723, and 4500. -
Mac OS X: an Introduction for Support Providers
Mac OS X: An Introduction for Support Providers Course Information Purpose of Course Mac OS X is the next-generation Macintosh operating system, utilizing a highly robust UNIX core with a brand new simplified user experience. It is the first successful attempt to provide a fully-functional graphical user experience in such an implementation without requiring the user to know or understand UNIX. This course is designed to provide a theoretical foundation for support providers seeking to provide user support for Mac OS X. It assumes the student has performed this role for Mac OS 9, and seeks to ground the student in Mac OS X using Mac OS 9 terms and concepts. Author: Robert Dorsett, manager, AppleCare Product Training & Readiness. Module Length: 2 hours Audience: Phone support, Apple Solutions Experts, Service Providers. Prerequisites: Experience supporting Mac OS 9 Course map: Operating Systems 101 Mac OS 9 and Cooperative Multitasking Mac OS X: Pre-emptive Multitasking and Protected Memory. Mac OS X: Symmetric Multiprocessing Components of Mac OS X The Layered Approach Darwin Core Services Graphics Services Application Environments Aqua Useful Mac OS X Jargon Bundles Frameworks Umbrella Frameworks Mac OS X Installation Initialization Options Installation Options Version 1.0 Copyright © 2001 by Apple Computer, Inc. All Rights Reserved. 1 Startup Keys Mac OS X Setup Assistant Mac OS 9 and Classic Standard Directory Names Quick Answers: Where do my __________ go? More Directory Names A Word on Paths Security UNIX and security Multiple user implementation Root Old Stuff in New Terms INITs in Mac OS X Fonts FKEYs Printing from Mac OS X Disk First Aid and Drive Setup Startup Items Mac OS 9 Control Panels and Functionality mapped to Mac OS X New Stuff to Check Out Review Questions Review Answers Further Reading Change history: 3/19/01: Removed comment about UFS volumes not being selectable by Startup Disk. -
Software List (1-3-2017)
Software List (1-3-2017) Information Commons BU 104 LLCD Adobe Flash Academic online JVC Pro HD Manager Chrome Acrobat Adobe Reader DC Adobe Photoshop CS6 Adobe Itunes Adobe Reader XI Comprehensive Medical Terminology Maple 16 Drive M:\ Glencoe Keyboarding Microsoft Office 2016 Firefox Itunes Microsoft Publisher Irwin/GDP Keyboarding Kurzeil 3000 MS visual studio 2015 Itunes Microsoft Office Suite 2007 Quicktime Kurzweil 3000 v.12 Quick time SPSS for Windows Maple 16 Skills bank real player Microsoft Office 2016 Vista 3-Scanners MS platform installer Windows 7 & 10 Microsoft Visio 2016 Wellington Center sharepoint MS SQL Internet Explorer XPS viewer MS Visual Studio 2015 ITunes Express for desktop Quicken deluxe 2014 McAfee Express for Web VLC Media Player Quicktime MS silverlight Windows 10 " " Media Player Statdisk Scanner Mozilla Firefox Skype 2016 MS silverlight Adobe Reader XI windows dvd maker wolfram cdf player Windows 8 Onedrive Filezilla Microsoft Office Suite 2013 notepad++ Gimp 2 Maple 16 respounds/lockdown opera mobile emulator Statdisk 3D builder VM ware/ vsphere Wolfram CDF Player MS Azure wire shark VLC Media Player cisco packet tracker MACS Software (Information Commons) 3D builder Brunswick Front Desk Computers java development kit Windows 7 System project 2016 Adobe 9 Developer notepad++ Apple Itunes Utilities IBM Iseries access for windows Time Machine Intel Management and Security TextEdit UC 222 Iseries navigator System Preferences Acrobat Reader XI Malware Bytes Anti Malware Stickies Adult Clinical Simulation Mcaffe -
Apple Xgrid Runs with the Wolves
Search Apple Xgrid runs with the wolves Apple Research & Technology Support Profiles in Success: Swedish University of Agricultural Sciences Programme Overview Research Opportunities ARTS Laureate Winners ARTS Institutions Swedish University of Agricultural Sciences Apple Xgrid runs with the wolves Fast results from Xgrid Cost-effective for future research Using Apple technology, the Grimsö Wildlife Research Station in Sweden is learning important techniques for sustainable management of the wolf population. Based at the Swedish University of Agricultural Sciences (SLU), the station is using an Apple Xgrid cluster system – provided by the Apple Research & Technology Support programme (ARTS) – to understand wolf demography and develop optimal management strategies. Its work will have a deep impact on how mankind interacts with these ancient but troublesome Challenges predators. Develop management strategies to “Wolf populations are expanding through natural return to past habitats in Europe, ensure wolf population viability or through reintroduction by Government agencies in the US”, explains Dr Prevent wolf extinction while Guillaume Chapron, Assistant Professor, Grimsö Wildlife Research Station at SLU. allowing for population control “They are posing problems, however - to hunters or sheep farmers, for example. So Address people and decision maker the urgent question is how we ensure wolf populations can survive, while still concerns regarding the place of allowing for some population control. Wolves have a complex ecology and the Xgrid wolves in Sweden cluster will run simulations faster than any other solution. It is critical to our Provide efficient programming and modelling environment to simulate research”. and understand wolf population ecology SLU is a modern university, designed to confront and explore many of today’s most Provide efficient programming and compelling environmental questions, “whether it is the food we eat, or the animals modelling environment to simulate we husband on our farms or love as pets, or the forests that we wander through”. -
Pooch Manual In
What’s New As of August 21, 2011, Pooch is updated to version 1.8.3 for use with OS X 10.7 “Lion”: Pooch users can renew their subscriptions today! Please see http://daugerresearch.com/pooch for more! On November 17, 2009, Pooch was updated to version 1.8: • Linux: Pooch can now cluster nodes running 64-bit Linux, combined with Mac • 64-bit: Major internal revisions for 64-bit, particularly updated data types and structures, for Mac OS X 10.6 "Snow Leopard" and 64-bit Linux • Sockets: Major revisions to internal networking to adapt to BSD Sockets, as recommended by Apple moving forward and required for Linux • POSIX Paths: Major revisions to internal file specification format in favor of POSIX paths, recommended by Apple moving forward and required for Linux • mDNS: Adapted usage of Bonjour service discovery to use Apple's Open Source mDNS library • Pooch Binary directory: Added Pooch binary directory support, making possible launching jobs using a remotely-compiled executable • Minor updates and fixes needed for Mac OS X 10.6 "Snow Leopard" Current Pooch users can renew their subscriptions today! Please see http://daugerresearch.com/pooch for more! On April 16, 2008, Pooch was updated to version 1.7.6: • Mac OS X 10.5 “Leopard” spurs updates in a variety of Pooch technologies: • Network Scan window • Preferences window • Keychain access • Launching via, detection of, and commands to the Terminal • Behind the Login window behavior • Other user interface and infrastructure adjustments • Open MPI support: • Complete MPI support using libraries