University of Groningen in Memoriam Willem F. Prud'homme Van
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phaeophyceae) Inferred from a Psbc and Rbcl Based Phylogeny
European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: https://www.tandfonline.com/loi/tejp20 A revised classification of the Sphacelariales (Phaeophyceae) inferred from a psbC and rbcL based phylogeny Stefano G. A. Draisma , Willem F. Prud’homme Van Reine & Hiroshi Kawai To cite this article: Stefano G. A. Draisma , Willem F. Prud’homme Van Reine & Hiroshi Kawai (2010) A revised classification of the Sphacelariales (Phaeophyceae) inferred from a psbC and rbcL based phylogeny, European Journal of Phycology, 45:3, 308-326, DOI: 10.1080/09670262.2010.490959 To link to this article: https://doi.org/10.1080/09670262.2010.490959 Published online: 26 Aug 2010. Submit your article to this journal Article views: 777 View related articles Citing articles: 10 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tejp20 Eur. J. Phycol. (2010) 45(3): 308–326 A revised classification of the Sphacelariales (Phaeophyceae) inferred from a psbC and rbcL based phylogeny STEFANO G. A. DRAISMA1, WILLEM F. PRUD’HOMME VAN REINE2 AND HIROSHI KAWAI3 1Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia 2Netherlands Centre for Biodiversity Naturalis (section NHN), Leiden University, P.O. Box 9514, 2300 RA, Leiden, The Netherlands 3Kobe University Research Center for Inland Seas, Rokkodai, Kobe 657-8501, Japan (Received 19 April 2010; revised 19 April 2010; accepted 1 May 2010) Phylogenetic relationships within the brown algal order Sphacelariales and with its sister group were investigated using chloroplast-encoded psbC and rbcL DNA sequences. -
Macroalgal Biodiversity of the Indian River Lagoon: Updating the Puzzle*
Proceedings of Indian River Lagoon Symposium 2020 Macroalgal biodiversity of the Indian River Lagoon: updating the puzzle* M. Dennis Hanisak Harbor Branch Oceanographic Institute at Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946 Abstract Given the Indian River Lagoon (IRL)’s abundance of macroalgae and its rapidly changing environments, the establishment of a macroalgal biodiversity inventory and baseline is essential. Knowledge of IRL macroalgal biodiversity has grown considerably since 1994, when the initial IRL Biodiversity Conference was held, largely due to the 2008 publication of Submersed Plants of the Indian River Lagoon by Littler et al. 2008. A current list of macroalgal taxa is provided to encompass the taxonomic changes that have occurred since 2008. The number of macroalgal taxa has increased from 142 in 1994 to 207 in 2020 (an increase of 45.8%); rhodophytes increased from 74 to 110 (48.6%), chlorophytes from 45 to 61 (35.6%), and phaeophyceans from 23 to 36 (56.5%). Spatial and temporal trends in the IRL macroalgal community were analyzed from a data set collected contemporaneously (1994 – 1996; n ¼ 1,042 samples) with the Biodiversity Conference. The macroalgal community was primarily composed of unattached, ‘‘drift’’ algae, with the rhodophyte Gracilaria tikvahiae the most abundant species (59% of biomass). Macroalgal abundance increased, with evidence of shifts in species composition, from north to south and no consistent temporal patterns. This study provides baseline data to determine long-term changes in community structure of IRL macroalgae and a call to address important research questions. Keywords biodiversity, Gracilaria tikvahiae, Indian River Lagoon, macroalgae, seaweed Introduction The global significance and ecological importance of macrophytes, often called Submerged Aquatic Vegetation (SAV), in coastal and estuarine areas throughout the world is well-established (Dennison et al. -
In Memoriam Willem F. Prud'homme Van Reine (3 April 1941 Œ 21
Blumea 65, 2020: i–ix www.ingentaconnect.com/content/nhn/blumea OBITUARY https://doi.org/10.3767/blumea.2020.65.02.00-1 In memoriam Willem F. Prud’homme van Reine (3 April 1941 – 21 March 2020) P. Baas1, S.G.A. Draisma2, J.L. Olsen3, W.T. Stam3, B.W. Hoeksema1,3 Citation: Baas P, Draisma SGA, Olsen JL, et al. 2020. In memoriam Willem F. Prud’homme van Reine (3 April 1941 – 21 March 2020). Blumea 65 (2): i–ix. https://doi.org/10.3767/blumea.2020.65.02.00-1. Effectively published online: 9 October 2020. Fig. 1 Willem in his office in the Rijksherbarium (2012, then in the Van Steenis building). Photo by Jiska Bootsma-Wolthaus. Willem Frederik Prud’homme van Reine passed away on 21 In 1961, he obtained his Bachelor’s degree. For his Master’s March 2020, following a prolonged illness, which did not prevent programme, he completed four research projects: him from continuing his research until a few weeks before his 1. on marine fungi in The Netherlands (under ADJ Meeuse); death. With him we lose a great phycologist and marine biolo- 2. on foot rot disease in grafted cucumber (under LCP Kerling); gist, who was a dedicated teacher and supervisor, as well as 3. on shell disease in oysters (under P Korringa, and in col- a good friend and colleague. laboration with his later PhD supervisor and colleague, Willem was born on 3 April 1941 in Zaandam, North Holland. phycologist Chris van den Hoek); and His father was a high school teacher of biology and known for 4. -
An Updated Classification of Brown Algae (Ochrophyta, Phaeophyceae)
Cryptogamie, Algologie, 2014, 35 (2): 117-156 © 2014 Adac. Tous droits réservés An updated classification of brown algae (Ochrophyta, Phaeophyceae) Thomas SILBERFELDa*, Florence ROUSSEAUb & Bruno de REVIERSb aDépartement Biologie-Écologie, Université Montpellier 2, place Eugène Bataillon, 34095 Montpellier cedex 05, France bISYEB, Institut de Systématique, Évolution, Biodiversité (UMR7205 CNRS, EPHE, MNHN, UPMC), Muséum National d’Histoire Naturelle, 57 rue Cuvier, CP 39, 75231 Paris cedex 05, France Abstract – About three-hundred genera are currently recognized in the brown algae (SAR lineage, sub-regnum Stramenopiles or Heterokonta, divisio Ochrophyta, class Phaeophyceae). Since the first morphology-based pre-cladistic classifications, the advent of the concepts and methods of molecular phylogenies has resulted in countless new insights within the field of brown algal supra-generic systematics. Unfortunately, subsequent taxonomic changes have not always been performed; and after over twenty years of brown algal molecular systematics, it has become difficult to assign a given genus to its correct family and order. The aim of this review article is to update the generic and suprageneric classification of the Phaeophyceae, by taking into account the latest insights produced in the field of brown algal molecular systematics, in order to provide a clarified taxonomic framework whose uncertainties would result only either from absence of molecular data or phylogenetic irresolution rather than taxonomic vagueness due to misinterpretation of -
Marine Macrophytic Algae of the Western Sector of North Pacific (Russia)
8 Marine Macrophytic Algae of the Western Sector of North Pacific (Russia) Olga N. Selivanova Kamchatka Branch of Pacific Institute of Geography, Far Eastern Division of the Russian Academy of Sciences, Russia 1. Introduction Marine algal flora of the western coasts of Bering Sea is studied non-uniformly, i.e. to a variable degree in different areas. Perhaps, algae of the Commander Islands are studied more thoroughly as compared to the other areas of the Russian Pacific. The data on marine algae of the Islands were presented in many published works by the Russian authors. The comprehensive survey of the literature on the Islands’ marine flora was given in our papers (Selivanova & Zhigadlova, 1997 a, b, c). Thereafter we continued our floristic and taxonomic studies on the Commander Islands and published many new papers: Selivanova, 2001 a, b; 2008 a, b, c; 2009; Selivanova & Zhigadlova, 2000; 2003; 2010; Zhigadlova, 2009. In contrast to Commander Islands algae of the continental part of the Bering Sea are studied rather poorly. Though floristic investigations began there above 200 years ago information on algal flora and structure of benthic communities of this area is still scanty. Remoteness and inaccessibility, severe climate and ice conditions, and a short navigation season make this area very inconvenient for natural studies, so they were episodic and uncoordinated. Practically no seasonal field observations have been conducted there, no marine biological stations have ever existed, and scientific expeditions have been infrequent and sporadic. Therefore information on benthic algae of the area is limited. Special publications on this subject are rare (e.g.Vinogradova, 1973a; 1978; Perestenko, 1988; Zhigadlova & Selivanova, 2004), although data on the marine algae of this area may be found in some general taxonomic, floristic and hydrobiological studies (e.g. -
Climatic and Environmental Factors Influencing Occurrence and Distribution of Macroalgae — a Fjord Gradient Revisited
Vol. 532: 73–88, 2015 MARINE ECOLOGY PROGRESS SERIES Published July 21 doi: 10.3354/meps11341 Mar Ecol Prog Ser OPENPEN ACCESSCCESS Climatic and environmental factors influencing occurrence and distribution of macroalgae — a fjord gradient revisited Kjersti Sjøtun1,*, Vivian Husa1,2, Lars Asplin2, Anne Dagrun Sandvik2 1Department of Biology, University of Bergen, PO Box 7803, 5020 Bergen, Norway 2Institute of Marine Research, PO Box 1870 Nordnes, 5817 Bergen, Norway ABSTRACT: During the last decades, trends of increasing sea water temperatures and precipita- tion have been observed in the North Atlantic. Increasing sea water temperatures are expected to have strong effects on coastal benthic species. Here, the distributions of macroalgae were corre- lated to hydrographical indexes determined from measurements at sampling and hydrographical stations along the fjord during 2 investigation periods: 1955−1956 and 2008−2009. The following indexes were used: annual maximum sea temperature, minimum salinity, and salinity stress (cal- culated as the difference between maximum and minimum salinity). In addition, changes in macroalgal species abundance and distribution range in the fjord were calculated. The hydro- graphical measurements showed higher summer temperatures and reduced salinity stress due to lower winter salinity during 2008−2009. Results from constrained ordination analyses showed that the highest variation of the macroalgal distributions along the fjord was explained by hydrograph- ical indexes from 5 m depth, and that there were strong response differences between the algal groups. The red algae were most strongly and positively correlated with the maximum tempera- ture gradient, and also negatively correlated with increasing salinity stress. Many red algae spe- cies also increased in abundance and their distribution ranges shifted further into the fjord in 2008−2009. -
Littoral and Upper Sublittoral Macroalgal Vegetation from 8 Sites Around Svalbard
Littoral and upper sublittoral macroalgal vegetation from 8 sites around Svalbard Siri Røang Moy Master of Science Section for Aquatic Biology and Toxicology Department of Biosciences UNIVERSITY OF OSLO 2 March 2015 Littoral and upper sublittoral macroalgal vegetation from 8 sites around Svalbard Algal vegetation at Vaigattneset (Sofiaøya) composed of Fucus distichus, Palmaria palmata, Devaleraea ramentacea, Saccharina groenlandica and various filamentous green and brown algae. © Siri Røang Moy Year: 2015 Title: Littoral and upper sublittoral macroalgal vegetation from 8 sites around Svalbard Author: Siri Røang Moy http://www.duo.uio.no Printed: Reprosentralen, Universitetet i Oslo II Abstract The macroalgal vegetation is an essential part of the marine community by producing energy rich compounds from inorganic carbon using sunlight as the energy source. The earliest investigations from Svalbard dates back to the 1840’s, and several species lists have been drawn up since then. However, macroalgal investigations from large parts of Svalbard are still missing. In this study qualitative analysis of the macroalgal vegetation at eight different sites located around the coast of Svalbard was performed during 1st – 10th of July 2013. The material was collected from the littoral and the upper sublittoral zone and identified to species or genus by use of morphological characters in particular. The use of entirely morphological characters to identify some species of macroalgae can be difficult due to their variability in appearance and similarity to other species. DNA-barcoding of two brown algae and one red alga was therefore included in this study. A total of 53 taxa were identified in the the survey.