The Ending Lamination Theorem Brian H

Total Page:16

File Type:pdf, Size:1020Kb

The Ending Lamination Theorem Brian H The Ending Lamination Theorem Brian H. Bowditch Mathematics Institute, University of Warwick Coventry CV4 7AL, Great Britain. [Preliminary draft: September 2011] Preface This paper is based on a combination of two earlier manuscripts respectively enti- tled “Geometric models for hyperbolic 3-manifolds” and “End invariants of hyperbolic 3-manifolds”, both originally produced in 2005. Many of the ideas for the first preprint were worked out while visiting the Max Planck Institute in Bonn. The remainder and most of the write-up of this was carried out when I was visiting the Tokyo Institute of Technology at the invitation of Sadayoshi Kojima. Most of the second preprint was written while visiting the Centre Bernoulli, E.P.F. Lausanne, as part of the programme organised by Christophe Bavard, Peter Buser and Ruth Kellerhals. I thank all three institutions for their generous hospitality. I also thank Dave Gabai for his many helpful comments on the former preprint in particular, for the argument that appears at the end of Section 7, and his permission to include it. The final drafts of these preprints were prepared at the University of Southampton. The preprints were substantially reworked and combined, and some new material added at the University of Warwick. I thank Al Marden for his comments on the first few sections of the current manuscript. 0. Introduction. In this paper, we give an account of Thurston’s Ending Lamination Conjecture regard- ing hyperbolic 3-manifolds. This was originally proven for indecomposable 3-manifolds by Minsky, Brock and Canary [Mi4,BrocCM1], who also announced a proof in the general case [BrocCM2]. Since then, a number of other approaches have been proposed (see for example, [R,BrocBES,So2]). In the present work, we give a proof of the general case of the Ending Lamination Theorem. It is intended to be self-contained, given the background material discussed in Section 2. The Ending Lamination Theorem is a major component of the classification of finitely generated Kleinian groups, or equivalently complete hyperbolic 3-manifolds with finitely generated fundamental group. This project is now essentially complete. The Ending Lami- nation Theorem can be viewed as the “uniqueness” part of the classification. It shows that such manifolds are determined by their “end invariants”. The other main components of the classification are the Tameness Theorem [Bon,Ag,CalG] and the existence of manifolds with prescribed end invariants (see [NS]). We proceed with an informal statement of the Ending Lamination Theorem. For a more precise statement, see Theorem 2.4. Let M be a complete hyperbolic 3-manifold with π1(M) finitely generated. The “thin 1 elc1 part” of M is the (open) subset where the injectivity radius is less than some sufficently small fixed “Margulis” constant. The unbounded components of the thin part form a (possibly empty) finite set of cusps of M. Removing these unbounded components, we obtain the “non-cuspidal” part, Ψ = Ψ(M) of M. The Tameness Theorem tells us that Ψ is topologically finite. This means that there is a compact manifold, Ψ,¯ with boundary ∂Ψ,¯ and a closed subsurface ∂I Ψ¯ ∂Ψ,¯ such that Ψ(M) is homeomorphic to Ψ¯ ∂I Ψ.¯ Fixing some such (proper homotopy⊆ class of) homeomorphism, we can identify ∂Ψ(M\) with ∂V Ψ = ∂Ψ¯ ∂I Ψ,¯ which we refer to as the vertical boundary of Ψ. Each torus component \ of ∂Ψ bounds a Z Z-cusp of M, and does not meet ∂I Ψ. All other components of ∂Ψ have genus at least⊕ 2. Note that the ends of Ψ are in bijective correspondence with the components of ∂I Ψ. Each end e has a neighbourhood homeomorphic to Σ [0, ), where Σ = Σ(e) is such a × ∞ component. Note that this meets ∂V Ψ in ∂Σ [0, ). Associated to each such end we have a geometric “end invariant”, which is either× a Riemann∞ surface (for a “geometrically finite” end) or a geodesic lamination (for a “degenerate” end). The Ending Lamination Theorem asserts: Theorem 0 : M is determined up to isometry by the topology of its non-cuspidal part, Ψ(M), together with its end invariants. Implicit in this is a preferred proper homotopy class of homeomorphism of Ψ with a given topological model. This gives rise to “markings” of the end invariants which we assume to be part of the data. The homotopy class of the isometry of the will respect these markings. One can get a simpler picture by considering the case where M has no cusps, so that Ψ(M) = M. In this case, Ψ¯ is a compactification of M, obtained by adjoining a surface (of genus at least 2) to each end of M. These surfaces are just the components of ∂Ψ = ∂I Ψ,¯ and each has an end invariant associated to it. The above will be dicsussed in more detail in Section 2. Particular cases of the Ending Lamination Theorem were known before the work of Minksy et al. If M is closed, so that Ψ(M) = M and there are no end invariants, then M is determined by its topology. This is Mostow rigidity [Most] in dimension 3. The same applies in the more general case, where M has finite volume, so that each boundary component of Ψ(M) is a torus corresponding to a Z Z-cusp of M. Again, M is determined by its topology. This was shown in [Mar] and [P]. More⊕ generally still, if M is geometrically finite (i.e. all its ends are geometrically finite) then the Ending Lamination Theorem is shown in [Mar]. (This used arguments similar to those of Section 16 here.) Indeed there was a complete classification in this case, following from the deformation theory of Alfors, Bers, Marden, Maskit etc. (see [Mar]). Our account of the Ending Lamination Theorem broadly follows the strategy of the original, though the logic is somewhat different. Notably, we take the “a-priori bounds” theorem of Minsky [Mi4] as a starting point, rather than a result embedded in the proof. An independent argument for this is given in [Bow4]. (See also [So3] for some simplifications of this.) The model spaces we use are essentially the same as those in [Mi4], though we give 2 elc1 a combinatorial description that bypasses much of the theory of heirarchies as developed in [MaM2]. We shall first prove the theorem in the indecomposible case. Some additional ingre- dient will be needed for the general case, mainly to give a proper description of the end invariants, and to “isolate” an end of Ψ from the “core” of the manifold. Apart from that, it will only call for reinterpreting certain constructions. We will present the main part of the argument in the specific context of a doubly degenerate manifold, namely, where Ψ(M) is a topological product, Ψ(M) ∼= Σ R, and both ends are degenerate. We do this for several reasons. × Firstly it greatly simplifies the exposition. Most of the main ideas can be seen in this context. What remains for the general indecomposable case is largely a matter of describing how the various bits fit together in a more complicated situation. Secondly, these ideas have further applications to Teichm¨uller theory and the geometry of the curve complex, etc. As far as these are concerned, one only really needs to worry about such product manifolds. In the case of a doubly degenerate group, we get a somewhat cleaner, and stronger statement. In particular, one can show that the quasi-isometry constants are uniform, in that they depend only on the topology of the base surface. (A similar uniformity in this case is obtained in [BroCM1].) This is lost (at least without more work) in the general indecomposable case. A third, though relatively minor, reason is that one is obliged to give some special consideration to the doubly degenerate case, since there we have to check that each end of the model gets sent to “right” end of M — a fact that is automatic from the topology in all other situations. (Indeed, precisely this issue caused Bonahon a certain amount of strife in [Bon].) In the first five sections of this paper, we describe the relevant bacground, outline the main results, and describe the ingredients of the proof. In Sections 6 to 16, we proceed to a proof of the Ending Lamination Theorem in the indecomposible case. In Sections 17 to 24, we describe the modifications necessary to deal with the general case. In Section 25, we give an account of the Uniform Injectivity Theorem applicable to our situation. 1. Background. We give a summary of the main ideas behind the Ending Lamination Conjecture and the classification of finitely generated kleinian groups. We include some historical background, though our account is not strictly chronological. Much of the discussion of this section is not logically essential to understanding the statement or proof as presented in this paper. The bits that are will be reviewed again later. In particular, a more formal discussion of end invariants will be given in Section 2. Before the late 1970s, much of the theory of 3-manifolds and of kleinian groups had developed separately. Prior to this, most major results of 3-manifold theory were based on combinatorial or topological techniques. General accounts of the topological theory of 3-manifolds can be found in [He] and [J]. Meanwhile, the theory of Kleinian groups tended to use analytical machinery, focusing on the action of the group on the Riemann sphere. 3 elc1 An account of the state of the art with regard to Kleinian groups around this time can be found in [BersK]. In the background, though never fully exploited, was hyperbolic geometry arising from the fact that a kleinian group acts properly discontinuously on hyperbolic 3- space.
Recommended publications
  • Geometric Methods in Heegaard Theory
    GEOMETRIC METHODS IN HEEGAARD THEORY TOBIAS HOLCK COLDING, DAVID GABAI, AND DANIEL KETOVER Abstract. We survey some recent geometric methods for studying Heegaard splittings of 3-manifolds 0. Introduction A Heegaard splitting of a closed orientable 3-manifold M is a decomposition of M into two handlebodies H0 and H1 which intersect exactly along their boundaries. This way of thinking about 3-manifolds (though in a slightly different form) was discovered by Poul Heegaard in his forward looking 1898 Ph. D. thesis [Hee1]. He wanted to classify 3-manifolds via their diagrams. In his words1: Vi vende tilbage til Diagrammet. Den Opgave, der burde løses, var at reducere det til en Normalform; det er ikke lykkedes mig at finde en saadan, men jeg skal dog fremsætte nogle Bemærkninger angaaende Opgavens Løsning. \We will return to the diagram. The problem that ought to be solved was to reduce it to the normal form; I have not succeeded in finding such a way but I shall express some remarks about the problem's solution." For more details and a historical overview see [Go], and [Zie]. See also the French translation [Hee2], the English translation [Mun] and the partial English translation [Prz]. See also the encyclopedia article of Dehn and Heegaard [DH]. In his 1932 ICM address in Zurich [Ax], J. W. Alexander asked to determine in how many essentially different ways a canonical region can be traced in a manifold or in modern language how many different isotopy classes are there for splittings of a given genus. He viewed this as a step towards Heegaard's program.
    [Show full text]
  • Homotopy Type of the Complex of Free Factors of a Free Group
    Research Collection Other Journal Item Homotopy type of the complex of free factors of a free group Author(s): Gupta, Radhika; Brück, Benjamin Publication Date: 2020-12 Permanent Link: https://doi.org/10.3929/ethz-b-000463712 Originally published in: Proceedings of the London Mathematical Society 121(6), http://doi.org/10.1112/plms.12381 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Proc. London Math. Soc. (3) 121 (2020) 1737–1765 doi:10.1112/plms.12381 Homotopy type of the complex of free factors of a free group Benjamin Br¨uck and Radhika Gupta Abstract We show that the complex of free factors of a free group of rank n 2 is homotopy equivalent to a wedge of spheres of dimension n − 2. We also prove that for n 2, the complement of (unreduced) Outer space in the free splitting complex is homotopy equivalent to the complex of free factor systems and moreover is (n − 2)-connected. In addition, we show that for every non-trivial free factor system of a free group, the corresponding relative free splitting complex is contractible. 1. Introduction Let F be the free group of finite rank n. A free factor of F is a subgroup A such that F = A ∗ B for some subgroup B of F. Let [.] denote the conjugacy class of a subgroup of F. Define Fn to be the partially ordered set (poset) of conjugacy classes of proper, non-trivial free factors of F where [A] [B] if for suitable representatives, one has A ⊆ B.
    [Show full text]
  • On the Topology of Ending Lamination Space
    1 ON THE TOPOLOGY OF ENDING LAMINATION SPACE DAVID GABAI Abstract. We show that if S is a finite type orientable surface of genus g and p punctures where 3g + p ≥ 5, then EL(S) is (n − 1)-connected and (n − 1)- locally connected, where dim(PML(S)) = 2n + 1 = 6g + 2p − 7. Furthermore, if g = 0, then EL(S) is homeomorphic to the p−4 dimensional Nobeling space. 0. Introduction This paper is about the topology of the space EL(S) of ending laminations on a finite type hyperbolic surface, i.e. a complete hyperbolic surface S of genus-g with p punctures. An ending lamination is a geodesic lamination L in S that is minimal and filling, i.e. every leaf of L is dense in L and any simple closed geodesic in S nontrivally intersects L transversely. Since Thurston's seminal work on surface automorphisms in the mid 1970's, laminations in surfaces have played central roles in low dimensional topology, hy- perbolic geometry, geometric group theory and the theory of mapping class groups. From many points of view, the ending laminations are the most interesting lam- inations. For example, the stable and unstable laminations of a pseudo Anosov mapping class are ending laminations [Th1] and associated to a degenerate end of a complete hyperbolic 3-manifold with finitely generated fundamental group is an ending lamination [Th4], [Bon]. Also, every ending lamination arises in this manner [BCM]. The Hausdorff metric on closed sets induces a metric topology on EL(S). Here, two elements L1, L2 in EL(S) are close if each point in L1 is close to a point of L2 and vice versa.
    [Show full text]
  • On Hyperbolicity of Free Splitting and Free Factor Complexes
    ON HYPERBOLICITY OF FREE SPLITTING AND FREE FACTOR COMPLEXES ILYA KAPOVICH AND KASRA RAFI Abstract. We show how to derive hyperbolicity of the free factor complex of FN from the Handel-Mosher proof of hyperbolicity of the free splitting complex of FN , thus obtaining an alternative proof of a theorem of Bestvina-Feighn. We also show that the natural map from the free splitting complex to free factor complex sends geodesics to quasi-geodesics. 1. Introduction The notion of a curve complex, introduced by Harvey [9] in late 1970s, plays a key role in the study of hyperbolic surfaces, mapping class group and the Teichm¨ullerspace. If S is a compact connected oriented surface, the curve complex C(S) of S is a simplicial complex whose vertices are isotopy classes of essential non-peripheral simple closed curves. A collection [α0];:::; [αn] of (n + 1) distinct vertices of C(S) spans an n{simplex in C(S) if there exist representatives α0; : : : ; αn of these isotopy classes such that for all i 6= j the curves αi and αj are disjoint. (The definition of C(S) is a little different for several surfaces of small genus). The complex C(S) is finite-dimensional but not locally finite, and it comes equipped with a natural action of the mapping class group Mod(S) by simplicial automorphisms. It turns out that the geometry of C(S) is closely related to the geometry of the Teichm¨ullerspace T (S) and also of the mapping class group itself. The curve complex is a basic tool in modern Teichmuller theory, and has also found numerous applications in the study of 3-manifolds and of Kleinian groups.
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • January 2013 Prizes and Awards
    January 2013 Prizes and Awards 4:25 P.M., Thursday, January 10, 2013 PROGRAM SUMMARY OF AWARDS OPENING REMARKS FOR AMS Eric Friedlander, President LEVI L. CONANT PRIZE: JOHN BAEZ, JOHN HUERTA American Mathematical Society E. H. MOORE RESEARCH ARTICLE PRIZE: MICHAEL LARSEN, RICHARD PINK DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY DAVID P. ROBBINS PRIZE: ALEXANDER RAZBOROV TEACHING OF MATHEMATICS RUTH LYTTLE SATTER PRIZE IN MATHEMATICS: MARYAM MIRZAKHANI Mathematical Association of America LEROY P. STEELE PRIZE FOR LIFETIME ACHIEVEMENT: YAKOV SINAI EULER BOOK PRIZE LEROY P. STEELE PRIZE FOR MATHEMATICAL EXPOSITION: JOHN GUCKENHEIMER, PHILIP HOLMES Mathematical Association of America LEROY P. STEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH: SAHARON SHELAH LEVI L. CONANT PRIZE OSWALD VEBLEN PRIZE IN GEOMETRY: IAN AGOL, DANIEL WISE American Mathematical Society DAVID P. ROBBINS PRIZE FOR AMS-SIAM American Mathematical Society NORBERT WIENER PRIZE IN APPLIED MATHEMATICS: ANDREW J. MAJDA OSWALD VEBLEN PRIZE IN GEOMETRY FOR AMS-MAA-SIAM American Mathematical Society FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY ALICE T. SCHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN AN UNDERGRADUATE STUDENT: FAN WEI Association for Women in Mathematics FOR AWM LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION: AMY COHEN Association for Women in Mathematics M. GWENETH HUMPHREYS AWARD FOR MENTORSHIP OF UNDERGRADUATE
    [Show full text]
  • Submanifolds of Euclidean Space with Parallel Second Fundamental Form
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 32, Number 1, March 1972 SUBMANIFOLDS OF EUCLIDEAN SPACE WITH PARALLEL SECOND FUNDAMENTAL FORM JAAK VILMS1 In this paper necessary conditions are given for a complete Rie- mannian manifold M" to admit an isometric immersion into R*+r with parallel second fundamental form. Namely, it is shown that M" must be affinely equivalent either to a totally geodesic sub- manifold of the Grassmann manifold G(n,p), or to a fibre bundle over such a submanifold, with Euclidean space as fibre and the structure being close to a product. (An affine equivalence is a dif- feomorphism that preserves Riemannian connections.) The proof depends on the auxiliary result that the second fundamental form is parallel iff the Gauss map is a totally geodesic map. 1. The main result. Let i :Mn-+Rn+p be an immersion of a manifold Mn into Euclidean space, and endow M with the induced Riemannian metric. The second fundamental form ¡x of the immersion ; is a symmetric section of the bundle of bilinear maps L2(TM, TM; A/M), where TM and NM denote the tangent and normal bundles of M, respectively [4]. We iden- tify this bundle of maps with the isomorphic bundle L(TM, L(TM, NM)), and <xwith the corresponding section. At each point of M, the kernel of x (in the second interpretation) is called the relative nullity space, and its dimension k, the relative nullity index [2]. We say the second fundamental form a is parallel if 7>oc=0 (D always denotes the appropriate covariant derivative).
    [Show full text]
  • Actions of Mapping Class Groups Athanase Papadopoulos
    Actions of mapping class groups Athanase Papadopoulos To cite this version: Athanase Papadopoulos. Actions of mapping class groups. L. Ji, A. Papadopoulos and S.-T. Yau. Handbook of Group Actions, Vol. I, 31, Higher Education Press; International Press, p. 189-248., 2014, Advanced Lectures in Mathematics, 978-7-04-041363-2. hal-01027411 HAL Id: hal-01027411 https://hal.archives-ouvertes.fr/hal-01027411 Submitted on 21 Jul 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ACTIONS OF MAPPING CLASS GROUPS ATHANASE PAPADOPOULOS Abstract. This paper has three parts. The first part is a general introduction to rigidity and to rigid actions of mapping class group actions on various spaces. In the second part, we describe in detail four rigidity results that concern actions of mapping class groups on spaces of foliations and of laminations, namely, Thurston’s sphere of projective foliations equipped with its projective piecewise-linear structure, the space of unmeasured foliations equipped with the quotient topology, the reduced Bers boundary, and the space of geodesic laminations equipped with the Thurston topology. In the third part, we present some perspectives and open problems on other actions of mapping class groups.
    [Show full text]
  • 1. the Ending Lamination Conjecture 1 2
    THE CLASSIFICATION OF KLEINIAN SURFACE GROUPS, II: THE ENDING LAMINATION CONJECTURE JEFFREY F. BROCK, RICHARD D. CANARY, AND YAIR N. MINSKY Abstract. Thurston's Ending Lamination Conjecture states that a hy- perbolic 3-manifold with finitely generated fundamental group is uniquely determined by its topological type and its end invariants. In this paper we prove this conjecture for Kleinian surface groups. The main ingredi- ent is the establishment of a uniformly bilipschitz model for a Kleinian surface group. The first half of the proof appeared in [47], and a sub- sequent paper [15] will establish the Ending Lamination Conjecture in general. Contents 1. The ending lamination conjecture 1 2. Background and statements 8 3. Knotting and partial order of subsurfaces 25 4. Cut systems and partial orders 49 5. Regions and addresses 66 6. Uniform embeddings of Lipschitz surfaces 76 7. Insulating regions 91 8. Proof of the bilipschitz model theorem 99 9. Proofs of the main theorems 118 10. Corollaries 119 References 123 1. The ending lamination conjecture In the late 1970's Thurston formulated a conjectural classification scheme for all hyperbolic 3-manifolds with finitely generated fundamental group. The picture proposed by Thurston generalized what had hitherto been un- derstood, through the work of Ahlfors [3], Bers [10], Kra [34], Marden [37], Maskit [38], Mostow [51], Prasad [55], Thurston [67] and others, about geo- metrically finite hyperbolic 3-manifolds. Thurston's scheme proposes end invariants which encode the asymptotic geometry of the ends of the manifold, and which generalize the Riemann Date: December 7, 2004. Partially supported by NSF grants DMS-0354288, DMS-0203698 and DMS-0203976.
    [Show full text]
  • Marden's Tameness Conjecture
    MARDEN'S TAMENESS CONJECTURE: HISTORY AND APPLICATIONS RICHARD D. CANARY Abstract. Marden's Tameness Conjecture predicts that every hyperbolic 3-manifold with finitely generated fundamental group is homeomorphic to the interior of a compact 3-manifold. It was recently established by Agol and Calegari-Gabai. We will survey the history of work on this conjecture and discuss its many appli- cations. 1. Introduction In a seminal paper, published in the Annals of Mathematics in 1974, Al Marden [65] conjectured that every hyperbolic 3-manifold with finitely generated fundamental group is homeomorphic to the interior of a compact 3-manifold. This conjecture evolved into one of the central conjectures in the theory of hyperbolic 3-manifolds. For example, Mar- den's Tameness Conjecture implies Ahlfors' Measure Conjecture (which we will discuss later). It is a crucial piece in the recently completed classification of hyperbolic 3-manifolds with finitely generated funda- mental group. It also has important applications to geometry and dy- namics of hyperbolic 3-manifolds and gives important group-theoretic information about fundamental groups of hyperbolic 3-manifolds. There is a long history of partial results in the direction of Marden's Tameness Conjecture and it was recently completely established by Agol [1] and Calegari-Gabai [27]. In this brief expository paper, we will survey the history of these results and discuss some of the most important applications. Outline of paper: In section 2, we recall basic definitions from the theory of hyperbolic 3-manifolds. In section 3, we construct a 3- manifold with finitely generated fundamental group which is not home- omorphic to the interior of a compact 3-manifold.
    [Show full text]
  • Marden's Tameness Conjecture: History and Applications
    MARDEN’S TAMENESS CONJECTURE: HISTORY AND APPLICATIONS RICHARD D. CANARY Abstract. Marden’s Tameness Conjecture predicts that every hyperbolic 3-manifold with finitely generated fundamental group is homeomorphic to the interior of a compact 3-manifold. It was recently established by Agol and Calegari-Gabai. We will survey the history of work on this conjecture and discuss its many appli- cations. 1. Introduction In a seminal paper, published in the Annals of Mathematics in 1974, Al Marden [65] conjectured that every hyperbolic 3-manifold with finitely generated fundamental group is homeomorphic to the interior of a compact 3-manifold. This conjecture evolved into one of the central conjectures in the theory of hyperbolic 3-manifolds. For example, Mar- den’s Tameness Conjecture implies Ahlfors’ Measure Conjecture (which we will discuss later). It is a crucial piece in the recently completed classification of hyperbolic 3-manifolds with finitely generated funda- mental group. It also has important applications to geometry and dy- namics of hyperbolic 3-manifolds and gives important group-theoretic information about fundamental groups of hyperbolic 3-manifolds. There is a long history of partial results in the direction of Marden’s Tameness Conjecture and it was recently completely established by arXiv:1008.0118v1 [math.GT] 31 Jul 2010 Agol [1] and Calegari-Gabai [27]. In this brief expository paper, we will survey the history of these results and discuss some of the most important applications. Outline of paper: In section 2, we recall basic definitions from the theory of hyperbolic 3-manifolds. In section 3, we construct a 3- manifold with finitely generated fundamental group which is not home- omorphic to the interior of a compact 3-manifold.
    [Show full text]
  • Book of Abstracts
    Georgian National Georgian Mathematical Ivane Javakhishvili Academy of Sciences Union Tbilisi State University Caucasian Mathematics Conference CMC I BOOK OF ABSTRACTS Tbilisi, September 5 – 6 2014 Organizers: European Mathematical Society Armenian Mathematical Union Azerbaijan Mathematical Union Georgian Mathematical Union Iranian Mathematical Society Moscow Mathematical Society Turkish Mathematical Society Sponsors: Georgian National Academy of Sciences Ivane Javakhishvili Tbilisi State University Steering Committee: Carles Casacuberta (ex officio; Chair of the EMS Committee for European Solidarity), Mohammed Ali Dehghan (President of Iranian Mathematical Society), Roland Duduchava (President of the Georgian Mathematical Union), Tigran Harutyunyan (President of the Armenian Mathematical Union), Misir Jamayil oglu Mardanov (Representative of the Azerbaijan Mathematical Union), Marta Sanz-Sole (ex officio; President of the European Mathematical Society), Armen Sergeev (Representative of the Moscow Mathematical Society and EMS), Betül Tanbay (President of the Turkish Mathematical Society). Local Organizing Committee: Tengiz Buchukuri (IT Responsible), Tinatin Davitashvili (Scientific Secretary), Roland Duduchava (Chairman), David Natroshvili (Vice chairman), Levan Sigua (Treasurer). Editors: Guram Gogishvili, Vazha Tarieladze, Maia Japoshvili Cover Design: David Sulakvelidze Contents Abstracts of Invited Talks 13 Maria J. Esteban, Symmetry and Symmetry Breaking for Optimizers of Functional Inequalities . 15 Mohammad Sal Moslehian, Recent Developments in Operator Inequalities . 15 Garib N. Murshudov, Some Application of Mathematics to Structural Biology 16 Dmitri Orlov, Categories in Geometry and Physics: Mirror Symmetry, D- Branes and Landau–Ginzburg Models . 17 Samson Shatashvili, Supersymmetric Gauge Theories and the Quantisation of Integrable Systems . 18 Leon A. Takhtajan, On Bott–Chern and Chern–Simons Characteristic Forms 19 Cem Yalçin Yildirim, Small Gaps Between Primes: the GPY Method and Recent Advancements Over it .
    [Show full text]