Amphibians and Reptiles in Norway - Monitoring and Research Jon Kristian Skei Norwegian Amphibians and Reptiles

Total Page:16

File Type:pdf, Size:1020Kb

Amphibians and Reptiles in Norway - Monitoring and Research Jon Kristian Skei Norwegian Amphibians and Reptiles Amphibians and reptiles in Norway - monitoring and research Jon Kristian Skei Norwegian amphibians and reptiles Close to the northernmost distribution limit in the world Long winter (frost) Short summer Rainy 6 amphibian species Smooth newt Lissotriton vulgaris Great crested newt Triturus cristatus Common frog Rana temporaria Moor frog Rana arvalis Pool frog Pelophylax lessonae Common toad Bufo bufo Edible frog Pelophylax esculentus (introduced) Doorstep species: Natterjack toad Epidalea calamita 5 reptile species Common Lizard Zootoca vivipara Slow Worm Anguis fragilis Common European Viper/Adder Vipera berus Grass Snake Natrix natrix Smooth Snake Coronella austriaca Doorstep species: Sand Lizard Lacera agilis In addition, occasional visits of sea turtles: Leatherback Sea Turtle Dermochelys coriacea Loggerhead Sea Turtle Caretta caretta Around Easter the Adders bask in the sun in southfacing slopes while the snow is still covering the landscape The Adder can be found north of the Arctic Circle Telemetry studies are going on in central Norway The Grass Snake is common in southern parts of Norway Smooth Snake with dorsal stripe The Common Lizard is widely distributed The Slow Worm is common in southern parts of Norway The Common Toad is widely distributed in southern Norway. More bound to the coast in central and northern parts The common frog The Moor Frog occurs in south and southeast Norway, and is probably easily overlooked Pool frog from the critically endangered Agder-population Pool frog from Agder Pool frog and edible frog from Finnøy The Smooth Newt has been removed from the Norwegian Red List Thanks for your attention! .
Recommended publications
  • A Very European Tale – Britain Still Has Only Three Snake Species, but Its Grass Snake Is Now Assigned to Another Species (Natrix Helvetica)
    SHORT COMMUNICATION The Herpetological Bulletin 141, 2017: 44-45 A very European tale – Britain still has only three snake species, but its grass snake is now assigned to another species (Natrix helvetica) UWE FRITZ1* & CAROLIN KINDLER1 1Senckenberg Natural History Collections Dresden, Museum of Zoology, A. B. Meyer Building, 01109 Dresden, Germany *Corresponding author Email: [email protected] ollowing several investigations of the phylogeography and systematics of grass snakes (Fritz et al., 2012; FKindler et al., 2013, 2014; Pokrant et al., 2016), we published a further detailed study on this topic in August (Kindler et al., 2017). Our new investigation revealed that only very limited gene flow occurs between western barred grass snakes and eastern common grass snakes. Consequently, we concluded that the barred grass snake (Fig. 1), previously a subspecies, should be elevated to a full species. August being the ‘silly season’ for news stories led the local media, including the highly respected BBC, to claim that Britain has now an additional snake species, i.e. four instead of three species – the northern viper (Vipera Figure 1. Young N. helvetica showing the distinctive lateral bars berus), the smooth snake (Coronella austriaca) as well as from which the species common name the ‘barred grass snake’ is derived (photo: © Jason Steel) two species of grass snake, the common grass snake (Natrix natrix) and the newly recognised barred grass snake (Natrix helvetica). findings. However, some southern populations identified This upheaval resulted from a complete misunderstanding by Thorpe with barred grass snakes, for instance from of a press release by the Senckenberg Institution. The press northern Italy, turned out to be distinct from N.
    [Show full text]
  • Amphibians and Reptiles in South Wales the Difference Between Amphibians and Reptiles
    Amphibians & Reptiles i n S o u t h W a l e s ! ! ! ! ENVT0836 Amphibians and Reptiles in South Wales The difference between Amphibians and Reptiles Grass Snake © SWWARG Amphibians and reptiles are two ancient ! groups of animals that have been on the Smooth Newt © ARC planet for a very long time. The study of amphibians and reptiles is known as Amphibians, such as frogs, toads and ! Herpetology. To simplify matters, both newts, possess a porous skin that, when groups of animals will be referred to moist, exchanges oxygen meaning they throughout this booklet collectively as breathe through their skin. All amphibian Herpetofauna. Examples of both groups species in South Wales have to return to of animals live throughout South Wales water for breeding purposes. Adult and display a fascinating range of amphibians lay spawn in fresh water behaviour and survival tactics. bodies which then hatch and pass through a larval or tadpole stage prior to Common Lizard- female © SWWARG metamorphosing into miniature versions of the adults. • Generally possess smooth, moist skin • Generally slow moving Herpetofauna populations in South Wales • Generally in or around water are under ever increasing pressure due to a variety of reasons such as habitat loss, Common Toad © SWWARG colony isolation and human encroachment. There are many ways in which we can assist this group of misunderstood animals, which this booklet will attempt to highlight so that the reader can make their own valuable contribution towards helping to conserve both the animals and their habitat. ! page one Reptiles such as snakes and lizards, like amphibians, are cold blooded or ectotherms.
    [Show full text]
  • Parasitic Nematodes of Pool Frog (Pelophylax Lessonae) in the Volga Basin
    Journal MVZ Cordoba 2019; 24(3):7314-7321. https://doi.org/10.21897/rmvz.1501 Research article Parasitic nematodes of Pool Frog (Pelophylax lessonae) in the Volga Basin Igor V. Chikhlyaev1 ; Alexander B. Ruchin2* ; Alexander I. Fayzulin1 1Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, Togliatti, Russia 2Mordovia State Nature Reserve and National Park «Smolny», Saransk, Russia. *Correspondence: [email protected] Received: Febrary 2019; Accepted: July 2019; Published: August 2019. ABSTRACT Objetive. Present a modern review of the nematodes fauna of the pool frog Pelophylax lessonae (Camerano, 1882) from Volga basin populations on the basis of our own research and literature sources analysis. Materials and methods. Present work consolidates data from different helminthological works over the past 80 years, supported by our own research results. During the period from 1936 to 2016 different authors examined 1460 specimens of pool frog, using the method of full helminthological autopsy, from 13 regions of the Volga basin. Results. In total 9 nematodes species were recorded. Nematode Icosiella neglecta found for the first time in the studied host from the territory of Russia and Volga basin. Three species appeared to be more widespread: Oswaldocruzia filiformis, Cosmocerca ornata and Icosiella neglecta. For each helminth species the following information included: systematic position, areas of detection, localization, biology, list of definitive hosts, the level of host-specificity. Conclusions. Nematodes of pool frog, excluding I. neglecta, belong to the group of soil-transmitted helminthes (geohelminth) and parasitize in adult stages. Some species (O. filiformis, C. ornata, I. neglecta) are widespread in the host range.
    [Show full text]
  • From Montenegro
    Correspondence ISSN 2336-9744 (online) | ISSN 2337-0173 (print) The journal is available on line at www.ecol-mne.com Melanism in Natrix natrix and Natrix tessellata (Serpentes: Colubridae) from Montenegro SLA ĐANA GVOZDENOVI Ć1* and MARIO SCHWEIGER 2 1 Montenegrin Ecologist Society, Bulevar Sv. Petra Cetinjskog 73, Podgorica, Montenegro. *Corresponding author. E-mail: [email protected] 2 Vipersgarden, Katzelsberg 4, 5162 Obertrum, Ӧsterreich. E-mail: [email protected] Received 13 November 2014 │ Accepted 10 December 2014 │ Published online 11 December 2014. The coloration in animals plays an important role in predator avoidance (Sweet 1985), inter- and intraspecific communication and sexual selection (Roulin & Bize 2006). Different color morphs occur in many reptiles, and the most frequent one is melanism, especially in snakes (Lorioux et al . 2008). There exist few advantages of this phenomen as: faster heating rates, higher mean body temperatures, protection from overheating (Luiselli 1992; Forsman 1995; Bittner et al . 2002; Tanaka 2005; Clusella-Trullas et al . 2008), but also disadvantages, such as higher predation risk (Clusella-Trullas et al., 2008). Melanism in European snakes has been reported for: Zamenis longissimus , Hierophis viridiflavus , Coronella austriaca , Platyceps najadum , Natrix maura , Natrix natrix , Natrix tessellata , Vipera berus , Vipera aspis (Terhivuo 1990; Cattaneo 2003; Zuffi 2008; Pernetta & Reading 2009; Strugariu & Zamfirescu 2009; Zadravec & Lauš 2011; Mollov 2012; Ajti ć et al . 2013). Figures 1-2. Left (Fig. 1): Black dice snake Natrix tessellata from river Bojana, Ulcinj. Right (Fig. 2): Black grass snake Natrix natrix persa from Tanki rt, Skadar Lake Ecol. Mont., 1 (4), 2014, 231-233 231 MELANISM IN NATRIX NATRIX AND N.TESSELLATA FROM MONTENEGRO In this paper we present melanism in two species: Natrix natrix (Linnaeus, 1758) and Natrix tessellata (Laurenti, 1768) from Montenegro.
    [Show full text]
  • The Rufford Foundation Final Report
    The Rufford Foundation Final Report Congratulations on the completion of your project that was supported by The Rufford Foundation. We ask all grant recipients to complete a Final Report Form that helps us to gauge the success of our grant giving. We understand that projects often do not follow the predicted course but knowledge of your experiences is valuable to us and others who may be undertaking similar work. Please be as honest as you can in answering the questions – remember that negative experiences are just as valuable as positive ones if they help others to learn from them. Please complete the form in English and be as clear and concise as you can. We will ask for further information if required. If you have any other materials produced by the project, particularly a few relevant photographs, please send these to us separately. Please submit your final report to [email protected]. Thank you for your help. Josh Cole, Grants Director Grant Recipient Details Your name Aleksandar Simović Distribution and conservation of the highly endangered Project title lowland populations of the Bosnian Adder (Vipera berus bosniensis) in Serbia RSG reference 17042-1 Reporting period March 2015 – March 2016 Amount of grant £ 5,000 Your email address [email protected] Date of this report 30.03.2016 1. Please indicate the level of achievement of the project’s original objectives and include any relevant comments on factors affecting this. achieved Not achieved Partially achieved Fully Objective Comments Precisely determine With very limited potential habitats in distribution Vojvodina province we found adders in 10 new UTM squares (10 x 10 km).
    [Show full text]
  • Morphological and Molecular Taxonomy of Helminths of the Slow Worm, Anguis Fragilis (Linnaeus) (Squamata: Anguidae) from Turkey
    BIHAREAN BIOLOGIST 13 (1): 36-38 ©Biharean Biologist, Oradea, Romania, 2019 Article No.: e181308 http://biozoojournals.ro/bihbiol/index.html Morphological and molecular taxonomy of helminths of the slow worm, Anguis fragilis (Linnaeus) (Squamata: Anguidae) from Turkey Nurhan SÜMER*, Sezen BİRLİK and Hikmet Sami YILDIRIMHAN Uludag University, Science and Literature Faculty, Department of Biology, 16059 Bursa, Turkey. E-mail's: [email protected], [email protected], [email protected] * Corresponding author, N. Sümer , E-mail: [email protected] Received: 21. May 2018 / Accepted: 07. November 2018 / Available online: 12. November 2018 / Printed: June 2019 Abstract. Fifteen specimens of the slow worm, Anguis fragilis (two juvenile, five males and eight females), collected in Trabzon and Bursa Provinces, Turkey, were examined for helminths. Anguis fragilis was found to harbour four species of helminths: one species of Digenea, Brachylaemus sp. and three species of Nematoda, Entomelas entomelas, Oxysomatium brevicaudatum and Oswaldocruzia filiformis. In addition, DNA isolated from the Nematodes was analysed with clustal w and blast computer programs for nucleotide sequences. Anguis fragilis from Turkey represents a new host record for Brachylaemus sp. Also, 28s rDNA sequencing of Oxysomatium brevicaudatum and Oswaldocruzia filiformis produced new nucleotide sequences submitted to Genebank (NCBI: National Center for Biotechnology Information). To the knowledge, this is the first DNA analysis of the helminth fauna of Anguis fragilis. Key words: Anguis fragilis, Digenea, Nematoda, DNA sequence, taxonomy. Introduction Çaykara (40°45’N, 40°15’E, 400 m elevation, n=3) and Bursa (40°10’N, 29° 05’E, 500 m elevation, n=12) and transported to the The slow worm, Anguis fragilis Linnaeus, 1758, inhabits parasitology laboratory for necropsy.
    [Show full text]
  • Crested Newts Triturus Carnifex
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Herpetozoa Jahr/Year: 2002 Band/Volume: 15_1_2 Autor(en)/Author(s): Filippi Ernesto, Luiselli Luca M. Artikel/Article: Crested Newts Triturus carnifex (LAURENTI, 1768), form the bulk of the diet in high-altitude Grass Snakes Natrix natrix (LINNAEUS, 1758), of the central Apennines 83-85 ©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at HERPETOZOA15(l/2):83-85 83 Wien, 30. Juni 2002 Crested Newts Triturus carnifex (LAURENTI, 1768), form the bulk of the diet in high-altitude Grass Snakes Natrix natrix (LINNAEUS, 1758), of the central Apennines (Caudata: Salamandridae; Squamata: Colubridae) Kamm-Molche - Triturus carnifex (LAURENTI, 1768) - als Hauptbestandteil der Nahrung von Hochgebirgs-Ringelnattern - Natrix natrix (LINNAEUS, 1758) - im Zentralapennin (Caudata: Salamandridae; Squamata: Colubridae) ERNESTO FILIPPI & LUCA LUISELLI KURZFASSUNG Wir berichten über die Zusammensetzung der Nahrung von Ringelnattern Natrix natrix (LINNAEUS, 1758), einer isolierten Population im Bereich eines Hochgebirgs-Gletschersees im Naturreservat 'Montagne della Duchessa' im Velino Massiv (Apenninen). Die Körperlänge der Weibchen lag (statistisch nicht signifikant) gering- fügig über der der Männchen. Bei einer Wiederfangrate von 50%, zeigte ein allgemeines MANOVA-Modell mit der Kopf-Rumpf-Länge (KRL) als Kovariate, daß kein Geschlecht bevorzugt wiedergefangen wurde. Nahrungsobjekte waren ausschließlich Amphibien. Abgesehen von einer Larve der Erdkröte Bufo bufo (LIN- NAEUS, 1758) in einer männlichen Natter von 37,0 cm KRL, wurden ausschließlich adulte Kamm-Molche Triturus carnifex (LAURENTI, 1768), als Nahrungstiere festgestellt. Sehr wahrscheinlich liegt dies daran, daß diese Molche im Untersuchungsgewässer die bei weitem häufigste Amphibienart darstellen.
    [Show full text]
  • Amphibians and Reptiles
    Amphibians and reptiles Introduction Churchyards can be great places for amphibians and reptiles, and especially Did you know? important for slow worms and common lizard which have declined elsewhere. If the churchyard is close to ponds you may even find common Unlike frogs, toads don’t frogs, common toads and newts. Open sunny spots as well as sheltered hop, but walk, and if areas such as hedge bases and longer grass areas provide food and shelter. disturbed will often sit very still. This helps to distinguish The importance of churchyards for amphibians and the two species. reptiles The smooth newt is Churchyards add to a network of green sites, such as meadows and occasionally mistaken for a gardens, enabling the movement of species such as these through the lizard and their skin can look landscape. The mosaic of habitats in churchyards including grassland velvety when they are on of varying lengths, hedgerows, piles of dead leaves, compost heaps, land. tombstones and scrubby areas provide good homes for amphibians and reptiles. Look out for common frog, common toad, smooth newt, common lizard, grass snake and slow worm. The common lizard incubates its eggs internally without laying shelled eggs. A slow worm is in fact a lizard with no legs and has a flat forked tongue. Common frog by David Tottmann Common toad by Elizabeth Dack For further information please visit the NWT website or contact: NWT Churchyard Team Tel: 01603 625540 Norfolk Wildlife Trust Email: [email protected] Bewick House Website: www.norfolkwildlifetrust.org.uk Thorpe Road, Norwich NR1 1RY Grass snake by Julian Thomas Saving Norfolk’s Wildlife for the Future Where to find amphibians and reptiles Common lizard Common frog by Elizabeth Dack by Neville Yardy Slow worm by David Gittens The common lizard is a colourful Frogs have slender bodies, smooth The slow worm has a smooth and character, being a shade of brown skin and jump and hop, whereas shiny snake-like body.
    [Show full text]
  • The Adder (Vipera Berus) in Southern Altay Mountains
    The adder (Vipera berus) in Southern Altay Mountains: population characteristics, distribution, morphology and phylogenetic position Shaopeng Cui1,2, Xiao Luo1,2, Daiqiang Chen1,2, Jizhou Sun3, Hongjun Chu4,5, Chunwang Li1,2 and Zhigang Jiang1,2 1 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 2 University of Chinese Academy of Sciences, Beijing, China 3 Kanas National Nature Reserve, Buerjin, Urumqi, China 4 College of Resources and Environment Sciences, Xinjiang University, Urumqi, China 5 Altay Management Station, Mt. Kalamaili Ungulate Nature Reserve, Altay, China ABSTRACT As the most widely distributed snake in Eurasia, the adder (Vipera berus) has been extensively investigated in Europe but poorly understood in Asia. The Southern Altay Mountains represent the adder's southern distribution limit in Central Asia, whereas its population status has never been assessed. We conducted, for the first time, field surveys for the adder at two areas of Southern Altay Mountains using a combination of line transects and random searches. We also described the morphological characteristics of the collected specimens and conducted analyses of external morphology and molecular phylogeny. The results showed that the adder distributed in both survey sites and we recorded a total of 34 sightings. In Kanas river valley, the estimated encounter rate over a total of 137 km transects was 0.15 ± 0.05 sightings/km. The occurrence of melanism was only 17%. The small size was typical for the adders in Southern Altay Mountains in contrast to other geographic populations of the nominate subspecies. A phylogenetic tree obtained by Bayesian Inference based on DNA sequences of the mitochondrial Submitted 21 April 2016 cytochrome b (1,023 bp) grouped them within the Northern clade of the species but Accepted 18 July 2016 failed to separate them from the subspecies V.
    [Show full text]
  • Cam15 Curic.Vp
    Coll. Antropol. 33 (2009) Suppl. 2: 93–98 Original scientific paper Snakebites in Mostar Region, Bosnia and Herzegovina Ivo Curi}1, Snje`ana Curi}2, Ivica Bradari}1, Pero Bubalo1, Helien Bebek-Ivankovi}1, Jadranka Nikoli}1, Ozren Pola{ek3 and Nikola Bradari}4 1 Department for Infectious Diseases, University Clinical Hospital Mostar, Mostar, Bosnia and Herzegovina 2 Health Center Mostar, Mostar, Bosnia and Herzegovina 3 School of Public Health »Andrija [tampar«, School of Medicine, University of Zagreb, Zagreb, Croatia 4 University Hospital Center Split, Split, Croatia ABSTRACT The aim of this study was to provide an overview of the snakebites in patients hospitalized at the Mostar Clinical Hos- pital, admitted between 1983 and 2006. A total of 341 patients were recorded, with moderate men predominance (52.8%). Majority of patients were bitten for the first time (99.1%). In 98.8% of patients snakebite occurred to the bare skin, most commonly during June to September period (64.2%). Snakebites were the commonest in agricultural workers (48.1%). Until 2003 all admitted patients were treated according to Russel’s scheme (3-anti). As of 2003 new treatment scheme was applied, resulting in the reduction of antidote and supportive treatment use, causing a reduction in the number of clinically apparent allergic reactions. Serum sickness was recorded in only 2 patients, while lethal outcome was recorded in one (0.3%). Overall results indicate that lethality of snakebite is low, and that patients were often administered treat- ment without medical indication. High number of tourists as well as the presence of the peace keeping troops and other visiting personnel in this region make the snakebites and awareness on snakes not only a local issue, but also more gen- eral concern.
    [Show full text]
  • Diet Composition of the Karpathos Marsh Frog (Pelophylax Cerigensis): What Does the Most Endangered Frog in Europe Eat?
    Animal Biodiversity and Conservation 42.1 (2019) 1 Diet composition of the Karpathos marsh frog (Pelophylax cerigensis): what does the most endangered frog in Europe eat? P. Pafilis, G. Kapsalas, P. Lymberakis, D. Protopappas, K. Sotiropoulos Pafilis, P., Kapsalas, G., Lymberakis, P., Protopappas, D., Sotiropoulos, K., 2019. Diet composition of the Karpathos marsh frog (Pelophylax cerigensis): what does the most endangered frog in Europe eat? Animal Biodiversity and Conservation, 42.1: 1–8, https://doi.org/10.32800/abc.2019.42.0001 Abstract Diet composition of the Karpathos marsh frog (Pelophylax cerigensis): what does the most endangered frog in Europe eat? The Karpathos marsh frog (Pelophylax cerigensis) is considered the most endangered frog in Europe. Here we assess its feeding ecology and examine 76 individuals from the two known populations using the stomach flushing method. We also measured body weight, snout–vent length, mouth width and prey width and length. Pelophylax cerigensis follows the feeding pattern of green frogs of the adjacent areas, with Coleoptera, Araneae, Isopoda and Hymenoptera being the main prey groups. The two populations differed in body size but had similar values of prey abundance and frequency. It seems that P. cerigensis follows a strict feeding strategy. Further research on prey availability in its habitats will provide valuable insight. Key words: Diet, Endangered species, Islands, Frogs, Mediterranean Resumen Composición de la dieta de la rana de Kárpatos (Pelophylax cerigensis): ¿qué come la rana más amenazada de Europa? La rana de Kárpatos (Pelophylax cerigensis) es considerada la rana más amenazada de Europa. Aquí evaluamos su ecología alimentaria y examinamos 76 individuos de las dos poblaciones conocidas usando el método del lavado de estómago.
    [Show full text]
  • Indigenous Reptiles
    Reptiles Sylvain Ursenbacher info fauna & NLU, Universität Basel pdf can be found: www.ursenbacher.com/teaching/Reptilien_UNIBE_2020.pdf Reptilia: Crocodiles Reptilia: Tuataras Reptilia: turtles Rep2lia: Squamata: snakes Rep2lia: Squamata: amphisbaenians Rep2lia: Squamata: lizards Phylogeny Tetrapoda Synapsida Amniota Lepidosauria Squamata Sauropsida Anapsida Archosauria H4 Phylogeny H5 Chiari et al. BMC Biology 2012, 10:65 Amphibians – reptiles - differences Amphibians Reptiles numerous glands, generally wet, without or with limited number skin without scales of glands, dry, with scales most of them in water, no links with water, reproduction larval stage without a larval stage most of them in water, packed in not in water, hard shell eggs tranparent jelly (leathery or with calk) passive transmission of venom, some species with active venom venom toxic skin as passive protection injection Generally in humide and shady Generally dry and warm habitats areas, nearby or directly in habitats, away from aquatic aquatic habitats habitats no or limited seasonal large seasonal movements migration movements, limited traffic inducing big traffic problems problems H6 First reptiles • first reptiles: about 320-310 millions years ago • embryo is protected against dehydration • ≈ 305 millions years ago: a dryer period ➜ new habitats for reptiles • Mesozoic (252-66 mya): “Age of Reptiles” • large disparition of species: ≈ 252 and 65 millions years ago H7 Mesozoic Quick systematic overview total species CH species (oct 2017) Order Crocodylia (crocodiles)
    [Show full text]