Is Spacetime As Physical As Is Space? Mayeul Arminjon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Explain Inertial and Noninertial Frame of Reference
Explain Inertial And Noninertial Frame Of Reference Nathanial crows unsmilingly. Grooved Sibyl harlequin, his meadow-brown add-on deletes mutely. Nacred or deputy, Sterne never soot any degeneration! In inertial frames of the air, hastening their fundamental forces on two forces must be frame and share information section i am throwing the car, there is not a severe bottleneck in What city the greatest value in flesh-seconds for this deviation. The definition of key facet having a small, polished surface have a force gem about a pretend or aspect of something. Fictitious Forces and Non-inertial Frames The Coriolis Force. Indeed, for death two particles moving anyhow, a coordinate system may be found among which saturated their trajectories are rectilinear. Inertial reference frame of inertial frames of angular momentum and explain why? This is illustrated below. Use tow of reference in as sentence Sentences YourDictionary. What working the difference between inertial frame and non inertial fr. Frames of Reference Isaac Physics. In forward though some time and explain inertial and noninertial of frame to prove your measurement problem you. This circumstance undermines a defining characteristic of inertial frames: that with respect to shame given inertial frame, the other inertial frame home in uniform rectilinear motion. The redirect does not rub at any valid page. That according to whether the thaw is inertial or non-inertial In the. This follows from what Einstein formulated as his equivalence principlewhich, in an, is inspired by the consequences of fire fall. Frame of reference synonyms Best 16 synonyms for was of. How read you govern a bleed of reference? Name we will balance in noninertial frame at its axis from another hamiltonian with each printed as explained at all. -
Relativity with a Preferred Frame. Astrophysical and Cosmological Implications Monday, 21 August 2017 15:30 (30 Minutes)
6th International Conference on New Frontiers in Physics (ICNFP2017) Contribution ID: 1095 Type: Talk Relativity with a preferred frame. Astrophysical and cosmological implications Monday, 21 August 2017 15:30 (30 minutes) The present analysis is motivated by the fact that, although the local Lorentz invariance is one of thecorner- stones of modern physics, cosmologically a preferred system of reference does exist. Modern cosmological models are based on the assumption that there exists a typical (privileged) Lorentz frame, in which the universe appear isotropic to “typical” freely falling observers. The discovery of the cosmic microwave background provided a stronger support to that assumption (it is tacitly assumed that the privileged frame, in which the universe appears isotropic, coincides with the CMB frame). The view, that there exists a preferred frame of reference, seems to unambiguously lead to the abolishmentof the basic principles of the special relativity theory: the principle of relativity and the principle of universality of the speed of light. Correspondingly, the modern versions of experimental tests of special relativity and the “test theories” of special relativity reject those principles and presume that a preferred inertial reference frame, identified with the CMB frame, is the only frame in which the two-way speed of light (the average speed from source to observer and back) is isotropic while it is anisotropic in relatively moving frames. In the present study, the existence of a preferred frame is incorporated into the framework of the special relativity, based on the relativity principle and universality of the (two-way) speed of light, at the expense of the freedom in assigning the one-way speeds of light that exists in special relativity. -
26-2 Spacetime and the Spacetime Interval We Usually Think of Time and Space As Being Quite Different from One Another
Answer to Essential Question 26.1: (a) The obvious answer is that you are at rest. However, the question really only makes sense when we ask what the speed is measured with respect to. Typically, we measure our speed with respect to the Earth’s surface. If you answer this question while traveling on a plane, for instance, you might say that your speed is 500 km/h. Even then, however, you would be justified in saying that your speed is zero, because you are probably at rest with respect to the plane. (b) Your speed with respect to a point on the Earth’s axis depends on your latitude. At the latitude of New York City (40.8° north) , for instance, you travel in a circular path of radius equal to the radius of the Earth (6380 km) multiplied by the cosine of the latitude, which is 4830 km. You travel once around this circle in 24 hours, for a speed of 350 m/s (at a latitude of 40.8° north, at least). (c) The radius of the Earth’s orbit is 150 million km. The Earth travels once around this orbit in a year, corresponding to an orbital speed of 3 ! 104 m/s. This sounds like a high speed, but it is too small to see an appreciable effect from relativity. 26-2 Spacetime and the Spacetime Interval We usually think of time and space as being quite different from one another. In relativity, however, we link time and space by giving them the same units, drawing what are called spacetime diagrams, and plotting trajectories of objects through spacetime. -
The Sagnac Effect: Does It Contradict Relativity?
The Sagnac Effect: Does it Contradict Relativity? By Doug Marett 2012 A number of authors have suggested that the Sagnac effect contradicts the original postulates of Special Relativity, since the postulate of the constancy of the speed of light is violated in rotating systems. [1,2,3] Sagnac himself designed the experiment of 1913 to prove the existence of the aether [4]. Other authors have attempted to explain the effect within the theoretical framework of relativity, even going as far as calling the effect “relativistic”.[5] However, we seek in this paper to show how the Sagnac effect contravenes in principle the concept of the relativity of time and motion. To understand how this happens and its wider implications, it is necessary to look first at the concept of absolute vs. relative motion, what the Sagnac effect implies about these motions, and what follows logically about the broader notions of space and time. Early Ideas Regarding Rotation and Absolute Motion: The fundamental distinction between translational and rotational motion was first pointed out by Sir Isaac Newton, and emphasized later by the work of Ernest Mach and Heinrich Hertz. One of the first experiments on the subject was Newton’s bucket experiment of 1689. It was an experiment to demonstrate that true rotational motion cannot be defined as relative rotation of a body with respect to surrounding bodies – that true motion and rest should be defined relative to absolute space instead. In Newton’s experiment, a bucket is filled with water and hung by a rope. If the rope is twisted around and around until it is tight and then released, the bucket begins to spin rapidly, not only with respect to the observers watching it, but also with respect to the water in the bucket, which at first doesn’t move and remains flat on its surface. -
Projective Geometry: a Short Introduction
Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g. -
Time Reversal Symmetry in Cosmology and the Creation of a Universe–Antiuniverse Pair
universe Review Time Reversal Symmetry in Cosmology and the Creation of a Universe–Antiuniverse Pair Salvador J. Robles-Pérez 1,2 1 Estación Ecológica de Biocosmología, Pedro de Alvarado, 14, 06411 Medellín, Spain; [email protected] 2 Departamento de Matemáticas, IES Miguel Delibes, Miguel Hernández 2, 28991 Torrejón de la Calzada, Spain Received: 14 April 2019; Accepted: 12 June 2019; Published: 13 June 2019 Abstract: The classical evolution of the universe can be seen as a parametrised worldline of the minisuperspace, with the time variable t being the parameter that parametrises the worldline. The time reversal symmetry of the field equations implies that for any positive oriented solution there can be a symmetric negative oriented one that, in terms of the same time variable, respectively represent an expanding and a contracting universe. However, the choice of the time variable induced by the correct value of the Schrödinger equation in the two universes makes it so that their physical time variables can be reversely related. In that case, the two universes would both be expanding universes from the perspective of their internal inhabitants, who identify matter with the particles that move in their spacetimes and antimatter with the particles that move in the time reversely symmetric universe. If the assumptions considered are consistent with a realistic scenario of our universe, the creation of a universe–antiuniverse pair might explain two main and related problems in cosmology: the time asymmetry and the primordial matter–antimatter asymmetry of our universe. Keywords: quantum cosmology; origin of the universe; time reversal symmetry PACS: 98.80.Qc; 98.80.Bp; 11.30.-j 1. -
General Relativity Requires Absolute Space and Time 1 Space
CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server General Relativity Requires Amp`ere’s theory of magnetism [10]. Maxwell uni- Absolute Space and Time fied Faraday’s theory with Huyghens’ wave the- ory of light, where in Maxwell’s theory light is Rainer W. K¨uhne considered as an oscillating electromagnetic wave Lechstr. 63, 38120 Braunschweig, Germany which propagates through the luminiferous aether of Huyghens. We all know that the classical kinematics was re- placed by Einstein’s Special Relativity [11]. Less We examine two far-reaching and somewhat known is that Special Relativity is not able to an- heretic consequences of General Relativity. swer several problems that were explained by clas- (i) It requires a cosmology which includes sical mechanics. a preferred rest frame, absolute space and According to the relativity principle of Special time. (ii) A rotating universe and time travel Relativity, all inertial frames are equivalent, there are strict solutions of General Relativity. is no preferred frame. Absolute motion is not re- quired, only the relative motion between the iner- tial frames is needed. The postulated absence of an absolute frame prohibits the existence of an aether [11]. 1 Space and Time Before Gen- According to Special Relativity, each inertial eral Relativity frame has its own relative time. One can infer via the Lorentz transformations [12] on the time of the According to Aristotle, the Earth was resting in the other inertial frames. Absolute space and time do centre of the universe. He considered the terrestrial not exist. Furthermore, space is homogeneous and frame as a preferred frame and all motion relative isotropic, there does not exist any rotational axis of to the Earth as absolute motion. -
4 Jul 2018 Is Spacetime As Physical As Is Space?
Is spacetime as physical as is space? Mayeul Arminjon Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France Abstract Two questions are investigated by looking successively at classical me- chanics, special relativity, and relativistic gravity: first, how is space re- lated with spacetime? The proposed answer is that each given reference fluid, that is a congruence of reference trajectories, defines a physical space. The points of that space are formally defined to be the world lines of the congruence. That space can be endowed with a natural structure of 3-D differentiable manifold, thus giving rise to a simple notion of spatial tensor — namely, a tensor on the space manifold. The second question is: does the geometric structure of the spacetime determine the physics, in particular, does it determine its relativistic or preferred- frame character? We find that it does not, for different physics (either relativistic or not) may be defined on the same spacetime structure — and also, the same physics can be implemented on different spacetime structures. MSC: 70A05 [Mechanics of particles and systems: Axiomatics, founda- tions] 70B05 [Mechanics of particles and systems: Kinematics of a particle] 83A05 [Relativity and gravitational theory: Special relativity] 83D05 [Relativity and gravitational theory: Relativistic gravitational theories other than Einstein’s] Keywords: Affine space; classical mechanics; special relativity; relativis- arXiv:1807.01997v1 [gr-qc] 4 Jul 2018 tic gravity; reference fluid. 1 Introduction and Summary What is more “physical”: space or spacetime? Today, many physicists would vote for the second one. Whereas, still in 1905, spacetime was not a known concept. It has been since realized that, even in classical mechanics, space and time are coupled: already in the minimum sense that space does not exist 1 without time and vice-versa, and also through the Galileo transformation. -
Affine and Euclidean Geometry Affine and Projective Geometry, E
AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda 1. AFFINE SPACE 1.1 Definition of affine space A real affine space is a triple (A; V; φ) where A is a set of points, V is a real vector space and φ: A × A −! V is a map verifying: 1. 8P 2 A and 8u 2 V there exists a unique Q 2 A such that φ(P; Q) = u: 2. φ(P; Q) + φ(Q; R) = φ(P; R) for everyP; Q; R 2 A. Notation. We will write φ(P; Q) = PQ. The elements contained on the set A are called points of A and we will say that V is the vector space associated to the affine space (A; V; φ). We define the dimension of the affine space (A; V; φ) as dim A = dim V: AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda Examples 1. Every vector space V is an affine space with associated vector space V . Indeed, in the triple (A; V; φ), A =V and the map φ is given by φ: A × A −! V; φ(u; v) = v − u: 2. According to the previous example, (R2; R2; φ) is an affine space of dimension 2, (R3; R3; φ) is an affine space of dimension 3. In general (Rn; Rn; φ) is an affine space of dimension n. 1.1.1 Properties of affine spaces Let (A; V; φ) be a real affine space. The following statemens hold: 1. -
Spacetime Symmetries and the Cpt Theorem
SPACETIME SYMMETRIES AND THE CPT THEOREM BY HILARY GREAVES A dissertation submitted to the Graduate School|New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Philosophy Written under the direction of Frank Arntzenius and approved by New Brunswick, New Jersey May, 2008 ABSTRACT OF THE DISSERTATION Spacetime symmetries and the CPT theorem by Hilary Greaves Dissertation Director: Frank Arntzenius This dissertation explores several issues related to the CPT theorem. Chapter 2 explores the meaning of spacetime symmetries in general and time reversal in particular. It is proposed that a third conception of time reversal, `geometric time reversal', is more appropriate for certain theoretical purposes than the existing `active' and `passive' conceptions. It is argued that, in the case of classical electromagnetism, a particular nonstandard time reversal operation is at least as defensible as the standard view. This unorthodox time reversal operation is of interest because it is the classical counterpart of a view according to which the so-called `CPT theorem' of quantum field theory is better called `PT theorem'; on this view, a puzzle about how an operation as apparently non- spatio-temporal as charge conjugation can be linked to spacetime symmetries in as intimate a way as a CPT theorem would seem to suggest dissolves. In chapter 3, we turn to the question of whether the CPT theorem is an essentially quantum-theoretic result. We state and prove a classical analogue of the CPT theorem for systems of tensor fields. This classical analogue, however, ii appears not to extend to systems of spinor fields. -
Chapter II. Affine Spaces
II.1. Spaces 1 Chapter II. Affine Spaces II.1. Spaces Note. In this section, we define an affine space on a set X of points and a vector space T . In particular, we use affine spaces to define a tangent space to X at point x. In Section VII.2 we define manifolds on affine spaces by mapping open sets of the manifold (taken as a Hausdorff topological space) into the affine space. Ultimately, we think of a manifold as pieces of the affine space which are “bent and pasted together” (like paper mache). We also consider subspaces of an affine space and translations of subspaces. We conclude with a discussion of coordinates and “charts” on an affine space. Definition II.1.01. An affine space with vector space T is a nonempty set X of points and a vector valued map d : X × X → T called a difference function, such that for all x, y, z ∈ X: (A i) d(x, y) + d(y, z) = d(x, z), (A ii) the restricted map dx = d|{x}×X : {x} × X → T defined as mapping (x, y) 7→ d(x, y) is a bijection. We denote both the set and the affine space as X. II.1. Spaces 2 Note. We want to think of a vector as an arrow between two points (the “head” and “tail” of the vector). So d(x, y) is the vector from point x to point y. Then we see that (A i) is just the usual “parallelogram property” of the addition of vectors. -
Special Relativity: a Centenary Perspective
S´eminaire Poincar´e 1 (2005) 79 { 98 S´eminaire Poincar´e Special Relativity: A Centenary Perspective Clifford M. Will McDonnell Center for the Space Sciences and Department of Physics Washington University St. Louis MO 63130 USA Contents 1 Introduction 79 2 Fundamentals of special relativity 80 2.1 Einstein's postulates and insights . 80 2.2 Time out of joint . 81 2.3 Spacetime and Lorentz invariance . 83 2.4 Special relativistic dynamics . 84 3 Classic tests of special relativity 85 3.1 The Michelson-Morley experiment . 85 3.2 Invariance of c . 86 3.3 Time dilation . 86 3.4 Lorentz invariance and quantum mechanics . 87 3.5 Consistency tests of special relativity . 87 4 Special relativity and curved spacetime 89 4.1 Einstein's equivalence principle . 90 4.2 Metric theories of gravity . 90 4.3 Effective violations of local Lorentz invariance . 91 5 Is gravity Lorentz invariant? 92 6 Tests of local Lorentz invariance at the centenary 93 6.1 Frameworks for Lorentz symmetry violations . 93 6.2 Modern searches for Lorentz symmetry violation . 95 7 Concluding remarks 96 References . 96 1 Introduction A hundred years ago, Einstein laid the foundation for a revolution in our conception of time and space, matter and energy. In his remarkable 1905 paper \On the Electrodynamics of Moving Bodies" [1], and the follow-up note \Does the Inertia of a Body Depend upon its Energy-Content?" [2], he established what we now call special relativity as one of the two pillars on which virtually all of physics of the 20th century would be built (the other pillar being quantum mechanics).