Society, Technology, and the Sustainable Provision of Electricity

Total Page:16

File Type:pdf, Size:1020Kb

Society, Technology, and the Sustainable Provision of Electricity Society, Technology, and the Sustainable Provision of Electricity A sociotechnical perspective on developing energy infrastructure Seth Townley Master thesis in Culture, Environment and Sustainability Centre for Development and Environment UNIVERSITY OF OSLO June 2016 © Seth Townley 2016 Society, Technology, and the Sustainable Provision of Electricity: A sociotechnical perspective on developing energy infrastructure http://www.duo.uio.no/ Print: Reprosentralen, University of Oslo II Abstract A direction which sustainable development in energy systems could take is towards electricity ‘co-provision.’ Here, centralised fossil-powered generation is partly replaced by decentralised, renewable micro generation infrastructure supplementing a leaner, more dynamic national grid fuelled by diverse range of sustainable power sources. Pursuing this path would require a major overhaul in existing technical systems of energy provision. The common theme which runs through much of the diverse literature on technology change emphasises the sociotechnical nature of change processes, which is to say that it treats technology and technical systems as the material embodiment of social choices. This means that the process of developing energy infrastructure into a sustainable system of electricity co-provision cannot simply be ‘enabled’ by technology, conceived of as an exogenous variable ‘impacting’ society. It is, in fact, a process of endogenous societal change: a sociotechnical transition. This thesis examines the dynamics of this transition with regards to electricity co-provision. In doing so, it presents and seeks to problematize simplistic discourses on technology change, and to draw back from the narrow conception of technical innovation found in these discourses. It analyses existing systems of energy provision alongside individual energy project case studies, which represent novel sociotechnical configurations of artefacts, institutions, and actors in electricity co-provision experiments. It applies sociotechnical transitions theory and its multi-level perspective in order to link the micro and the macro levels within this analysis. The thesis attempts to highlight both the promise in the emerging configuration of co-provision technologies and actors, but also the doubt that hangs over any vision of a sustainable sociotechnical transition. To do this it draws attention to the multiple paths along which sociotechnical change could unfold, but which are ‘closed off’ by a number of predominantly political factors. It is shown that, ultimately, the future shape of technical systems is not simply a question of technology but of social choice. Trying to better understand who is able to influence these choices, and who is locked out of the process, is an important area of enquiry in environment and development studies. This thesis aims to contribute to this area of enquiry, specifically as it relates to the sustainable provision of electricity. Key words: electricity co-provision, sociotechnical transition, sociotechnical configurations, innovation trajectories/ pathways, sustainable development III IV Acknowledgements I would like to extend sincere thanks my supervisor, Desmond McNeill, whose patient guidance has been invaluable as this thesis, falteringly at first, has taken shape. Also, to my partner, Katy, for graciously putting up with my now year-long obsession with the esoteric minutiae of sociotechnical energy systems, and for always supporting everything I do. Thanks also to Gudrun Helland, our fantastically supportive study coordinator at SUM, for cheering me and everyone else along and always being on hand to answer questions; Tanja Winther for taking time to discuss my early project proposal with me; Andy Edwards of Bioregional for talking to me before my idea was even an idea, but helping me to make contacts necessary for my fieldwork all the same; and to all of my informants for taking the time to share their knowledge and expertise. And last, but most certainly not least, I want to thank all of my fellow SUM master’s students who have shared this experience with me. Completing this thesis has been somewhat of an emotional rollercoaster, but I have only very happy memories of all the lunches and coffee breaks we have taken together along the way. V Table of contents 1 Introduction ............................................................................................................... 1 1.1.1 Effecting a sustainable energy transformation: a question with a technological answer? ............................................................................................... 1 1.1.2 Thesis outline and research questions ........................................................ 5 1.2 Methodological approach ................................................................................... 7 1.2.1 Field study ................................................................................................... 9 1.2.2 Desk study ................................................................................................. 13 1.3 Background: electricity supply as the technical embodiment of social, political and economic circumstances ....................................................................................... 16 1.3.1 Electrification: a process of system-society coevolution .......................... 16 1.3.2 Early system expansion ............................................................................. 19 1.3.3 The shift to ‘bulk power’ ........................................................................... 21 1.3.4 Twentieth century global-localisation ....................................................... 23 2 A balancing act: electricity supply, society, and environment ................................ 27 2.1 Demand-led centralised supply ........................................................................ 29 2.1.1 Competition versus guaranteed service ..................................................... 30 2.1.2 Balancing and reserve ............................................................................... 32 2.1.3 Base and peak loads .................................................................................. 34 2.1.4 System resilience: a question of flexibility ............................................... 35 2.2 Alternatives to centralised bulk power ............................................................. 37 2.2.1 Controls: electricity in the information age ............................................... 39 2.2.2 Electricity storage: the missing link? ........................................................ 40 2.2.3 Distributed micro generation and storage networks: electricity for twenty- first century power needs ........................................................................................ 42 2.3 Competition and a ‘low carbon transition’: regulation and policy ................... 44 2.3.1 Non-traditional business models ............................................................... 44 2.3.2 Social implications of pricing structure .................................................... 46 2.3.3 Regulating for disruption? ......................................................................... 47 2.3.4 Environmental policy and energy subsidies .............................................. 50 2.3.5 A question of distribution .......................................................................... 53 VI 3 Sociotechnical transitions: theory and practice ...................................................... 59 3.1 Approaching transition from the multi-level perspective ................................ 61 3.1.1 Sociotechnical ‘niche’ innovations ........................................................... 63 3.1.2 Configuring social actors and technological artefacts .............................. 65 3.1.3 Towards a framework for analysing sociotechnical configurations of electricity co-provision technologies ...................................................................... 68 3.2 Strategic niche management (SNM) theory ..................................................... 70 3.2.1 Customer group aggregation ..................................................................... 70 3.2.2 Buildings as decentralised energy infrastructure ...................................... 72 3.2.3 Community energy: ‘grassroots innovation’ ............................................ 73 3.2.4 Applying strategic niche management theory .......................................... 77 3.3 Regime processes ............................................................................................. 79 3.3.1 ‘Nested’ and ‘spanning’ regimes .............................................................. 80 3.3.2 Selection pressures and adaptive capacity ................................................ 81 3.3.3 Revisions and criticisms of MLP approaches ........................................... 84 4 Technology choice: energy provision, innovation trajectories, and democracy ..... 89 4.1 The role of research and policy discourses in shaping sociotechnical innovation trajectories ................................................................................................. 90 4.1.1 ‘No alternative’ rhetorics .......................................................................... 93 4.1.2 Acknowledging electricity co-provision ................................................... 95 4.2 The ‘politics of technology’: questions of power, risk, and benefit ................. 98
Recommended publications
  • Sociotechnical Systems and Ethics in the Large
    Sociotechnical Systems and Ethics in the Large Amit K. Chopra Munindar P. Singh Lancaster University North Carolina State University Lancaster LA1 4WA, UK Raleigh, NC 27695-8206, USA [email protected] [email protected] Abstract question has inspired various versions of “do no harm to hu- mans” maxims, from Asimov to Bostrom and Yudkowsky Advances in AI techniques and computing platforms have (2014). And, partly this interest stems from imagining that triggered a lively and expanding discourse on ethical decision-making by autonomous agents. Much recent work agents are deliberative entities who will make choices much in AI concentrates on the challenges of moral decision mak- in the same way humans do: faced with a situation that de- ing from a decision-theoretic perspective, and especially the mands deliberation, an agent will line up its choices and representation of various ethical dilemmas. Such approaches make the best one that is also the most ethical. The trol- may be useful but in general are not productive because moral ley problem, a moral dilemma that has been the subject of decision making is as context-driven as other forms of deci- extensive philosophical discussion, has been discussed ex- sion making, if not more. In contrast, we consider ethics not tensively in the context of self-driving vehicles (Bonnefon, from the standpoint of an individual agent but of the wider Shariff, and Rahwan 2016). sociotechnical systems (STS) in which the agent operates. Concurrently, there has been an expanding body of work Our contribution in this paper is the conception of ethical STS in the broad AI tradition that investigates designing and governance founded on that takes into account stakeholder verifying, not individual agents, but sociotechnical systems values, normative constraints on agents, and outcomes (states of the STS) that obtain due to actions taken by agents.
    [Show full text]
  • Capitalism and Morality ______
    Capitalism and Morality _________________________ THE TEMPORAL DIMENSION OF TECHNOLOGY AND THE MOVING PICTURE OF THE GOOD Richard P. Mullin Professor Emeritus Wheeling Jesuit University Appeared in Wheeling Jesuit University’s Cardinal Perspectives Spring 1996 Picture of the Good One of the most urgent tasks of philosophy is to understand how ethical, social, and technological goods can be integrated in the midst of rapid change. The problem is to a large extent caused by moral myopia and tunnel vision.1 It is hard to get a clear focus when the viewer and the picture are moving so rapidly and irregularly. Technical advance and social change have a reciprocal relationship. This spawns a myriad of ethical problems which are distinctive to a technologically advancing society. Many of the social and ethical problems which involve technology result from the fact that technology does not advance evenly. When the technical aspect of social change combines with non-technical facets of life such as morality, legality, and politics, the unevenness becomes more pronounced and more troublesome. The Temporal Dimension Ethics must take account of the temporal dimension, i.e., the dimension of change. As the world and our interpretation of it change more and more rapidly, the past fades quickly out of sight while the future rushes on us ready-or-not. Past decisions were made without much of the information now available to us and within world-views which we can recapture only with great difficulty. The decisions which we make today will affect a future of which we are largely ignorant in ways at which we can only guess.
    [Show full text]
  • Energy Research & Social Science
    Energy Research & Social Science 70 (2020) 101617 Contents lists available at ScienceDirect Energy Research & Social Science journal homepage: www.elsevier.com/locate/erss Review Sociotechnical agendas: Reviewing future directions for energy and climate T research ⁎ Benjamin K. Sovacoola, , David J. Hessb, Sulfikar Amirc, Frank W. Geelsd, Richard Hirshe, Leandro Rodriguez Medinaf, Clark Millerg, Carla Alvial Palavicinoh, Roopali Phadkei, Marianne Ryghaugj, Johan Schoth, Antti Silvastj, Jennie Stephensk, Andy Stirlingl, Bruno Turnheimm, Erik van der Vleutenn, Harro van Lenteo, Steven Yearleyp a University of Sussex, United Kingdom and Aarhus University, Denmark b Vanderbilt University, United States c Nanyang Technological University, Singapore d The University of Manchester, United Kingdom e Virginia Polytechnic Institute and State University, United States f Universidad de las Americas Puebla, Mexico g Arizona State University, United States h Universiteit Utrecht, Netherlands i Macalester College, United States j Norwegian University of Science and Technology, Norway k Northeastern University, United States l University of Sussex, United Kingdom m Laboratoire Interdisciplinaire Sciences Innovations Sociétés, France n Eindhoven University of Technology, Netherlands o Universiteit Maastricht, Netherlands p The University of Edinburgh, United Kingdom ARTICLE INFO ABSTRACT Keywords: The field of science and technology studies (STS) has introduced and developed a “sociotechnical” perspective Science and technology studies that has been taken up by many disciplines and areas of inquiry. The aims and objectives of this study are Sociotechnical systems threefold: to interrogate which sociotechnical concepts or tools from STS are useful at better understanding Science technology and society energy-related social science, to reflect on prominent themes and topics within those approaches, and to identify Sociology of scientific knowledge current research gaps and directions for the future.
    [Show full text]
  • Science & Technology Studies
    ALEXANDRA HOFMÄNNER SCIENCE & TECHNOLOGY STUDIES ELSEWHERE A Postcolonial Programme SCIENCE & TECHNOLOGY STUDIES In April 2017, scientists took to the streets in a historically unprecedented Global March for Science. The event was seen as symbolic of a crisis in the relationship of science and society. This book considers the Global March ELSEWHERE for Science from a postcolonial perspective to inquire into the toolkit that the academic field of Science & Technology Studies (STS) has to offer. It HOFMÄNNER ALEXANDRA argues that new concepts and analytical approaches are necessary to in- A POSTCOLONIAL vestigate current global dynamics in science, technology and society, so as to deliver insights that the recent expansion of STS scholars beyond PROGRAMME Western Europe and North America alone is unlikely to provide. The book presents a Programme in Science Studies Elsewhere (SSE) to demonstrate the urgent need to carry postcolonial issues right into the centre of STS’s intellectual programme. Hofmänner possesses a potent antidote for the field’s inability to see science and technology outside of European or North American experiences. Rayvon Fouché, Professor and Director, American Studies, Purdue University, USA A compelling case for revisiting some of the traditional assumptions in the field of STS. Prof. Dr. Sabine Maasen, Director of the Munich Center for Technology in Society Alexandra Hofmänner is assistant professor in Science & Technology ELSEWHERE STUDIES TECHNOLOGY & SCIENCE Studies ( ST S) at the University of Basel, Switzerland. She received a PhD at the Swiss Federal Institute of Technology ( ETH Zürich ) and has carried out extensive research in Switzerland and South Africa. www.schwabeverlag.de Alexandra Hofmänner Science & Technology Studies Elsewhere A Postcolonial Programme Schwabe Verlag Published with the support of the Swiss National Science Foundation and the Freiwillige Akademische Gesellschaft.
    [Show full text]
  • An Application of BS ISO 27500:2016
    USER EXPERIENCE OF DIGITAL TECHNOLOGIES IN COM CITIZEN SCIENCE A sociotechnical system approach to virtual citizen J science: an application of BS ISO 27500:2016 Robert J. Houghton, James Sprinks, Jessica Wardlaw, Steven Bamford and Stuart Marsh Abstract We discuss the potential application to virtual citizen science of a recent standard (BS ISO 27500:2016 “The human-centred organisation”) which encourages the adoption of a sociotechnical systems perspective across a wide range of businesses, organizations and ventures. Key tenets of the standard concern taking a total systems approach, capitalizing on individual differences as a strength, making usability and accessibility strategic objectives, valuing personnel and paying attention to ethical and values-led elements of the project in terms of being open and trustworthy, social responsibility and health and wellbeing. Drawing upon our experience of projects in our laboratory and the wider literature, we outline the principles identified in the standard and offer citizen science themed interpretations and examples of possible responses. Keywords Citizen science; Participation and science governance DOI https://doi.org/10.22323/2.18010201 Submitted: 4th April 2018 Accepted: 20th November 2018 Published: 17th January 2019 Introduction There is an increasing interest in citizen science as an object of study in its own right and in investigations concerned with how to improve the implementation of citizen science projects in the future [Jordan et al., 2015]. Amongst the key issues are maximizing the quality of volunteer performance [Sprinks et al., 2017], motivating participants to sustain their contributions and to facilitate meeting other project aims also dependent on engagement, typically in terms of scientific outreach and education [e.g., Constant and Roberts, 2017; Dickerson-Lange et al., 2016].
    [Show full text]
  • Dedehayir Makinen Determining Reverse Salient Types
    Tampere University of Technology Author(s) Dedehayir, Ozgur; Mäkinen, Saku Title Determining reverse salient types and evolutionary dynamics of technology systems with performance disparities Citation Dedehayir, Ozgur; Mäkinen, Saku 2011. Determining reverse salient types and evolutionary dynamics of technology systems with performance disparities. Technology Analysis & Strategic Management vol. 23, num. 10, 1095-1114. Year 2011 DOI http://dx.doi.org/10.1080/09537325.2011.621308 Version Post-print URN http://URN.fi/URN:NBN:fi:tty-201311271475 Copyright This is an Author's Accepted Manuscript of an article published in Technology Analysis & Strategic Management, volume 23, issue 10, 01 Nov 2011. Copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/09537325.2011.621308. All material supplied via TUT DPub is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorized user. Determining reverse salient types and evolutionary dynamics of technology systems with performance disparities Ozgur Dedehayir∗ and Saku J. Mäkinen Department of Industrial Management, Tampere University of Technology, Tampere, Finland ∗ Corresponding author. Email: [email protected] ABSTRACT Technological system evolution is marked by the uneven evolution of constituent sub‐systems. Subsequently, system evolution is hampered by the resulting state of unevenness, or reverse salience, which results from the presence of the sub‐system that delivers the lowest level of performance with respect to other sub‐systems, namely, the reverse salient.
    [Show full text]
  • Explaining Sociotechnical Transitions a Critical Realist Perspective
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sussex Research Online Research Policy 47 (2018) 1267–1282 Contents lists available at ScienceDirect Research Policy journal homepage: www.elsevier.com/locate/respol Explaining sociotechnical transitions: A critical realist perspective T Steve Sorrell Centre on Innovation and Energy Demand, Science Policy Research Unit (SPRU), University of Sussex, Falmer, Brighton, BN1 9SL, UK ARTICLE INFO ABSTRACT Keywords: This paper identifies and evaluates the explicit and implicit philosophical assumptions underlying the so-called Multilevel perspective multilevel perspective on sociotechnical transitions (MLP). These include assumptions about the nature of reality Critical realism (ontology), the status of claims about that reality (epistemology) and the appropriate choice of research methods Emergence The paper assesses the consistency of these assumptions with the philosophical tradition of critical realism and Process theory uses this tradition to highlight a number of potential weaknesses of the MLP. These include: the problematic conception of social structure and the misleading priority given to intangible rules; the tendency to use theory as a heuristic device rather than causal explanation; the ambition to develop an extremely versatile framework rather than testing competing explanations; the relative neglect of the necessity or contingency of particular causal mechanisms; and the reliance upon single, historical case studies with insufficient use of comparative methods. However, the paper also concludes that the flexibility of the MLP allows room for reconciliation, and provides some suggestions on how that could be achieved – including proposing an alternative, critical realist interpretation of sociotechnical systems. 1. Introduction foundational assumptions (e.g.
    [Show full text]
  • Transition to Sustainable Cities a Sociotechnical Approach for Transformative Innovation
    Transition to sustainable cities a sociotechnical approach for transformative innovation Fred Steward Sustainable Innovation 2014, Copenhagen New focus on cities & climate change • engagement of cities throughout the world in the promotion and pursuit of climate mitigating innovations • expanding commitments to create city level climate change policy • The growth of extensive transnational learning networks between cities such as ICLEI, the Covenant of Mayors, C40 etc • increasing range and diversity of climate change experiments at city level which are ‘purposive interventions which attempt to reconfigure urban sociotechnical systems in the name of climate change City wide sociotechnical systems • the presence at city level of the key sociotechnical systems of buildings, mobility and urban infrastructure (energy, waste & water) which are critical contributors to greenhouse gas emissions, along with local political and business responsibilities and influence on these • key sectors for mitigation initiatives • built environment • transportation • urban infrastructure (energy, waste, water) • urban form/spatial planning Subnational political dynamics • the continued initiation of climate mitigation actions at city level which suggests a persistence of political enthusiasm at the subnational levels of governance in contrast with some faltering by national governments Bulkeley (2010): 627 climate change Experiments in 100 global cities Impact on global policy unclear • Although this is an impressive range of achievements, if we take stock
    [Show full text]
  • An Attempt to Use the Heuristics of the Multi-Level Perspective of Transitio
    Hölsgens et al. Energy, Sustainability and Society (2018) 8:8 Energy, Sustainability https://doi.org/10.1186/s13705-018-0150-7 and Society ORIGINAL ARTICLE Open Access Social innovations in the German energy transition: an attempt to use the heuristics of the multi-level perspective of transitions to analyze the diffusion process of social innovations Rick Hölsgens1* , Stephanie Lübke1 and Marco Hasselkuß2 Abstract Background: For a successful transition to a sustainable energy system, not only technical but also social innovations are required. A major challenge to social innovation research is how to translate the social innovation from a novelty with big potential into a mainstream practice. The multilevel perspective (MLP) of socio-technical transitions provides a heuristic to understand how niches can potentially break through to the regime level. In this paper, we examine in how far a multilevel perspective approach is suited to analyze and better understand diffusion trajectories of social rather than technological innovations, taking a social practice theory perspective. Five example projects, selected among the top social innovations for the Energiewende in North Rhine-Westphalia, are analyzed. We discuss to what extend the MLP provides a helpful tool to understand the transition processes. Results: Social innovations can be very divers. We find that the MLP does not offer a one-size-fits-all framework for the analysis of the diffusion of social innovations. The MLP proves applicable only in those cases where the social innovation (1) can lead to a system change and (2) has a clear competing or symbiotic relationship with an existing regime. Conclusions: Social innovations that aim to be transformative in the sense that they have the goal to be system changing (rather than incremental) can be analyzed along the heuristics of the MLP.
    [Show full text]
  • Sociotechnical Approaches to Information Systems Development
    Sociotechnical Approaches to Information Systems Development The British Computer Society Sociotechnical Group Archive Publications about the soci-technical approach (1986) "Designing a Sociotechnical System", Agricultural Engineering, 67 (7), pp. 41-41. (1996) "Introducing and Managing IT in a Civil Engineering Business - Reply", Proceedings of the Institution of Civil Engineers-Civil Engineering, 114 (1), pp. 39-39. Aarts, J. (2001) "On Articulation and Localization - Some Sociotechnical Issues of Design, Implementation, and Evaluation of Knowledge Based Systems" in Artificial Intelligence in Medicine, Proceedings, , pp. 16-19. Abbott, A. (1995) "Sequence-Analysis - New Methods for Old Ideas", Annual Review of Sociology, 21 pp. 93-113. Abraham, J. and J. Sheppard (1999) "Complacent and Conflicting Scientific Expertise in British and American Drug Regulation: Clinical Risk Assessment of Triazolam", Social Studies of Science, 29 (6), pp. 803-843. Adams, M. L. (1994) "Quality 1st - a Model for Tqm Implementation and Planning", Ieee Aerospace and Electronic Systems Magazine, 9 (2), pp. 25-27. Adler, P. S. (1991) "Workers and Flexible Manufacturing Systems - 3 Installations Compared", Journal of Organizational Behavior, 12 (5), pp. 447-460. Adler, N. and P. Docherty (1998) "Bringing Business into Sociotechnical Theory and Practice", Human Relations, 51 (3), pp. 319-345. Adman, P. and L. Warren (2000) "Participatory Sociotechnical Design of Organizations and Information Systems - an Adaptation of Ethics Methodology", Journal of Information Technology, 15 (1), pp. 39-51. Ahire, S. L. and T. Ravichandran (2001) "An Innovation Diffusion Model of Tqm Implementation", Ieee Transactions on Engineering Management, 48 (4), pp. 445-464. Aibar, E. (1997) "Of Bicycles, Bakelites, and Bulbs. Toward a Theory of Sociotechnical Change - Bijker,We", Arbor-Ciencia Pensamiento Y Cultura, 156 (615), pp.
    [Show full text]
  • How "Sociotechnical" Is Our IS Research? an Assessment and Possible Ways Forward Sarker, Suprateek ; Chatterjee, Sutirtha; Xiao, Xiao
    How "Sociotechnical" is our IS Research? An Assessment and Possible Ways Forward Sarker, Suprateek ; Chatterjee, Sutirtha; Xiao, Xiao Document Version Final published version Published in: Proceedings of the 34th International Conference on Information Systems. ICIS 2013 Publication date: 2013 License CC BY-NC-ND Citation for published version (APA): Sarker, S., Chatterjee, S., & Xiao, X. (2013). How "Sociotechnical" is our IS Research? An Assessment and Possible Ways Forward. In R. Baskerville, & M. Chau (Eds.), Proceedings of the 34th International Conference on Information Systems. ICIS 2013 [1185] Association for Information Systems. AIS Electronic Library (AISeL). http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1185&context=icis2013 Link to publication in CBS Research Portal General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us ([email protected]) providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 HOW “SOCIOTECHNICAL” IS OUR IS RESEARCH? AN ASSESSMENT AND POSSIBLE WAYS FORWARD1 Completed Research Paper Suprateek Sarker Sutirtha Chatterjee University of Virginia University of Nevada, Las Vegas McIntire School of Commerce Lee Business School 125 Ruppel Drive 4505 S. Maryland Parkway Charlottesville, VA 22903 Las Vegas, NV 89154 [email protected] [email protected] Xiao Xiao Copenhagen Business School Howitzvej 60 Frederiksberg 2000 Denmark [email protected] Abstract This paper seeks to offer an assessment regarding the extent to which we, as IS academics, have been faithful to sociotechnical paradigm, often considered as a fundamental guiding frame for the discipline.
    [Show full text]
  • Reijo Miettinen, University of Helsinki
    For Matti Sintonen’s Festschrift Reijo Miettinen, University of Helsinki The problem of the problem in inventive activity Some prominent researchers of creativity regard “the problem of the problem”, that is, the finding and definition of important problems, as a key phenomenon of the creative process (Getzels & Csikszentmihalyi 1976; Getzels 1982 and 1987). Getzels cites Einstein who stated that the formulation of problems is often more essential than their solution (1982, 37): “To raise new questions, new possibilities, to regard old problems from a new angle, requires creative imagination and marks real advance in science.” Therefore, instead of the problem-solving process, creativity research should focus on how important problems are being found and formulated (Getzels and Csikszentmihalyi 1976, 81): “The problem solver must become a problem finder (….). To turn a problem solver into a problem finder one must feel that there is a challenge needing resolution in the environment, one must formulate this feeling as a problem, and then attempt to device appropriate methods for solving it (…) Not only the solution but the problem itself must be discovered.” Getzels rightly points out that the world is teeming with conflicts and dilemmas. However, they must be specified and formulated in fertile and radical ways if they are to be moved to productive termination (Getzels 1982, 38). An important and fruitful problem is open to resolution and leads to a line of inquiry in the inventive activity. A German researcher Rainer Seidel (1976) has proposed that to solve the problem of the problem a social history of problems is needed. The tensions and contradictions of human practices are the starting point for the creation of new artifacts and methods.
    [Show full text]