Overview of Selective Photo-Reaction Takashi Flrisaiva Japan Atomic Energy Research Institute Tokai-Mura.Ibaraki-Ken, 319-11,Japan Tel.0292-82-5918,Fax.0292-82-5572

Total Page:16

File Type:pdf, Size:1020Kb

Overview of Selective Photo-Reaction Takashi Flrisaiva Japan Atomic Energy Research Institute Tokai-Mura.Ibaraki-Ken, 319-11,Japan Tel.0292-82-5918,Fax.0292-82-5572 Proceedings of the 6lh International Symposium on Advanced Nuclear Energy Research -INNOVATIVE LASER TECHNOLOGIES IN NUCLEAR ENERGY- Overview of Selective Photo-reaction Takashi flrisaiva Japan Atomic Energy Research Institute Tokai-mura.Ibaraki-ken, 319-11,Japan Tel.0292-82-5918,Fax.0292-82-5572 Rbstract Selectiue reaction process Especially isotope separation is a key technology for the deuelopment of the technologies related to the nuclear energy. "Howeuer oifly a few species are separated on a production scale using the conuenuonal processes such as thermal diffusion, chemical eKchanae reaction and distillation for lighter isotopes ,and gas centrifuge and gaseous diffusion for uranium, fls these methods are based on statistical thermodunamics and haue law enrichment factors, they need repetitiue operations of separation uiith many separating units combined together. Electro-magnetic separation method known as the one with high separation factor can be applied to most of the elements ,but extremely low production rate is realized, which is uneconomical. From the aboue point of uiew, much attention has been paid to the laser process by which high selectivity is expected. This method can be applied to either gas .liquid or solid hase, and hiqn separation factors are basically realized only in gaseous phase. Since the Eeginning of the studies on isotope separation in early l97Bs, many ideas haue been proposer/for the selectiue photo-reaction process such as photoionization, muitiphoton dissociation and state selectiue chemical reaction. Rs a result of experimental and theoretical efforts, large scale production of some isotopes haue been intended. Production of deuterium Dy infrared multl-photodissociation method was studied aiming at the replacement of the conuentional dual temperature eHchange process, and lots oT experiments haue been achieued intensiuely for the uranium enrichment, fl stepwise selectiue photoionization method has also Been studied for the isotopic separation of many elements, especially uranium enrichment.To implement the laser processes on a large scale production system, aduanced performances are required not only for the tunable laser sustems bur also for many related technologies such as atomic/molecular source,pnoto-reactcr and extractor of products. Keywords:Laser Isotope Scparation.Selcctive Reaction,Photo-ionization,Photo-dissociation,SeIectivity 1.Introduction Tablet.Selectiue photoreaction by tunable IR lasers Selective photoreaction is Source Wavelength made based on the Laser Conversion "type of Reaction Working Materials spectroscopic difference CF3H,CFa2H,CF3CCIH. caused by the difference Halogenaled elements, isotopesjsomers Freonl23,CF3COH and isobars. In the field of hydrocarbon nuclear engineering, isotope Infrared Multi-photon CF2CI2,CF3I.CCI3,CF2C1H separation technique special attention is paid to TEA Dissociation Hexahalidc Si2F6.SF6,SeF6,WF6 the wide area ranging from CO, Tetrahalide SiF4.TiCl4 the uranium enrichment and isotope tailoring materials to Laser Trichloride BCI, the reprocessing of spent fuels. Among many Metal Zr(OC(CH3)3)4. conventional isotope Alkoxide Ge(OC(CH3)4) separation methods the laser method is most Others OsO. promising as a technology of Infrared Excitation +UV Ammonia NH, next generation in terms of Dissociation both energy efficiency and Halogenated selectivity. Laser Isotope Optical CC13H Separation experiments Pump Single-colored IRMPD hydrocarbon NH3 have long been achieved Hexafluoride UFfi since early 70's. In convenience the laser Raman Multi-colored IRMPD Hexafluoride UFA isotope separation methods p-H. CW Laser I nduced Thermal are divided according to the Hexafluoride SF< wavelength range used. Diffusion co2 One of these is the Halogenated Laser CCI2FH selective photoreaction by Laser Assisted Nozzle hydrocarbon tunable infrared laser and Method the other is the one made by Hexafluoride SF, tunable visible or ultra-violet laser. CO Laser Induced Chemical Hexafluoride UF, Laser Reaction (CRI SLA) 1.1 Selectiue Reaction with Tunable Infrared Lasers (1) TEA C02 laser based reaction Infrared Multi-photon Dissociation method (IRMPD) is most widely used by taking advantage of — 255 — discrete tunability of C02 laser irradiating special molecules which have resonant spectroscopic absorption peaks. Especially halogenated hydrocarbon, hexahalide, tetrahalide .trichloride and even metal alkoxide are used. Dissociation of molecule like ammonia by infrared excitation with ultraviolet excitation was also applied. In order to convert wavelength of C02 TEA laser, optically pumped NHo or CF4 lasers .especially Raman p-H? lasers are used for the dissociation of uranium hexafluoride based on the multi-colored IRMPD. (2) Reaction by the other types of lasers Continuous wave C02 laser is used for laser induced thermal diffusion and laser assisted nozzle method. In the very special case CO Laser is used for the laser induced chemical reaction (CRISLA). HEATER WMlffl Wavanumberf cm"' 1 HCI 00^7"^/ ^^^^^ fiacharound "101 USER UNIT IMC . loco 8 Wavenumberf cm"' 1 Fig. 1 Laser Induced Thermal Diffusion ) Fig.2 IR Multi-photon dissociation and hydrogen isotope eitchange process8^ UF -F Basic Reacti 5 UFSCI 235 235 UF6 +3hv3-> UF6 ->UF5CI + HF 5.33 it rn by CO laser 235 a =6x2\8 a V-T relaxation ../2 235| _/i UFfi + HCI -» ^UF. + HCI + =/ 0 \V-V scrambling ^UF, + ^UF, B5UF * Fig.3 CRISLfl method(IR Laser Induced 6 6 Photochemical Reaction) 1.2.\Selectiue Reaction with Tunabl^ Uisible or Ultrauiolet lasers Photochemical reaction by tunable visible\lasers is made by a dye laser.which can emit tunable photons with many colors of dyes. CW laser pump dye lasers are used for laser induced chemical reaction photochemical reaction in gaseous/U,quid phase and atomic beam deflection. Diode CW lasers dre also used for radiation pressure. Pulled laser are used for photo-dissociation, especially single photon dissociation and for laser induced chemical reaction, but most popular ana widely applicable selective reaction is a multistep photo'ipnization. (1) Single photon dissociation \ Single photon dissociation is seen in visible and ultra-violet wavelength region. Typical reaction systems are given forthe dissociation of symmetric tetrazine and formaldehyde. a.Dissociation by Visible Photon s-Tetrazine(H2C2N4) + hv -*HCN+N2 b.Dissociation by Ultra-Violet Photon H2CO+ h v -*H2+CO Combination of ultraviolet dissociation and cascade is proposed by LLNL1> Physical and — 256 — operational parameters are given as follows. Table 2. Selectiue photoreaction using tunable uisible/ultra-uiolet lasers Source Wavelength Laser Conversion Type of Reaction Working Materials Dye Laser Laser Induced Chemical Reaction IC1 CW Laser Photo-dissociation H2CO,C2H2N4 (Pump) Photochemical Reaction (Liq.) U02F2+HF+CH3OH Atomic Beam Deflection Ba CWLD Radiation Pressure Rb Pulse Photo-dissociation H2CO,Br2 Li+CCl FH,Yb+HCl,CSCl ,U(BH ) , Laser Dye Laser Laser Induced Chemical Reaction 2 2 4 4 (Pump) U02(HCOO)2H20 Multistcp Photoionization Li,Mg,K,Ca,Ti,Fe,Cu,Ru,Zr,Pd,Ba,Hg,Tl, Nd,Sm,Eu,Gd,Dy,Er,Tu,Yb,U,Pu Pulse Eu3+H 0 Laser Element Selective Photochemistry 2 And the following enrichment is expected. 13c 1.1 %->~70%(single stage),95%(2 stages) 180 0.208%->—40%(single stage),95%(2 stages) 17,0 0.038%->~7%(single stage),95%(3 stages) Table 3. Cascaded single photon dissociation process Physical parameters Operational Parameters Wavelength 290-355nm Laser power 129W Photoabsorption cross section 5xl0'17cm2 Laser PRF 4350Hz Spectroscopic selectivity 200(13C,17O),300(18O) Laser pulse width 40ns Quantum Yield 0.95 Temperature 300K Photolysis cell length 10m Geometry Number of passes 10 + \ELF + H2O" -»- -OH Reaction Coordinate ^cavenagr 340 360 380 400 420 440 460 480 500 320 WAVELENGTH (nm) Fig.4 Oxygen isotope separation in liquid Fig.5 Element selectiue photoreaction in liquid phase phase (2)Laser Induced Selectiue Chemical Reaction Photo-decomposition was made with Uranium Boro-hydride (-deuteride)by 2-step Scheme by — 257— E.R.Bernstein(COO-4118-1),in which 2-5% U(BH4)4/Hf(Zr)(BH4)4 was irradiated by tunable laser at low temperature to decompose it as follows;U(BH4)4+h v -*U(BH4)3.Photochemical reaction was also observed in Uranyl Formate in the following way2), +4 +2 U02(HCOO)2H20+h v -*U ,U02 (3)0ther reaction methods Laser induced sputtering of SF6 from the cold Kr matrix are made using TEA C02 laser ,and Isotopic Selectivity A3 was obtained when laser illuminated non-target molecules.3' Isotope separation in liquid phase was carried out for hydrogen isotope separation based on the photolysis of formaldehyde in liquid xenon"' 2+ 5 Oxygen isotope separation was made with U02 in methanol solution as follows. ) U02F2+2HF+CH3OH-+UF4+Organic Products Photochemical reaction selective to elements but not to isotope was achieved in liquid phase for europium.6' 3+ 2+ 2+ + Eu H20+h v -s.[Eu H20]*Eu +H +'OH 2 Eu^+SO.JA - —L.UVJV--»EuSO4, 2. Htomic Uapor Laser Isotope Separation As this method is based on the resonant multiple photoionization process, atoms can easily be ionized with low photon flux.which is related to the high utilization efficiency of photons, and the atomic spectrum is enough narrow so that the photons with tunable wavelengths are easily absorbed by the 235U without being absorbed by 238U atoms.Therefore ,this method . could achieve separation at high separation factor by one single operation. could be economical. could enrich uranium from the reprocessed uranium .which leads to the effective utilization of natural resources. Tabie4.MPI schemes for RIMS Cilliclot to dtpltfed UWIIIIB Element Ionization . Types of RlSScheme»a»erc<l [a 1 Icniied IIBII PotentlaKcm" ) n,e 4,11 ,)*„ |or this eltmeni AJ ««278 o,»o, "L*»I" Itilxr AJ 78930 2»,*«, J-,"-!*" Idtwdbbslgte to 7«40S> 2U.4U, "'*"' Al D tent IMircrihlt C 90820 2o,«., ntllei C 49306 2",4». 2",4U," Siltcllii J'oli Cd 12140 UL+U)4W| "|4»l*"l bokpt shift 2»,+u, Co 63364 ",+•>, U,4»,40, Q 54576 «'*»' U,4U, -,•>»,"' MiMIc Cnud slate a 31406 C,40, ».*».*». 2u,+u, state exciter ticiler Cu 62317 U,4U, »l*».
Recommended publications
  • Excitation Temperature, Degree of Ionization of Added Iron Species, and Electron Density in an Exploding Thin Film Plasma
    SpectmchimiccrACIO. Vol. MB. No. II. Pp.10814096. 1981. 0584-8547/81/111081-16SIZ.CNI/O Printedin Great Britain. PerpmonPress Ltd. Excitation temperature, degree of ionization of added iron species, and electron density in an exploding thin film plasma S. Y. SUH* and R. D. SACKS Department of Chemistry, University of Michigan, Ann Arbor, Ml 48109, U.S.A. (Received 7 April 1981) Abstract-Time and spatially resolved spectra of a cylindrically symmetric exploding thin film plasma were obtained with a rotating mirror camera and astigmatic imaging. These spectra were deconvoluted to obtain relative spectral emissivity profiles for nine Fe(H) and two Fe(I) lines. The effective (electronic) excitation temperature at various positions in the plasma and at various times during the first current halfcycle was computed from the Fe(H) emissivity values using the Boltzmann graphical method. The Fe(II)/Fe(I) emissivity ratios together with the temperature were used to determine the degree of ionization of Fe. Finally, the electron density was estimated from the Saha equilibrium. Electronic excitation temperatures range from lO,OOO-15,OOOKnear the electrode surface at peak discharge current to 700&10.000K at 6-10 mm above the electrode surface at the first current zero. Corresponding electron densities range from 10’7-10u cm-’ at peak current to 10’~-10’6cm-3 near zero current. Error propagation and criteria for thermodynamic equilibrium are discussed. 1. IN-~R~DU~~ION THE HIGH-TEMPERATURE plasmas produced by the rapid electrical vaporization of Ag thin films recently have been used as atomization cells and excitation sources for the direct determination of selected elements in micro-size powder samples [ 11.
    [Show full text]
  • Ionization Balance in EBIT and Tokamak Plasmas N
    Ionization balance in EBIT and tokamak plasmas N. J. Peacock, R. Barnsley, M. G. O’Mullane, M. R. Tarbutt, D. Crosby et al. Citation: Rev. Sci. Instrum. 72, 1250 (2001); doi: 10.1063/1.1324755 View online: http://dx.doi.org/10.1063/1.1324755 View Table of Contents: http://rsi.aip.org/resource/1/RSINAK/v72/i1 Published by the American Institute of Physics. Related Articles Bragg x-ray survey spectrometer for ITER Rev. Sci. Instrum. 83, 10E126 (2012) Novel energy resolving x-ray pinhole camera on Alcator C-Mod Rev. Sci. Instrum. 83, 10E526 (2012) Measurement of electron temperature of imploded capsules at the National Ignition Facility Rev. Sci. Instrum. 83, 10E121 (2012) South pole bang-time diagnostic on the National Ignition Facility (invited) Rev. Sci. Instrum. 83, 10E119 (2012) Temperature diagnostics of ECR plasma by measurement of electron bremsstrahlung Rev. Sci. Instrum. 83, 073111 (2012) Additional information on Rev. Sci. Instrum. Journal Homepage: http://rsi.aip.org Journal Information: http://rsi.aip.org/about/about_the_journal Top downloads: http://rsi.aip.org/features/most_downloaded Information for Authors: http://rsi.aip.org/authors Downloaded 08 Aug 2012 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 72, NUMBER 1 JANUARY 2001 Ionization balance in EBIT and tokamak plasmas N. J. Peacock,a) R. Barnsley,b) and M. G. O’Mullane Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom M. R. Tarbutt, D. Crosby, and J. D. Silver The Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom J.
    [Show full text]
  • How the Saha Ionization Equation Was Discovered
    How the Saha Ionization Equation Was Discovered Arnab Rai Choudhuri Department of Physics, Indian Institute of Science, Bangalore – 560012 Introduction Most youngsters aspiring for a career in physics research would be learning the basic research tools under the guidance of a supervisor at the age of 26. It was at this tender age of 26 that Meghnad Saha, who was working at Calcutta University far away from the world’s major centres of physics research and who never had a formal training from any research supervisor, formulated the celebrated Saha ionization equation and revolutionized astrophysics by applying it to solve some long-standing astrophysical problems. The Saha ionization equation is a standard topic in statistical mechanics and is covered in many well-known textbooks of thermodynamics and statistical mechanics [1–3]. Professional physicists are expected to be familiar with it and to know how it can be derived from the fundamental principles of statistical mechanics. But most professional physicists probably would not know the exact nature of Saha’s contributions in the field. Was he the first person who derived and arrived at this equation? It may come as a surprise to many to know that Saha did not derive the equation named after him! He was not even the first person to write down this equation! The equation now called the Saha ionization equation appeared in at least two papers (by J. Eggert [4] and by F.A. Lindemann [5]) published before the first paper by Saha on this subject. The story of how the theory of thermal ionization came into being is full of many dramatic twists and turns.
    [Show full text]
  • 1 Introduction
    i i Karl-Heinz Spatschek: High Temperature Plasmas — Chap. spatscheck0415c01 — 2011/9/1 — page 1 — le-tex i i 1 1 Introduction A plasma is a many body system consisting of a huge number of interacting (charged and neutral) particles. More precisely, one defines a plasma as a quasineu- tral gas of charged and neutral particles which exhibits collective behavior. In many cases, one considers quasineutral gases consisting of charged particles, namely electrons and positively charged ions of one species. Plasmas may contain neutral atoms. In this case, the plasma is called partially or incompletely ionized. Other- wise the plasma is said to be completely or fully ionized. The term plasma is not limited to the most common electron–ion case. One may have electron–positron plasmas, quark-gluon plasmas, and so on. Semiconductors contain plasma con- sisting of electrons and holes. Most of the matter in the universe occurs in the plasma state. It is often said that 99% of the matter in the universe is in the plasma state. However, this estimate may not be very accurate. Remember the discussion on dark matter. Nevertheless, the plasma state is certainly dominating the universe. Modern plasma physics emerged in 1950s, when the idea of thermonuclear re- actor was introduced. Fortunately, modern plasma physics completely dissociated from weapons development. The progression of modern plasma physics can be retraced from many monographs, for example, [1–15]. In simple terms, plasmas can be characterized by two parameters, namely, charged particle density n and temperature T. The density varies over roughly 28 6 34 3 orders of magnitude, for example, from 10 to 10 m .
    [Show full text]
  • Lecture 8: Statistical Equilibria, Saha Equation
    Statistical Equilibria: Saha Equation We are now going to consider the statistics of equilibrium. Specifically, suppose we let a system stand still for an extremely long time, so that all processes can come into balance. We then measure the fraction of particles that are in each of several states (e.g., if we have a pure hydrogen gas, we might want to know the ionization fraction). How can we compute this fraction? We’ll take a look at this in several different ways. We will then step back and ask ourselves when these equilibrium formulae do not apply. This is important! To paraphrase Clint Eastwood, “An equation’s got to know its limitations”. In virtually all astronomical problems we deal with approximations, so we always need a sense of when those approximations fail. This serves a double purpose: it keeps us from making errors, but it also keeps us from applying too complex an approach to a simple problem. Let’s start out with a simple case. We consider a column of isothermal gas (temperature T ) in a constant gravitational acceleration g. Each molecule has mass m. If we can treat this like an ideal gas, Ask class: how do we figure out how the pressure vary with height h? An ideal gas has pressure P = nkT , where n is the number density. In equilibrium the pressure gradient balances the weight of the gas, so dP/dh = −ρg. Using ρ = nm = P m/kT and the constancy of T , we have dP/dh = −(mg/kT )P , so P = P0 exp(−mgh/kT ), where P0 is defined as the pressure at h = 0.
    [Show full text]
  • Example 1 Nicotinic Acid Is a Monoprotic Acid
    Weak acids and bases Example 1 Nicotinic acid is a monoprotic acid. A solution that is 0.012 M in nicotinic acid has a pH of 3.39. What is the acid ionization constant (Ka)? What is the degree of ionization of nicotinic acid in this solution? Solution When we say the solution is 0.012 M, this refers to how the solution is prepared. The solution is made up by adding 0.012 mol of substance to enough water to give a liter of solution. Once the solution is prepared, some molecules ionize, so the actual concentration is somewhat less than 0.012 M. - + We start with 0.012 M of acid (HNic) before ionization, i.e. [Nic ]=0 before ionization. The H3O concentration at the start is that from the self-ionization of water. It is usually much smaller than that obtained from the acid (unless the solution is extremely dilute or Ka is quite small), so you can write + + – [H3O ] = ~ 0 (meaning approximately zero). If x mol HNic ionizes, x mol each of H3O and Nic is formed, leaving (0.012 - x) mol HNic in solution. You can summarize the situation in the table: + – Concentration (M) HNic(aq) + H2O(l) <==> H3O (aq) + Nic (aq) Starting 0.012 ~0 0 Change -x +x +x Equilibrium 0.012 - x x x The equilibrium-constant equation is + – [H3O ][Nic ] Ka = [HNic] When you substitute the expressions for the equilibrium concentrations, you get x2 Ka = (0.012 - x) The value of x equals the numerical value of the molar hydronium-ion concentration, and can be obtained from the pH of the solution.
    [Show full text]
  • Lecture Notes in Physics Introduction to Plasma Physics
    Lecture Notes in Physics Introduction to Plasma Physics Michael Gedalin ii Contents 1 Basic definitions and parameters 1 1.1 What is plasma . 1 1.2 Debye shielding . 2 1.3 Plasma parameter . 4 1.4 Plasma oscillations . 5 1.5 ∗Ionization degree∗ ............................ 5 1.6 Summary . 6 1.7 Problems . 7 2 Plasma description 9 2.1 Hierarchy of descriptions . 9 2.2 Fluid description . 10 2.3 Continuity equation . 10 2.4 Motion (Euler) equation . 11 2.5 State equation . 12 2.6 MHD . 12 2.7 Order-of-magnitude estimates . 14 2.8 Summary . 14 2.9 Problems . 15 3 MHD equilibria and waves 17 3.1 Magnetic field diffusion and dragging . 17 3.2 Equilibrium conditions . 18 3.3 MHD waves . 19 3.4 Alfven and magnetosonic modes . 22 3.5 Wave energy . 23 3.6 Summary . 24 3.7 Problems . 24 iii CONTENTS 4 MHD discontinuities 27 4.1 Stationary structures . 27 4.2 Discontinuities . 28 4.3 Shocks . 29 4.4 Why shocks ? . 31 4.5 Problems . 32 5 Two-fluid description 33 5.1 Basic equations . 33 5.2 Reduction to MHD . 34 5.3 Generalized Ohm’s law . 35 5.4 Problems . 36 6 Waves in dispersive media 37 6.1 Maxwell equations for waves . 37 6.2 Wave amplitude, velocity etc. 38 6.3 Wave energy . 40 6.4 Problems . 44 7 Waves in two-fluid hydrodynamics 47 7.1 Dispersion relation . 47 7.2 Unmagnetized plasma . 49 7.3 Parallel propagation . 49 7.4 Perpendicular propagation . 50 7.5 General properties of the dispersion relation .
    [Show full text]
  • 193 9Ap J. the PHYSICAL STATE of INTERSTELLAR HYDROGEN Co
    CDco CMLO OC CO THE PHYSICAL STATE OF INTERSTELLAR J. HYDROGEN 9Ap BENGT STRÖMGREN 193 ABSTRACT The discovery, by Struve and Elvey, of extended areas in the Milky Way in which the Balmer lines are observed in emission suggests that hydrogen exists, in the ionized state, in large regions of space. The problem of the ionization and excitation of hydro- gen is first considered in a general way. An attempt is then made to arrive at a picture of the actual physical state of interstellar hydrogen. It is found that the Balmer-line emission should be limited to certain rather sharply bounded regions in space surround- ing O-type stars or clusters of O-type stars. Such regions may have diameters of about zoo parsecs, which is in general agreement with the observations. Certain aspects of the problem of the ionization of other elements and of the problem of the relative abundance of the elements in interstellar space are briefly discussed. The interstellar density of hydrogen is of the order of A = 3 cm-3. The extent of the emission regions at right angles to the galactic plane is discussed and is found to be small. I The recent discovery, by Struve and Elvey,1 of extended regions in the Milky Way showing hydrogen-hne emission has opened up new and highly important possibilities for the study of the properties of interstellar matter. From the observed strength of Z7a in the emission regions, Struve2 has calculated the density of interstellar hydrogen. Also, he has analyzed the problem of the ionization of interstellar calcium and sodium, taking account of the presence of ionized hydrogen.
    [Show full text]
  • Lecture Note 1
    Lecture Note 1 1.1 Plasma 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter) Recall: Concept of Temperature A gas in thermal equilibrium has particles of all velocities, and the most probable distribution of these velocities is known as the Maxwellian distribution. The average kinetic energy Eav equals 1/2kT per degree of freedom. k is Boltzmann’s constant. Since T and Eav are so closed related, it is customary in plasma physics to give temperatures in units of energy. To avoid confusion on the number of dimensions involved, it is not Eav , but the energy corresponding to kT that is used to denote the temperature. For kT = 1 eV = 1.6 x 10-19 J, we have 1.6× 10−19 T ==11,600 1.38× 10−23 Thus the conversion factor is 1eV = 11,600 K A plasma is a gas in which an important fraction of the atoms in ionized, so that the electrons and ions are separately free. When does this ionization occur? When the temperature is hot enough. Saha Equation: Which tells us the amount of ionization to be expected in a gas in thermal equilibrium: 3/2 ni 21 T ≈×2.4 10 exp( −UkTi / ) nnni 3 Here ni and nn are, respectively, the number density (number per m ) of ionized atoms and of neutral atoms, T is the gas temperature in K, k is Boltzmann’s constant, and Ui is the ionization energy of the gas—that is, the number of ergs required to remove the outmost electron from an atom.
    [Show full text]
  • Statistical Equilibria: Saha Equation Initial Questions: What Sets the Temperature of the Warm Interstellar Medium? What Determi
    Statistical Equilibria: Saha Equation Initial questions: What sets the temperature of the warm interstellar medium? What determines the epoch from which we see the CMB? We are now going to consider the statistics of equilibrium. Specifically, suppose we let a system stand still for an extremely long time, so that all processes can come into balance. We then measure the fraction of particles that are in each of several states (e.g., if we have a pure hydrogen gas, we might want to know the ionization fraction). How can we compute this fraction? We’ll take a look at this in several different ways. We will then step back and ask ourselves when these equilibrium formulae do not apply. This is important! To paraphrase Clint Eastwood, “An equation’s got to know its limitations”. In virtually all astronomical problems we deal with approximations, so we always need a sense of when those approximations fail. This serves a double purpose: it keeps us from making errors, but it also keeps us from applying too complex an approach to a simple problem. Let’s start out with a simple case. We consider a column of isothermal gas (temperature T ) in a constant gravitational acceleration g. Each molecule has mass m. If we can treat this like an ideal gas, Ask class: how do we figure out how the pressure varies with height h? An ideal gas has pressure P = nkT , where n is the number density. In equilibrium the pressure gradient balances the weight of the gas, so dP/dh = −ρg. Using ρ = nm = Pm/kT and the constancy of T , we have dP/dh = −(mg/kT )P , so P = P0 exp(−mgh/kT ), where P0 is defined as the pressure at h = 0.
    [Show full text]
  • Charge and Energy Interactions Between Nanoparticles and Low Pressure Plasmas
    Charge and Energy Interactions between Nanoparticles and Low Pressure Plasmas A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Federico Galli IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Prof. Uwe R. Kortshagen, Adviser May 2010 © Federico Galli May 2010 Acknowledgments I would like to thank my adviser, Professor Uwe Kortshagen, for his guidance and mentoring during the years of my graduate career. To my colleagues and friends in the HTPL group and at the University of Minnesota: thank you for five years of intellectual and personal enrichment. To all the friends and people that I had the opportunity to meet here in Minnesota: you made me feel like at home. Last but first in my heart: thank you family, for everything. i Abstract In this work, the interactions between low-pressure plasmas and nanoparticles are studied with numerical models aimed at understanding the phenomena that affect the nanoparticles charge, charge distribution, heating, and crystallization dinamycs. At the same time other phenomena that affect the plasma properties resulting from the presence of nanoparticles are also studied: they include the power-coupling to the plasmas, the ion energy distribution and the electron energy distribution. An analytical model predicting the nano-particle charge and temperature distribu- tions in a low pressure plasma is developed. The model includes the effect of collisions between ions and neutrals in proximity of the particles. In agreement with experi- mental evidence for pressures of a few Torr a charge distribution that is less negative than the prediction from the collisionless orbital motion limited theory is obtained.
    [Show full text]
  • Diagnostic Studies of Ion Beam Formation in Inductively Coupled Plasma Mass Spectrometry with the Collision Reaction Interface Jeneé L
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2015 Diagnostic studies of ion beam formation in inductively coupled plasma mass spectrometry with the collision reaction interface Jeneé L. Jacobs Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Analytical Chemistry Commons Recommended Citation Jacobs, Jeneé L., "Diagnostic studies of ion beam formation in inductively coupled plasma mass spectrometry with the collision reaction interface" (2015). Graduate Theses and Dissertations. 14814. https://lib.dr.iastate.edu/etd/14814 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. i Diagnostic studies of ion beam formation in inductively coupled plasma mass spectrometry with the collision reaction interface by Jeneé L. Jacobs A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Analytical Chemistry Program of Study Committee: Robert S. Houk, Major Professor Young-Jin Lee Emily Smith Patricia Thiel Javier Vela Iowa State University Ames, Iowa 2015 Copyright © Jeneé L. Jacobs, 2015. All right reserved. ii TABLE OF CONTENTS ABSTRACT vi CHAPTER 1. GENERAL INTRODUCTION 1 Inductively Coupled Plasma Mass Spectrometry 1 ICP 1 Ion Extraction 3 Polyatomic Ion Interferences 4 Polyatomic Ion Mitigation Techniques 5 Characteristics of Collision Technology 7 Dissertation Organization 8 References 9 Figures 14 CHAPTER 2.
    [Show full text]