Tree Regeneration After Logging in Rain-Forest Ecosystem Edward D

Total Page:16

File Type:pdf, Size:1020Kb

Tree Regeneration After Logging in Rain-Forest Ecosystem Edward D Research Journal of Biology, 2:18– 28 (2014) www.researchjournalofbiology.weebly.com RESEARCH ARTICLE Open Access Tree Regeneration after Logging in Rain-forest Ecosystem Edward D. Wiafe Department of Environmental and Natural Resources, Presbyterian University College, Ghana, P. O. Box 393, Akropong-Akuapem, Ghana. Abstract Successful forest regeneration is critical for the sustainable management of natural forests. This study assessed natural regeneration capacity of a logged tropical forest by comparing the species composition, diversity, density and basal area at varied levels of disturbance after logging operations. The regeneration capacities of trees were analysed at three levels of disturbances: heavily disturbed, partially disturbed and undisturbed in the Asenanyo Forest Reserve in moist forest reserve in Africa. Sixty sampled plots of 25m by 25m were equally distributed randomly in each of the stratified areas. A significant difference in abundance of naturally regenerated tree species in the partially disturbed, undisturbed areas and heavily disturbed areas was observed. The density of naturally regenerated tree species in the slightly disturbed was higher than the undisturbed areas while the later recorded higher density than heavily disturbed areas. The diversity of naturally regenerated trees in the undisturbed area differed from the slightly disturbed area and heavily disturbed area while slightly disturbed and heavily disturbed areas also differed. The high density of young trees in the slightly disturbed area might be enhanced by providing conditions that promote seed germination than the undisturbed areas. However, the activities of the logging might have also destroyed seeds and cause soil compaction which might have accounted for the less number of trees as well as diversity in the heavily disturbed area. It was concluded that natural regeneration are most favored when induced slightly. It is therefore recommended that there should be a limit to the total number of trees felled in a compartment as well as the size of loading bays and the width of forest roads. Key Words: Diversity, forest disturbances, forest regeneration, forest reserve, logging. (Received: 10/02/2014; Accepted: 27/02/2014; Published: 15/03/2014) Accurate descriptions of long term chronological Introduction Tropical forests are subject to a wide range of changes in rainforest ecosystems following both natural disturbances of variable duration, intensity, and and anthropogenic disturbances can increase our frequency. In their review of major disturbances in understanding of how these systems respond to various tropical rain forests, Whitmore and Burslem (1998) disturbances (Sheil, 2001). emphasized the pervasive nature of both natural and The concept of 'direct regeneration' after human disturbances in tropical forests. They suggested disturbance to ecosystems (Boucher, 1990; Vandermeer that contemporary human activity affecting tropical et al., 1990; Yih et al., 1991), in contrast to classical forests should be viewed in the context of the panoply models of succession, suggests that those species of natural disturbance events and the dynamism that dominant in the first years after the disturbance will be characterizes tropical forest systems. In 2000, an the same as the species which were dominant before estimated 60% of the world’s tropical forest was the disturbance. The first notions of sustainable classified as degraded forest, including secondary tropical forest management were directed towards forests, degraded primary forests and degraded forest maintaining the timber yields of valuable timber land (ITTO, 2002). species. This led to the establishment of the first Post-logging disturbance regeneration and silvicultural research plots in several countries with associated variation in rainforest ecosystems is tropical rainforests by the beginning of the twentieth complex, which involve a variety of responses including century (Lamprecht, 1989; Dawkins and Philip, 1998; species progressive replacement sequences (Hopkins, Bertauld and Kadir, 1998; Chazdon and Whitmore, 1992; Sheil, 2001). Models for species succession and 2002). The research focused mainly on identifying the underlying processes that involve changes in means to enhance the growth of commercial tree biomass, species diversity and homeostasis are well species while suppressing the unmerchantable species documented (Odum, 1970; Connell and Slatyer, 1977; (Lamprecht 1989, Dawkins and Philip 1998). With Brokaw and Busing, 2000). increasing environmental awareness, forest managers came to understand that there are many other valuable *Corresponding author: services provided by forests in addition to timber [email protected] production that must also be taken into consideration. Climate change has been embraced and measures are being taken to adapt in all aspects of its consequences. 18 Copyright © 2014 RJB Res. J. Biol., 2014 [2:18-28] E-ISSN: 2322-0066 The atmosphere delivers both resources such as rain, of various tree species composition of the natural sun, wind and hazards such as hurricanes, blizzards, regeneration after exploitation. droughts; to ecosystems and societies. Through autonomous and/or planned adaptation, species and Materials and methods individuals, ecosystems and societies, are fashioned to Study area a considerable extent by these climatic constraints. The study was conducted in the Asenenyo River Forest Ecosystems and our human cultures and economies are Reserve which can be found in the Nkawie Forest ‘tuned’ to the climate in which they evolve (Green et. District of the Ashanti Region (Ghana); located on al., 2003). between Latitude 6o 17’ -6o36’N and Longitude 2o 03’- The major concern has been that the globe is 2o 16’ W. It is wholly owned by the Golden stool but undergoing climate change at unprecedented rates and under caretaker stools or Chiefs of Nkwaie-kuma, the real situation is that temperatures are rising and Nkawie-Panin, Nyinahin, Domi-Kwamiago, the global weather patterns are changing. Patterns of MansoNkwanta and Akwamu. It covers an area of about seasonality and the intensity and frequency of more 228.0 km2 or 22,800 hectares and a perimeter of 100.26 extreme events, such as hurricanes and droughts are km. The vegetation type of Asenanyo River Forest being altered. There has been a 10% increase in Reserve is the Moist Semi Deciduous North West atmospheric CO2 concentration over the past four subtype and plant association of the Celtis – decades and the mean global temperature has o Triplochiton. According to Forest Services Division increased by about 0.5 Cover the same period and the (2010), it was constituted as Forest Reserve in the year temperature in tropical rainforest regions are projected o o st 1940 and currently it is under Forest Management Unit to increase between 2 and 5 by the end of 21 (FMU) 37 of The Forest Management Unit categories. century (Malhi and Wright, 2004). Rainfall projections The dominant flora species were Celtis mildbraedii are less certain and more variable geographically, yet (Esa), Triplochiton scleroxylon (Wawa), probably most crucial for anticipating climate change Entandrophragma spp. and Thaumatococus spp. impact on rain forests. Patterns of regional landuse (Aworomoo) and that of the fauna were Tragelaphus affect the changes in atmospheric conditions and scriptus (Owansane), Tropicranus albocristatus (White- climate. For instance atmospheric contribution of crested hornbill) and Dendropicos gabonensis nitrogen inputs from atmospheric deposition of (Abobonua). nitrogen has increased within tropical regions and its Asenanyo river forest reserve has a low lying impact on growth is complicated and remains uncertain terrain with few hilly outcrops notable amongst these (Ghazoul and Sheil, 2010). hills is the Sumtwitwi Range. It is also drained by the In Ghana, between 10-25% of the total area of Asenanyo River from which the forest reserve derived Ghana’s managed forests is affected by logging roads its name. It has an average height of about 152.40m to and tracks, some of which are characterized by soil 182.88m above sea level (Figure 1). It has twenty (20) erosion and poor plant regeneration (Hawthorne and admitted farms and one settlement namely Akotaa Abu-Juam, 1993). In his work on post-logging town ship which covers an area of about 955.70 regeneration study in the Bia South Game Production hectares. Asenayo River Forest Reserve has seven (7) reserve, Hawthorne (1993) observed that gap size main management categories namely Swamp influences the extent and type of regeneration of forest Sanctuaries, Hill Sanctuaries, Convalescence, Research, tree seedlings. Yet he noted that logging operations Plantation, Timber Production and Admitted farms. The showed few signs of having any adverse effect on management prescriptions for these management regeneration in that reserve. categories include pillaring and conservation of flora The goal of this study was to investigate whether and fauna, protection of high elevations, protection of the removal of tree species would be replaced naturally areas for regeneration and biodiversity areas, by the same or different species as timber or would be evaluation of Tropical Shelterwood system, area to be the balance of species likely to be upset by logging. It converted into plantations, growth potential of Teak as further examined the tree species composition of the well as extraction of timber and non-timber forest various levels of disturbances
Recommended publications
  • Impacts of Global Climate Change on the Phenology of African Tropical Ecosystems
    IMPACTS OF GLOBAL CLIMATE CHANGE ON THE PHENOLOGY OF AFRICAN TROPICAL ECOSYSTEMS GABRIELA S. ADAMESCU MSc by Research UNIVERSITY OF YORK Biology October 2016 1 Abstract The climate has been changing at an unprecedented rate, affecting natural systems around the globe. Its impact has been mostly reflected through changes in species’ phenology, which has received extensive attention in the current global-change research, mainly in temperate regions. However, little is known about phenology in African tropical forests. Africa is known to be vulnerable to climate change and filling the gaps is an urgent matter. In this study we assess plant phenology at the individual, site and continental level. We first compare flowering and fruiting events of species shared between multiple sites, accounting for three quantitative indicators, such as frequency, fidelity for conserving a certain frequency and seasonal phase. We complement this analysis by assessing interannual trends of flowering and fruiting frequency and fidelity to their dominant frequency at 11 sites. We complete the bigger picture by analysing flowering and fruiting frequency of African tropical trees at the site and community level. Next, we correlate three climatic indices (ENSO, IOD and NAO) with flowering and fruiting events at the canopy level, at 16 sites. Our results suggest that 30 % of the studied species show plasticity or adaptability to different environments and will most likely be resilient to moderate future climate change. At both site and continental level, we found that annual flowering cycles are dominant, indicating strong seasonality in the case of more than 50% of African tropical species under investigation.
    [Show full text]
  • Tree Species Selection for Buffer Zone Agroforestry: the Case of Budongo Forest in Uganda
    52 International Forestry Review Vol.10(1), 2008 Tree species selection for buffer zone agroforestry: the case of Budongo Forest in Uganda W. K. KASOLO and A. B. TEMU Nyabyeya Forest College, Private Bag Masindi Uganda and World, Agroforestry Centre (ICRAF) P.O Box 30677 Nairobi, Kenya Emails: [email protected] and [email protected] SUMMARY This paper highlights the importance of careful selection of tree species for use in buffer zone agroforestry, as a conservation strategy for threatened forest resources. A case study from the Budongo Forest buffer zone in Uganda is used to elaborate the process, where local communities applied a pair-wise ranking system to establish priority tree species and technologies for agroforestry. Maesopsis eminii, Vernonia amygdalina and Lasiodiscus mildbraedii were the top three species selected for integration into the buffer zone farms. Their selection refl ects the many good attributes experienced by farmers in the area, such as provision of timber, construction poles, and fi rewood. The most popular technologies were woodlots, boundary planting and shade trees (multistrata tree planting), in that order of priority. Areas for further research include an evaluation of the economic aspects of the species and technologies, on farm propagation and management protocols and markets for the tree products. Keywords: Buffer zone, Budongo forest, local communities, Agroforestry technologies, species selection Sélection d’arbres pour l’agroforesterie des zones-tampon: le cas de la forêt Budongo en Ouganda W. K. KASOLO et A. B. TEMU Cet article souligne l’importance d’une sélection précise d’espèces d’arbres en vue de leur utilisation dans l’agroforesterie des zones- tampons.
    [Show full text]
  • CELTIS D'afrique's Datasheet
    CELTIS D'AFRIQUE Page 1of 4 Family: ULMACEAE (angiosperm) Scientific name(s): Celtis adolfi-friderici Celtis tessmannii Celtis mildbraedii Celtis zenkeri Celtis gomphylla Commercial restriction: no commercial restriction Note: The name CELTIS d'AFRIQUE includes both commercial names DIANIA (C. adolfi-friderici, C. tessmannii) and OHIA (C. mildbraedii, C. zenkeri, C. gomphylla). WOOD DESCRIPTION LOG DESCRIPTION Color: light yellow Diameter: from 60 to 110 cm Sapwood: not demarcated Thickness of sapwood: Texture: medium Floats: yes Grain: straight or interlocked Log durability: low (must be treated) Interlocked grain: slight Note: Wood cream white to light yellow bordering on light brown. Unpleasant odour when green or with rewetted wood. PHYSICAL PROPERTIES MECHANICAL AND ACOUSTIC PROPERTIES Physical and mechanical properties are based on mature heartwood specimens. These properties can vary greatly depending on origin and growth conditions. Mean Std dev. Mean Std dev. Specific gravity *: 0,74 0,07 Crushing strength *: 59 MPa 7 MPa Monnin hardness *: 7,0 2,3 Static bending strength *: 113 MPa 16 MPa Coeff. of volumetric shrinkage: 0,55 % 0,07 % Modulus of elasticity *: 16500 MPa 2319 MPa Total tangential shrinkage (TS): 7,8 % 1,0 % Total radial shrinkage (RS): 4,4 % 0,8 % (*: at 12% moisture content, with 1 MPa = 1 N/mm²) TS/RS ratio: 1,8 Fiber saturation point: 28 % Musical quality factor: 104,5 measured at 2686 Hz Stability: moderately stable Note: Hardness varies from fairly hard to hard. NATURAL DURABILITY AND TREATABILITY Fungi and termite resistance refers to end-uses under temperate climate. Except for special comments on sapwood, natural durability is based on mature heartwood.
    [Show full text]
  • Kwaku Antwi.Pdf
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF RENEWABLE NATURAL RESOURCES DEPARTMENT OF WOOD SCIENCE AND TECHNOLOGY THE VARIABILITY BETWEEN THE STRENGTH AND SOME PHYSICAL PROPERTIES OF ALLANBLACKIA PARVIFLORA FOR FURNITURE PRODUCTION BY KWAKU ANTWI B.Ed. (HONS) NOVEMBER, 2012 1 THE VARIABILITY BETWEEN THE STRENGTH AND SOME PHYSICAL PROPERTIES OF ALLANBLACKIA PARVIFLORA FOR FURNITURE PRODUCTION BY KWAKU ANTWI B.Ed. (HONS) A THESIS SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES, KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF THE MSc. WOOD TECHNOLOGY AND MANAGEMENT DEGREE FACULTY OF RENEWABLE NATURAL RESOURCES, COLLEGE OF AGRIC AND NATURAL RESOURCES. NOVEMBER, 2012 2 DECLARATION I hereby declare that this submission is my own work towards the MSc. and that, to the best of my knowledge, it contains no material previously published by another person nor material which have been accepted for the award of any other degree of the university, except where due acknowledgement has been made in the text. KWAKU ANTWI PG3214809 ………………………….. ……………………… (CANDIDATE) SIGNATURE DATE Certified by: PROF. NANA. K. FRIMPONG-MENSAH ………………………… …………………… (SUPERVISOR) SIGNATURE DATE Certified by: DR. N. A. DARKWA ………………………… …………………… (SUPERVISOR) SIGNATURE DATE Certified by: DR. CHARLS ANTWI - BOASIAKO (HEAD OF DEPT.) …………………………… ……………………. 3 SIGNATURE DATE ABSTRACT In Ghana, many of our traditional wood species are over exploited and threatened to extinction. The utilization of other lesser-used and lesser known wood species needs to be looked at urgently as a possibility of increasing the wood resource base. And a successful expansion of the resource base is dependent on adequate knowledge of the properties of the lesser-used species such as Allanblackia parviflora which can be a good substitute to the dwindling species.
    [Show full text]
  • Analysisandinterpreta Tion Of
    A N A L Y S I S A N D I N T E R P R E T A T I O N OF B O T A N I C A L R E M A I N S F R O M S I B U D U C A V E , K W A Z U L U – N A T A L Christine Scott A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the Degree of Master of Science Department of Archaeology School of Geography, Archaeology and Environmental Studies University of the Witwatersrand Johannesburg, 2005 D E C L A R A T I O N I declare that this thesis is my own, unaided work. It is being submitted for the Degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University. ……………………… Signature of candidate …….. day of …..…………… 2005 ii A B S T R A C T The identification and analysis of seeds (including fruits and nuts) from second millennium AD deposits at Sibudu Cave, KwaZulu-Natal, constitute the first in-depth archaeobotanical study of seeds in South Africa. The study highlights problems in the reconstruction of past vegetation and climatic variables from seed data. The Sibudu seed assemblage produced no evidence to suggest vegetation change in the Sibudu area during the last 1000 years. Either it is not possible to identify short-term fluctuations in indigenous vegetation from seed data, or the evidence of vegetation change has been masked by the influence of the perennial Tongati River, depositional history, differential preservation and recovery, and identification difficulties.
    [Show full text]
  • Changing Forest-Woodland-Savanna Mosaics in Uganda: with Implications for Conservation
    CHANGING FOREST-WOODLAND-SAVANNA MOSAICS IN UGANDA: WITH IMPLICATIONS FOR CONSERVATION Grace Nangendo Promoters: Prof. Dr. F.J.J.M. Bongers Personal Professorship at Forest Ecology and Forest Management Group, Wageningen University, The Netherlands Prof. Dr. Ir. A. De Gier Professor, Geo-information for Forestry / Department of Natural Resources International Institute for Geo-information Science and Earth Observation (ITC), Enschede, The Netherlands Co-promoter: Dr. H. ter Steege Chair Plant Systematics (Ag.), Nationaal Herbarium Nederland - Utrecht Branch Utrecht University, The Netherlands Examining Committee: Dr. J. F. Duivenvoorden, University of Amsterdam, The Netherlands Prof. Dr. M. J. A. Werger, Utrecht University, The Netherlands Dr. J. R. W. Aluma, National Agricultural Research Organization (NARO), Uganda Prof. Dr. M. S. M. Sosef, Wageningen University, The Netherlands CHANGING FOREST-WOODLAND-SAVANNA MOSAICS IN UGANDA: WITH IMPLICATIONS FOR CONSERVATION Grace Nangendo Thesis To fulfil the requirements for the degree of Doctor on the authority of the Rector Magnificus of Wageningen University, Prof. Dr. Ir. L. Speelman, to be publicly defended on Wednesday, June 1, 2005 at 15:00 hrs in the auditorium at ITC, Enschede, The Netherlands. ISBN: 90-8504-200-3 ITC Dissertation Number: 123 International Institute for Geo-information Science & Earth Observation, Enschede, The Netherlands © 2005 Grace Nangendo CONTENTS Abstract .......................................................................................................................
    [Show full text]
  • Contribution to the Biosystematics of Celtis L. (Celtidaceae) with Special Emphasis on the African Species
    Contribution to the biosystematics of Celtis L. (Celtidaceae) with special emphasis on the African species Ali Sattarian I Promotor: Prof. Dr. Ir. L.J.G. van der Maesen Hoogleraar Plantentaxonomie Wageningen Universiteit Co-promotor Dr. F.T. Bakker Universitair Docent, leerstoelgroep Biosystematiek Wageningen Universiteit Overige leden: Prof. Dr. E. Robbrecht, Universiteit van Antwerpen en Nationale Plantentuin, Meise, België Prof. Dr. E. Smets Universiteit Leiden Prof. Dr. L.H.W. van der Plas Wageningen Universiteit Prof. Dr. A.M. Cleef Wageningen Universiteit Dr. Ir. R.H.M.J. Lemmens Plant Resources of Tropical Africa, WUR Dit onderzoek is uitgevoerd binnen de onderzoekschool Biodiversiteit. II Contribution to the biosystematics of Celtis L. (Celtidaceae) with special emphasis on the African species Ali Sattarian Proefschrift ter verkrijging van de graad van doctor op gezag van rector magnificus van Wageningen Universiteit Prof. Dr. M.J. Kropff in het openbaar te verdedigen op maandag 26 juni 2006 des namiddags te 16.00 uur in de Aula III Sattarian, A. (2006) PhD thesis Wageningen University, Wageningen ISBN 90-8504-445-6 Key words: Taxonomy of Celti s, morphology, micromorphology, phylogeny, molecular systematics, Ulmaceae and Celtidaceae, revision of African Celtis This study was carried out at the NHN-Wageningen, Biosystematics Group, (Generaal Foulkesweg 37, 6700 ED Wageningen), Department of Plant Sciences, Wageningen University, the Netherlands. IV To my parents my wife (Forogh) and my children (Mohammad Reza, Mobina) V VI Contents ——————————— Chapter 1 - General Introduction ....................................................................................................... 1 Chapter 2 - Evolutionary Relationships of Celtidaceae ..................................................................... 7 R. VAN VELZEN; F.T. BAKKER; A. SATTARIAN & L.J.G. VAN DER MAESEN Chapter 3 - Phylogenetic Relationships of African Celtis (Celtidaceae) ........................................
    [Show full text]
  • Inventory of Natural Regeneration and the Recovery of Logging Gaps In
    UNIVERSITY OF APPLIED SCIENCES VAN HALL LARENSTEIN Inventory of Natural Regeneration and the Recovery of Logging Gaps in the Nkrabia Forest Reserve in Ghana A Comparison between Chainsaw Milling and Conventional Logging Thorsten Dominik Herrmann Bachelor Thesis to obtain the academic degree Bachelor of Science in Forestry and Bachelor in Forest and Nature Management at the University of Applied Sciences Van Hall Larenstein, Part of Wageningen University and Research Center Topic: Inventory of Natural Regeneration and the Recovery of Logging Gaps in the Nkrabia Forest Reserve in Ghana – A Comparison between Chainsaw Milling and Conventional Logging Author: Thorsten Dominik Herrmann Rieslingstraße 29 71364 Winnenden, Germany [email protected] 1. Examinor: Jaap de Vletter 2. Examinor: Mr. Zambon External supervisor: Robbert Wijers Closing date: Velp, 03 / January 2011 Key words: Ghana, natural regeneration, logging gaps, chainsaw milling ACKNOWLEDGEMENT This study was carried out on the behalf of Houthandel Wijers BV and the Forestry Research Institute of Ghana (FORIG) between March and November 2010. The presented research is a continuation of several forestry related studies that had been carried out in the Nkrabia forest reserve in Ghana by students of the University of Applied Sciences Van Hall Larenstein. My special thanks goes to the Forestry Research Institute of Ghana (FORIG) and Robbert Wijers (Houthandel Wijers BV) for giving me the opportunity to conduct the field work in Ghana by financial means and technical as well as logistical support. Furthermore I would like to thank Jonathan Dabo (Technician, FORIG) and Seth Kankam Nuamah (Service Personnel, FORIG) for their indispensable and sedulous support during the field work and data collection for this study.
    [Show full text]
  • Celtis Sinensis Pers. (Ulmaceae) Naturalised in Northern South Africa and Keys to Distinguish Between Celtis Species Commonly Cultivated in Urban Environments
    Bothalia - African Biodiversity & Conservation ISSN: (Online) 2311-9284, (Print) 0006-8241 Page 1 of 9 Original Research Celtis sinensis Pers. (Ulmaceae) naturalised in northern South Africa and keys to distinguish between Celtis species commonly cultivated in urban environments Authors: Background: Alien Celtis species are commonly cultivated in South Africa. They are easily 1 Stefan J. Siebert confused with indigenous C. africana Burm.f. and are often erroneously traded as such. Celtis Madeleen Struwig1,2,3 Leandra Knoetze1 australis L. is a declared alien invasive tree. Celtis sinensis Pers. is not, but has become Dennis M. Komape1 conspicuous in urban open spaces. Affiliations: Objectives: This study investigates the extent to which C. sinensis has become naturalised, 1Unit for Environmental constructs keys to distinguish between indigenous and cultivated Celtis species, and provides Sciences and Management, a descriptive treatment of C. sinensis. North-West University, South Africa Methods: Land-cover types colonised by C. sinensis were randomly sampled with 16 belt transects. Woody species were identified, counted and height measured to determine the 2 Department of Soil, Crop population structure. C. africana and the three alien Celtis species were cultivated for 2 years and Climate Sciences, University of the Free State, and compared morphologically. South Africa Results: Celtis sinensis, Ligustrum lucidum and Melia azedarach were found to be alien species, 3Department of Botany, most abundant in urban areas. The population structure of C. sinensis corresponds to that of National Museum, the declared invasive alien, M. azedarach. Although C. africana occurs naturally, it is not South Africa regularly cultivated. This is ascribed to erroneous plantings because of its resemblance to juvenile plants of C.
    [Show full text]
  • Assessment of the Forest Reserve Network in Mozambique
    Assessment of the Forest Reserve Network in Mozambique Thomas Müller, Almeida Sitoe and Rito Mabunda Final Version October 2005 Table of Contents Table of Contents................................................................................................................. i List of Figures....................................................................................................................iii List of Tables .....................................................................................................................iii Acknowledgements............................................................................................................ iv Executive summary............................................................................................................. v 1. Introduction..................................................................................................................... 1 2. Objectives ....................................................................................................................... 2 2.1. General objective ..................................................................................................... 2 2.2. Specific objectives ................................................................................................... 2 3. Background..................................................................................................................... 3 3.1. Forest Reserves in the context of biodiversity conservation ..................................
    [Show full text]
  • Best Practice Guidelines for Reducing the Impact of Commercial Logging on Great Apes in Western Equatorial Africa
    Best Practice Guidelines for Reducing the Impact of Commercial Logging on Great Apes in Western Equatorial Africa David Morgan and Crickette Sanz Series Editor: E.A. Williamson Occasional Paper of the IUCN Species Survival Commission No. 34 IUCN—The World Conservation Union Founded in 1948, the World Conservation Union brings together States, government agencies and a diverse range of non-governmental organizations in a unique world partnership: over 1,000 members in all, spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. The World Conservation Union builds on the strengths of its members, networks and partners to enhance their capacity and to support global alliances to safeguard natural resources at local, regional and global levels. IUCN Species Programme The IUCN Species Programme supports the activities of the IUCN Species Survival Commission and individual Specialist Groups, as well as implementing global species conservation initiatives. It is an integral part of the IUCN Secretariat and is managed from IUCN’s international headquarters in Gland, Switzerland. The Species Programme includes a number of technical units covering Wildlife Trade, the Red List, Freshwater Biodiversity Assessments (all located in Cambridge, UK), and the Global Biodiversity Assessment Initiative (located in Washington DC, USA). IUCN Species Survival Commission The Species Survival Commission (SSC) is the largest of IUCN’s six volunteer commissions with a global membership of 8,000 experts. SSC advises IUCN and its members on the wide range of technical and scientific aspects of species conservation and is dedicated to securing a future for biodiversity.
    [Show full text]
  • Kwame Nkrumah University of Science and Technology, Kumasi
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI FACULTY OF RENEWABLE NATURAL RESOURCES DEPARTMENT OF AGROFORESTRY FARMERS’ PERCEPTION OF AGROFORESTRY ADOPTION IN THE ASUNAFO SOUTH DISTRICT IN THE BRONG AHAFO REGION OF GHANA BY PRINCE WIREKO (BSc. AGRIC. TECH. UDS) JUNE, 2011 i FARMERS’ PERCEPTION OF AGROFORESTRY ADOPTION IN THE ASUNAFO SOUTH DISTRICT IN THE BRONG AHAFO REGION OF GHANA A THESIS SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES, KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI IN THE PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE DEGREE IN AGROFORESTRY BY PRINCE WIREKO (BSc. AGRIC. TECH. UDS) JUNE, 2011 ii DECLARATION I, Prince Wireko, hereby declare that this thesis, “Farmers‟ Perception of Agroforestry Adoption in the Asunafo South District in the Brong Ahafo Region of Ghana”, consists entirely of my own work produced from research undertaken under supervision and that no part of it has been published or presented for another degree elsewhere, except for the permissible excepts/references from other sources, which have been duly acknowledged. ……………… ……………………. Prince Wireko Date (Candidate) ……………… …………………. Dr. (Mrs) Olivia Agbenyega Date (Supervisor) ……………. ………………….. Dr. K.Twum-Ampofo Date (Head of Department) iii ACKNOWLEDGEMENT I wish to express my everlasting appreciation to Dr. Olivia Agbenyega, my supervisor for her wonderful supervision, constructive criticism and assistance throughout the period of this work. I am extremely grateful to all lecturers in the Faculty of Renewable Natural Resources especially lecturers in Agroforestry Department for their encouragement and immeasurable contributions to make this work successful. I‟m also very appreciative and thankful to Dr. Naresh Thevathasan (University of Guelph, Canada) who also contributed to the success of this work during my educational training in Canada.
    [Show full text]