Automatic Text Scoring Using Neural Networks

Total Page:16

File Type:pdf, Size:1020Kb

Automatic Text Scoring Using Neural Networks Automatic Text Scoring Using Neural Networks Dimitrios Alikaniotis Helen Yannakoudakis Marek Rei Department of Theoretical The ALTA Institute The ALTA Institute and Applied Linguistics Computer Laboratory Computer Laboratory University of Cambridge University of Cambridge University of Cambridge Cambridge, UK Cambridge, UK Cambridge, UK [email protected] [email protected] [email protected] Abstract tali and Burstein, 2006; Rudner and Liang, 2002; Elliot, 2003; Landauer et al., 2003; Briscoe et al., Automated Text Scoring (ATS) provides 2010; Yannakoudakis et al., 2011; Sakaguchi et a cost-effective and consistent alternative al., 2015, among others), overviews of which can to human marking. However, in order be found in various studies (Williamson, 2009; to achieve good performance, the pre- Dikli, 2006; Shermis and Hammer, 2012). Im- dictive features of the system need to plicitly or explicitly, previous work has primarily be manually engineered by human ex- treated text scoring as a supervised text classifica- perts. We introduce a model that forms tion task, and has utilized a large selection of tech- word representations by learning the ex- niques, ranging from the use of syntactic parsers, tent to which specific words contribute to via vectorial semantics combined with dimension- the text’s score. Using Long-Short Term ality reduction, to generative and discriminative Memory networks to represent the mean- machine learning. ing of texts, we demonstrate that a fully automated framework is able to achieve As multiple factors influence the quality of excellent results over similar approaches. texts, ATS systems typically exploit a large range In an attempt to make our results more of textual features that correspond to different interpretable, and inspired by recent ad- properties of text, such as grammar, vocabulary, vances in visualizing neural networks, we style, topic relevance, and discourse coherence introduce a novel method for identifying and cohesion. In addition to lexical and part-of- the regions of the text that the model has speech (POS) ngrams, linguistically deeper fea- found more discriminative. tures such as types of syntactic constructions, grammatical relations and measures of sentence 1 Introduction complexity are among some of the properties that form an ATS system’s internal marking criteria. Automated Text Scoring (ATS) refers to the set of The final representation of a text typically consists statistical and natural language processing tech- of a vector of features that have been manually se- niques used to automatically score a text on a lected and tuned to predict a score on a marking marking scale. The advantages of ATS systems scale. have been established since Project Essay Grade (PEG) (Page, 1967; Page, 1968), one of the earli- Although current approaches to scoring, such est systems whose development was largely moti- as regression and ranking, have been shown to vated by the prospect of reducing labour-intensive achieve performance that is indistinguishable from marking activities. In addition to providing a that of human examiners, there is substantial man- cost-effective and efficient approach to large-scale ual effort involved in reaching these results on dif- grading of (extended) text, such systems ensure a ferent domains, genres, prompts and so forth. Lin- consistent application of marking criteria, there- guistic features intended to capture the aspects of fore facilitating equity in scoring. writing to be assessed are hand-selected and tuned There is a large body of literature with re- for specific domains. In order to perform well on gards to ATS systems of text produced by non- different data, separate models with distinct fea- native English-language learners (Page, 1968; At- ture sets are typically tuned. 715 Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 715–725, Berlin, Germany, August 7-12, 2016. c 2016 Association for Computational Linguistics Prompted by recent advances in deep learning the training set to which it is most similar. Lons- and the ability of such systems to surpass state-of- dale and Strong-Krause (2003) use the Link Gram- the-art models in similar areas (Tang, 2015; Tai et mar parser (Sleator and Templerley, 1995) to anal- al., 2015), we propose the use of recurrent neural yse and score texts based on the average sentence- network models for ATS. Multi-layer neural net- level scores calculated from the parser’s cost vec- works are known for automatically learning use- tor. ful features from data, with lower layers learn- The Bayesian Essay Test Scoring sYstem (Rud- ing basic feature detectors and upper levels learn- ner and Liang, 2002) investigates multinomial and ing more high-level abstract features (Lee et al., Bernoulli Naive Bayes models to classify texts 2009). Additionally, recurrent neural networks are based on shallow content and style features. e- well-suited for modeling the compositionality of Rater (Attali and Burstein, 2006), developed by language and have been shown to perform very the Educational Testing Service, was one of the well on the task of language modeling (Mikolov first systems to be deployed for operational scor- et al., 2011; Chelba et al., 2013). We therefore ing in high-stakes assessments. The model uses propose to apply these network structures to the a number of different features, including aspects task of scoring, in order to both improve the per- of grammar, vocabulary and style (among others), formance of ATS systems and learn the required whose weights are fitted to a marking scheme by feature representations for each dataset automat- regression. ically, without the need for manual tuning. More Chen et al. (2010) use a voting algorithm and specifically, we focus on predicting a holistic score address text scoring within a weakly supervised for extended-response writing items.1 bag-of-words framework. Yannakoudakis et al. However, automated models are not a panacea, (2011) extract deep linguistic features and employ and their deployment depends largely on the abil- a discriminative learning-to-rank model that out- ity to examine their characteristics, whether they performs regression. measure what is intended to be measured, and Recently, McNamara et al. (2015) used a hier- whether their internal marking criteria can be in- achical classification approach to scoring, utilizing terpreted in a meaningful and useful way. The linguistic, semantic and rhetorical features, among deep architecture of neural network models, how- others. Farra et al. (2015) utilize variants of lo- ever, makes it rather difficult to identify and ex- gistic and linear regression and develop models tract those properties of text that the network has that score persuasive essays based on features ex- identified as discriminative. Therefore, we also tracted from opinion expressions and topical ele- describe a preliminary method for visualizing the ments. information the model is exploiting when assign- There have also been attempts to incorporate ing a specific score to an input text. more diverse features to text scoring models. Kle- banov and Flor (2013) demonstrate that essay 2 Related Work scoring performance is improved by adding to the model information about percentages of highly In this section, we describe a number of the more associated, mildly associated and dis-associated influential and/or recent approaches in automated pairs of words that co-exist in a given text. So- text scoring of non-native English-learner writing. masundaran et al. (2014) exploit lexical chains and Project Essay Grade (Page, 1967; Page, 1968; their interaction with discourse elements for evalu- Page, 2003) is one of the earliest automated scor- ating the quality of persuasive essays with respect ing systems, predicting a score using linear regres- to discourse coherence. Crossley et al. (2015) sion over vectors of textual features considered to identify student attributes, such as standardized be proxies of writing quality. Intelligent Essay test scores, as predictive of writing success and Assessor (Landauer et al., 2003) uses Latent Se- use them in conjunction with textual features to mantic Analysis to compute the semantic similar- develop essay scoring models. ity between texts at specific grade points and a test In 2012, Kaggle,2 sponsored by the Hewlett text, which is assigned a score based on the ones in Foundation, hosted the Automated Student As- 1The task is also referred to as Automated Essay Scoring. sessment Prize (ASAP) contest, aiming to demon- Throughout this paper, we use the terms text and essay (scor- ing) interchangeably. 2http://www.kaggle.com/c/asap-aes/ 716 1 strate the capabilities of automated text scoring f(s), bo R ∈ systems (Shermis, 2015). The dataset released H 1 Woh R × ∈ consists of around twenty thousand texts (60% of D H Whi R × which are marked), produced by middle-school ∈ D English-speaking students, which we use as part s R ∈ of our experiments to develop our models. H bo R ∈ 3 Models 3.1 C&W Embeddings where M, Woh, Whi, bo, bh are learnable param- eters, D, H are hyperparameters controlling the Collobert and Weston (2008) and Collobert et al. size of the input and the hidden layer, respectively; (2011) introduce a neural network architecture σ is the application of an element-wise non-linear (Fig. 1a) that learns a distributed representation for function (htanh in this case). each word w in a corpus based on its local context. The model learns word embeddings by ranking Concretely, suppose
Recommended publications
  • Towards Interpretation As Natural Logic Abduction
    4Pin1-33 The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018 Towards Interpretation as Natural Logic Abduction Naoya Inoue∗1 Pontus Stenetorp∗2 Sebastian Riedel∗2 Kentaro Inui∗1∗3 ∗1 Tohoku University ∗2 University College London ∗3 RIKEN Center for Advanced Intelligence Project This paper studies an abductive reasoning framework on natural language representations. We show how to incorporate Natural Logic (McCartney et al. 2009) into Interpretation as Abduction (Hobbs et al. 1993). The resulting framework avoids the difficulty of natural language-formal representation conversion, while handling im- portant linguistic expressions such as negations and quantifiers. For proof-of-concept, we demonstrate that missing, implicit premises of arguments can be recovered by the proposed framework by a manual example walkthrough. 1. Introduction is orthogonal to the conventional formal representation- based approaches. More specifically, we study Natural Abduction is inference to the best explanation. This pa- Logic [Maccartney 09, Bowman 13, Angeli 14] in the con- per explores abduction for natural language understanding. text of abductive reasoning. Natural Logic is a framework Given a textual observation, the task is to generate the originally developed for entailment prediction. The advan- best, textual explanation. For example, the task of find- tage is that (i) it works on natural language expression di- ing a missing assumption of an argument [Habernal 17] is a rectly, and (ii) it supports important linguistic expressions special form of abduction. Suppose the following argument ∗1 such as negations and quantifiers. is given : We show how Natural Logic-based inference can be inte- (1) Claim: Immigration is really a problem.
    [Show full text]
  • A Comparative Study of Pretrained Language Models for Automated Essay Scoring with Adversarial Inputs
    A Comparative Study of Pretrained Language Models for Automated Essay Scoring with Adversarial Inputs 1st Phakawat Wangkriangkri 2nd Chanissara Viboonlarp 3rd Attapol T. Rutherford Department of Computer Engineering Department of Computer Engineering Department of Linguistics Chulalongkorn University Chulalongkorn University Chulalongkorn University Bangkok, Thailand Bangkok, Thailand Bangkok, Thailand [email protected] [email protected] [email protected] 4th Ekapol Chuangsuwanich Department of Computer Engineering Chulalongkorn University Bangkok, Thailand [email protected] Abstract—Automated Essay Scoring (AES) is a task that for scoring essays. We experimented three popular transfer- deals with grading written essays automatically without human learning text encoders: Global Vectors for Word Repre- intervention. This study compares the performance of three sentation (GloVe) [6], Embeddings from Language Models AES models which utilize different text embedding methods, namely Global Vectors for Word Representation (GloVe), Em- (ELMo) [7], and Bidirectional Encoder Representations from beddings from Language Models (ELMo), and Bidirectional Transformers (BERT) [8]. An ideal AES system should both Encoder Representations from Transformers (BERT). We used correlate with manually-graded essay scores and be resistant two evaluation metrics: Quadratic Weighted Kappa (QWK) and to adversarial hacks; thus, we evaluated the models against a novel “robustness”, which quantifies the models’ ability to both criteria. detect adversarial essays created by modifying normal essays to cause them to be less coherent. We found that: (1) the BERT- Our contributions can be summarized as follows: based model achieved the greatest robustness, followed by the • We developed three AES-specific models utilizing dif- GloVe-based and ELMo-based models, respectively, and (2) fine- ferent transfer-learning text encoders, and compared tuning the embeddings improves QWK but lowers robustness.
    [Show full text]
  • The Effects of Automated Essay Scoring As a High School Classroom Intervention
    UNLV Retrospective Theses & Dissertations 1-1-2008 The effects of automated essay scoring as a high school classroom intervention Kathie L Frost University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Frost, Kathie L, "The effects of automated essay scoring as a high school classroom intervention" (2008). UNLV Retrospective Theses & Dissertations. 2839. http://dx.doi.org/10.25669/37p4-kdh7 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. THE EFFECTS OF AUTOMATED ESSAY SCORING AS A HIGH SCHOOL CLASSROOM INTERVENTION by Kathie L. Frost Bachelor of Science University of Arizona Tucson, Arizona Master of Business Administration University of Nevada, Las Vegas A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree in Curriculum and Instruction Department of Curriculum and Instruction College of Education Graduate College University of Nevada, Las Vegas December 2008 UMI Number: 3352171 Copyright 2009 by Frost, Kathie L.
    [Show full text]
  • A Hierarchical Classification Approach to Automated Essay Scoring
    Assessing Writing 23 (2015) 35–59 Contents lists available at ScienceDirect Assessing Writing A hierarchical classification approach to automated essay scoring a,∗ b a Danielle S. McNamara , Scott A. Crossley , Rod D. Roscoe , a a Laura K. Allen , Jianmin Dai a Arizona State University, United States b Georgia State University, United States a r t i c l e i n f o a b s t r a c t Article history: This study evaluates the use of a hierarchical classification approach Received 22 September 2013 to automated assessment of essays. Automated essay scoring (AES) Received in revised form 2 September 2014 generally relies on machine learning techniques that compute essay Accepted 4 September 2014 scores using a set of text variables. Unlike previous studies that rely on regression models, this study computes essay scores using Keywords: a hierarchical approach, analogous to an incremental algorithm Automated essay scoring for hierarchical classification. The corpus in this study consists of AES 1243 argumentative (persuasive) essays written on 14 different Writing assessment prompts, across 3 different grade levels (9th grade, 11th grade, Hierarchical classification college freshman), and four different time limits for writing or temporal conditions (untimed essays and essays written in 10, 15, and 25 minute increments). The features included in the analysis are computed using the automated tools, Coh-Metrix, the Writing Assessment Tool (WAT), and Linguistic Inquiry and Word Count (LIWC). Overall, the models developed to score all the essays in the data set report 55% exact accuracy and 92% adjacent accuracy between the predicted essay scores and the human scores.
    [Show full text]
  • Automated Essay Scoring: a Siamese Bidirectional LSTM Neural Network Architecture
    S S symmetry Article Automated Essay Scoring: A Siamese Bidirectional LSTM Neural Network Architecture Guoxi Liang 1,2 , Byung-Won On 3,*,†, Dongwon Jeong 3 and Hyun-Chul Kim 4 and Gyu Sang Choi 5,* 1 Department of Global Entrepreneurship, Kunsan National University, Gunsan 54150, Korea; [email protected] 2 Department of Information Technology, Wenzhou Vocational & Technical College, Wenzhou 325035, China 3 Department of Software Convergence Engineering, Kunsan National University, Gunsan 54150, Korea; [email protected] 4 Department of Technological Business Startup, Kunsan National University, Gunsan 54150, Korea; [email protected] 5 Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Korea * Correspondence: [email protected] (B.-W.O.); [email protected] (G.S.C.); Tel.: +82-63-469-8913 (B.-W.O.) † Current address: 151-109 Digital Information Building, Department of Software Convergence Engineering, Kunsan National University 558 Daehak-ro, Gunsan, Jeollabuk-do 573-701, Korea. Received: 14 November 2018; Accepted: 27 November 2018; Published: 01 December 2018 Abstract: Essay scoring is a critical task in education. Implementing automated essay scoring (AES) helps reduce manual workload and speed up learning feedback. Recently, neural network models have been applied to the task of AES and demonstrates tremendous potential. However, the existing work only considered the essay itself without considering the rating criteria behind the essay. One of the reasons is that the various kinds of rating criteria are very hard to represent. In this paper, we represent rating criteria by some sample essays that were provided by domain experts and defined a new input pair consisting of an essay and a sample essay.
    [Show full text]
  • Automated Evaluation of Writing – 50 Years and Counting
    Automated Evaluation of Writing – 50 Years and Counting Beata Beigman Klebanov and Nitin Madnani Educational Testing Service, Princeton, NJ, USA {bbeigmanklebanov,nmadnani}@ets.org Abstract 2 Report Card: Where are We Now? 2.1 Accomplishments Page’s minimal desiderata have certainly been In this theme paper, we reflect on the progress of achieved – AWE systems today can score in agree- Automated Writing Evaluation (AWE), using Ellis ment with the average human rater, at least in Page’s seminal 1966 paper to frame the presenta- some contexts.1 For example, Pearson’s Intelli- tion. We discuss some of the current frontiers in gent Essay Assessor™ (IEA) scores essays writ- the field, and offer some thoughts on the emergent ten for the Pearson Test of English (PTE) as well uses of this technology. as for other contexts: “IEA was developed more 1 A Minimal Case for AWE than a decade ago and has been used to evaluate millions of essays, from scoring student writing at In a seminal paper on the imminence of automated elementary, secondary and university level, to as- grading of essays, Page (1966) showed that a high sessing military leadership skills.”2 Besides sole correlation between holistic machine and human automated scoring as for PTE, there are additional scores is possible. He demonstrated automated contexts where the automated score is used in ad- scoring of 276 essays written by high school stu- dition to a human score, such as for essays written dents by a system with 32 features, resulting in a for the Graduate Record Examination (GRE®)3 multiple R = 0:65 between machine and average or for the Test of English as a Foreign Language human score, after adjustment.
    [Show full text]
  • Pearson's Automated Scoring of Writing, Speaking, and Mathematics
    Pearson’s Automated Scoring of Writing, Speaking, and Mathematics White Paper Lynn Streeter, Ph.D. Jared Bernstein, Ph.D. Peter Foltz, Ph.D. Donald DeLand May 2011 AUTOMATED SCORING 1 About Pearson Pearson, the global leader in education and education technology, provides innovative print and digital education materials for preK through college, student information systems and learning management systems, teacher licensure testing, teacher professional development, career certification programs, and testing and assessment products that set the standard for the industry. Pearson’s other primary businesses include the Financial Times Group and the Penguin Group. For more information about the Assessment & Information group of Pearson, visit http://www.pearsonassessments.com/. About Pearson’s White Papers Pearson’s white paper series shares the perspectives of our assessment experts on selected topics of interest to educators, researchers, policy makers and other stakeholders involved in assessment and instruction. Pearson’s publications in .pdf format may be obtained at: http://www.pearsonassessments.com/research. AUTOMATED SCORING 2 Executive Summary The new assessment systems designed to measure the Common Core standards will include far more performance-based items and tasks than most of today’s assessments. In order to provide feedback quickly and make scoring of the responses affordable, the new assessments will rely heavily on artificial intelligence scoring, hereafter referred to as automated scoring. Familiarity with the current range of applications and the operational accuracy of automatic scoring technology can help provide an understanding of which item types can be scored automatically in the near term. This document describes several examples of current item types that Pearson has designed and fielded successfully with automatic scoring.
    [Show full text]
  • Automated Essay Scoring: a Survey of the State of the Art
    Automated Essay Scoring: A Survey of the State of the Art Zixuan Ke and Vincent Ng Human Language Technology Research Institute, University of Texas at Dallas, USA fzixuan, [email protected] Abstract Dimension Description Grammaticality Grammar Despite being investigated for over 50 years, the Usage Use of prepositions, word usage task of automated essay scoring continues to draw Mechanics Spelling, punctuation, capitalization a lot of attention in the natural language process- Style Word choice, sentence structure variety ing community in part because of its commercial Relevance Relevance of the content to the prompt and educational values as well as the associated re- Organization How well the essay is structured search challenges. This paper presents an overview Development Development of ideas with examples of the major milestones made in automated essay Cohesion Appropriate use of transition phrases scoring research since its inception. Coherence Appropriate transitions between ideas Thesis Clarity Clarity of the thesis 1 Introduction Persuasiveness Convincingness of the major argument Automated essay scoring (AES), the task of employing com- Table 1: Different dimensions of essay quality. puter technology to score written text, is one of the most im- portant educational applications of natural language process- ing (NLP). This area of research began with Page’s [1966] help an author identify which aspects of her essay need im- pioneering work on the Project Essay Grader system and has provements. remained active since then. The vast majority of work on From a research perspective, one of the most interesting AES has focused on holistic scoring, which summarizes the aspects of the AES task is that it encompasses a set of NLP quality of an essay with a single score.
    [Show full text]
  • Modeling Argument Strength in Student Essays
    Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP), Beijing, China, July 2015, pp. 543--552. Modeling Argument Strength in Student Essays Isaac Persing and Vincent Ng Human Language Technology Research Institute University of Texas at Dallas Richardson, TX 75083-0688 {persingq,vince}@hlt.utdallas.edu Abstract (Persing and Ng, 2013). Essay grading software that provides feedback along multiple dimensions While recent years have seen a surge of in- of essay quality such as E-rater/Criterion (Attali terest in automated essay grading, includ- and Burstein, 2006) has also begun to emerge. ing work on grading essays with respect Our goal in this paper is to develop a com- to particular dimensions such as prompt putational model for scoring the essay dimension adherence, coherence, and technical qual- of argument strength, which is arguably the most ity, there has been relatively little work important aspect of argumentative essays. Argu- on grading the essay dimension of argu- ment strength refers to the strength of the argu- ment strength, which is arguably the most ment an essay makes for its thesis. An essay with important aspect of argumentative essays. a high argument strength score presents a strong We introduce a new corpus of argumen- argument for its thesis and would convince most tative student essays annotated with argu- readers. While there has been work on design- ment strength scores and propose a su- ing argument schemes (e.g., Burstein et al. (2003), pervised, feature-rich approach to auto- Song et al.
    [Show full text]
  • Get IT Scored Using Autosas!
    The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-19) Get IT Scored Using AutoSAS — An Automated System for Scoring Short Answers Yaman Kumar,1 Swati Aggarwal,2 Debanjan Mahata,3 Rajiv Ratn Shah,4 Ponnurangam Kumaraguru,4 Roger Zimmermann5 1Adobe, India, 2NSIT-Delhi, India, 3Bloomberg, USA 4IIIT-Delhi, India, 5National University of Singapore, Singapore [email protected], [email protected], [email protected]. [email protected], [email protected], [email protected] Abstract have been taught to write their essays and short answers (Dale and Krueger 2002). In the era of MOOCs, online exams are taken by millions of candidates, where scoring short answers is an integral part. It becomes intractable to evaluate them by human graders. Motivation Thus, a generic automated system capable of grading these Automated Essay Scoring (AES) and Short Answer Scoring responses should be designed and deployed. In this paper, we (SAS) systems such as the one presented in this work (Au- present a fast, scalable, and accurate approach towards auto- toSAS), provides economic advantages to testing companies mated Short Answer Scoring (SAS). We propose and explain and state-wide corporations. These systems reduce the eco- the design and development of a system for SAS, namely nomic and time burden of getting each response checked by AutoSAS. Given a question along with its graded samples, AutoSAS can learn to grade that prompt successfully. This human graders close to zero, bringing down the cost and ef- paper further lays down the features such as lexical diver- fort significantly. sity, Word2Vec, prompt, and content overlap that plays a piv- It has been noted that about 30% of a teacher’s time is otal role in building our proposed model.
    [Show full text]
  • Enhancing Automated Essay Scoring Performance Via Fine-Tuning Pre-Trained Language Models with Combination of Regression and Ranking
    Enhancing Automated Essay Scoring Performance via Fine-tuning Pre-trained Language Models with Combination of Regression and Ranking Ruosong Yang†‡, Jiannong Cao†, Zhiyuan Wen†, Youzheng Wu‡, Xiaodong He‡ †Department of Computing, The Hong Kong Polytechnic University ‡JD AI Research †{csryang, csjcao, cszwen}@comp.polyu.edu.hk ‡{wuyouzheng1, xiaodong.he}@jd.com Abstract variation), different raters scoring the same essay may assign different scores (inter-rater variation) Automated Essay Scoring (AES) is a critical (Smolentzov, 2013). To alleviate teachers’ bur- text regression task that automatically assigns den and avoid intra-rater variation, as well as inter- scores to essays based on their writing qual- ity. Recently, the performance of sentence rater variation, AES is necessary and essential. An prediction tasks has been largely improved by early AES system, e-rater (Chodorow and Burstein, using Pre-trained Language Models via fus- 2004), has been used to score TOEFL writings. ing representations from different layers, con- Recently, large pre-trained language models, structing an auxiliary sentence, using multi- such as GPT (Radford et al., 2018), BERT (Devlin task learning, etc. However, to solve the AES et al., 2019), XLNet (Yang et al., 2019), etc. have task, previous works utilize shallow neural net- shown the extraordinary ability of representation works to learn essay representations and con- strain calculated scores with regression loss or and generalization. These models have gained bet- ranking loss, respectively. Since shallow neu- ter performance in lots of downstream tasks such as ral networks trained on limited samples show text classification and regression. There are many poor performance to capture deep semantic of new approaches to fine-tune pre-trained language texts.
    [Show full text]
  • Neural Automated Essay Scoring Incorporating Handcrafted Features
    Neural Automated Essay Scoring Incorporating Handcrafted Features Masaki Uto Yikuan Xie Maomi Ueno The University of The University of The University of Electro-Communications Electro-Communications Electro-Communications [email protected] yikuan.xie@ [email protected] ai.lab.uec.ac.jp Abstract Automated essay scoring (AES) is the task of automatically assigning scores to essays as an al- ternative to grading by human raters. Conventional AES typically relies on handcrafted features, whereas recent studies have proposed AES models based on deep neural networks (DNNs) to obviate the need for feature engineering. Furthermore, hybrid methods that integrate handcrafted features in a DNN-AES model have been recently developed and have achieved state-of-the-art accuracy. One of the most popular hybrid methods is formulated as a DNN-AES model with an additional recurrent neural network (RNN) that processes a sequence of handcrafted sentence- level features. However, this method has the following problems: 1) It cannot incorporate effec- tive essay-level features developed in previous AES research. 2) It greatly increases the numbers of model parameters and tuning parameters, increasing the difficulty of model training. 3) It has an additional RNN to process sentence-level features, enabling extension to various DNN-AES models complex. To resolve these problems, we propose a new hybrid method that integrates handcrafted essay-level features into a DNN-AES model. Specifically, our method concatenates handcrafted essay-level features to a distributed essay representation vector, which is obtained from an intermediate layer of a DNN-AES model. Our method is a simple DNN-AES extension, but significantly improves scoring accuracy.
    [Show full text]