Getting Started First Steps with Mevislab

Total Page:16

File Type:pdf, Size:1020Kb

Getting Started First Steps with Mevislab Getting Started First Steps with MeVisLab 1 Getting Started Getting Started Copyright © 2003-2021 MeVis Medical Solutions Published 2021-10-05 2 Table of Contents 1. Before We Start ................................................................................................................... 10 1.1. Welcome to MeVisLab ............................................................................................... 10 1.2. Coverage of the Document ........................................................................................ 10 1.3. Intended Audience ..................................................................................................... 11 1.4. Conventions Used in This Document .......................................................................... 11 1.4.1. Activities ......................................................................................................... 11 1.4.2. Formatting ...................................................................................................... 11 1.5. How to Read This Document ..................................................................................... 12 1.6. Related MeVisLab Documents ................................................................................... 12 1.7. Glossary (abbreviated) ............................................................................................... 13 2. The Nuts and Bolts of MeVisLab ........................................................................................... 15 2.1. MeVisLab Basics ....................................................................................................... 15 2.2. Development in MeVisLab ......................................................................................... 16 2.3. MeVisLab Modules .................................................................................................... 17 2.4. Fields ........................................................................................................................ 18 2.5. Networks ................................................................................................................... 19 2.6. Overview of Important Files ........................................................................................ 20 2.7. User Interfaces Controls ............................................................................................ 21 2.8. Scripting .................................................................................................................... 22 2.9. How to Find More Information on Networks and Modules ............................................. 22 3. Loading and Viewing Images ................................................................................................ 24 3.1. The MeVisLab GUI .................................................................................................... 24 3.2. Searching and Adding Modules .................................................................................. 25 3.3. Using the ImageLoad Module ..................................................................................... 28 3.4. Adding Viewers to ImageLoad .................................................................................... 33 3.4.1. Adding the View2D Module ............................................................................. 33 3.4.2. Adding the View3D Module ............................................................................. 37 3.5. Alternative Ways to Load Images ............................................................................... 37 3.5.1. Dragging Images onto the Workspace .............................................................. 37 3.5.2. Using the LocalImage Module ......................................................................... 38 3.6. A Note on Importing DICOM Images .......................................................................... 39 4. Implementing a Contour Filter ............................................................................................... 41 4.1. Loading the Input Image ............................................................................................ 41 4.2. Implementing the Contour Filter .................................................................................. 42 4.3. Parameter Connection for Synchronization .................................................................. 46 5. Defining a Region of Interest (ROI) ....................................................................................... 49 5.1. Creating a Viewer with a Selection Rectangle ............................................................. 50 5.2. Adding a Second Viewer for the Subimage ................................................................. 50 5.3. Adding the Interactivity for the Viewers ....................................................................... 51 6. Excursion: Functionality Overview ......................................................................................... 56 6.1. Image Handling and Processing ................................................................................. 56 6.1.1. Image Handling .............................................................................................. 56 6.1.2. Image Properties ............................................................................................ 56 6.1.3. Basic Image Processing .................................................................................. 56 6.1.4. Filter .............................................................................................................. 57 6.1.5. Segmentation ................................................................................................. 57 6.2. Visualization .............................................................................................................. 57 6.2.1. 2D Viewing ..................................................................................................... 57 6.2.2. 3D Viewing ..................................................................................................... 58 6.2.3. Lookup Tables ................................................................................................ 58 6.3. Data Objects ............................................................................................................. 58 6.3.1. Markers .......................................................................................................... 58 6.3.2. Curves ........................................................................................................... 59 6.3.3. Contours ........................................................................................................ 59 6.3.4. Surface objects ............................................................................................... 59 3 Getting Started 6.4. Miscellaneous ............................................................................................................ 59 6.4.1. Fields ............................................................................................................. 59 6.4.2. Diagnostic ...................................................................................................... 60 7. Creating an Open Inventor Scene ......................................................................................... 61 7.1. Introduction to Open Inventor ..................................................................................... 62 7.2. Creating the Applicator .............................................................................................. 64 7.3. Creating the Interaction .............................................................................................. 67 7.4. Creating the Anatomical Image .................................................................................. 70 7.5. Finishing the Complete Open Inventor Scene .............................................................. 71 8. Starting Development with Package Creation ......................................................................... 75 8.1. What are Packages ................................................................................................... 75 8.2. Creating a User Package for Your Project ................................................................... 77 9. Introduction to Macro Modules .............................................................................................. 78 10. Developing a Macro Module for an Applicator ...................................................................... 80 10.1. Creating a Basic Global Macro ................................................................................. 80 10.2. Adding the Macro Parameters and Panel .................................................................. 84 10.3. Programming the Python Script ................................................................................ 89 10.4. Addition: Shifting the Whole Tip ................................................................................ 94 11. GUI Design in MeVisLab .................................................................................................... 97 11.1. MeVisLab Definition Language (MDL) ....................................................................... 98 11.1.1. MDL Validator ............................................................................................... 98 11.1.2. MDL Controls ..............................................................................................
Recommended publications
  • Open Inventor Toolkit ACADEMIC PROGRAM FAQ Updated June 2018
    Open Inventor Toolkit ACADEMIC PROGRAM FAQ Updated June 2018 • How can my organization qualify for this program ? • What support will my organization get under this program ? • How can I make an application available to collaborators • Can I use Open Inventor Toolkit in an open source project ? • What can I do with Open Inventor Toolkit under this program ? • What are some applications of Open Inventor Toolkit ? • What's the value of using Open Inventor Toolkit ? • What is Thermo Fisher expecting from my organization in exchange for the ability to use Open Inventor Toolkit free of charge ? • How does Open Inventor Toolkit relate to visualization applications ? • Can I use Open Inventor Toolkit to extend visualization applications ? • What languages, platforms and compilers are supported by Open Inventor Toolkit ? • What are some key features of Open Inventor Toolkit ? How can my organization qualify for this program ? Qualified academic and non-commercial organizations can apply for the Open Inventor Toolkit Academic Program. Through this program, individuals in your organization can be granted Open Inventor Toolkit development and runtime licenses, at no charge, for non-commercial use. Licenses provided under the Open Inventor Toolkit Academic Program allow you to both create and distribute software applications based on Open Inventor Toolkit. However, your application must be distributed free-of-charge for educational or research purposes. Your application must not generate commercial revenue nor be deployed by a corporation for in-house use nor be used in any other commercial manner Contact your account manager and we will provide you with more information on the details to qualify for this program.
    [Show full text]
  • Top-Down Archaeology with a Geometric Language
    483 Computer-Aided Design and Applications © 2008 CAD Solutions, LLC http://www.cadanda.com Top-Down Archaeology with a Geometric Language Dario Lucia*, Francesco Martire*, Alberto Paoluzzi* and Giorgio Scorzelli* *Università degli Studi “Roma Tre”, {lucia, martire, paoluzzi, scorzell}@dia.uniroma3.it Fig. 1: (a) 2D map of the Palatino hill in Rome; (b) the 3D PLaSM reconstruction of the emperor’s palace (Domus Flavia, Domus Augustana and Hippodrome of Domitian). ABSTRACT In this paper we discuss a fast reconstruction of an archaeological site consisting of many different and connected parts. In particular, we discuss the geometric reconstruction of the Domus Flavia and the Domus Augustana, both built by Emperor Domitian on the Palatine hill in Rome, including the adjacent Hippodromus. The Domus Flavia was the official part of the palace, while the Domus Augustana was the emperor’s luxurious private residence. They are the most impressive ruins remaining today on the Palatine. The aim of this paper is to introduce the reader to the power of generative semantics, and to show how fast and easy is the generation of complex VR models if using a generative language. For this purpose, we capitalize on a novel parallel framework for high- performance solid and geometric modeling, that (a) compiles the generating expressions of the model into a dataflow network of concurrent threads, and (b) splits the model into fragments to be distributed to computational nodes and generated independently. We trust that both the language and its kernel are suitable for Cell-BE (Broadband Engine) implementation, that someone believes the reference architecture for advanced modeling, imaging and simulation of next years.
    [Show full text]
  • Open Inventor® 3D Graphics Toolkit for Industrial-Strength Application Development
    DataSheet Open Inventor® 3D Graphics Toolkit for Industrial-Strength Application Development • Speed up your application design, development and maintenance cycles • Increase your performance with advanced 3D visualization and programming • Protect your investment by abstracting low-level, underlying graphics technology • Rely on advanced support of leading open standards Open Inventor® is an object-oriented, cross-platform 3D Open Inventor® delivers enhanced productivity, performance, graphics toolkit for the development of industrial-strength, flexibility and reliability for development of your most demanding interactive, 3D graphics applications using C++, .NET or Java. applications that require robust and evolutionary technologies to meet the highest challenges in 3D visualization. Open Inventor® provides the power and functionality of OpenGL® at an object-oriented level. The easy-to-use API, extensible architecture, and large set of advanced components provide developers with a high-level platform for rapid prototyping and development of high-end, advanced 3D graphics applications. Core Features Object-Oriented 3D API Open Inventor® offers a comprehensive object-oriented set (more than 1300 ready- to-use classes) integrated in a user-friendly framework for rapid development. The scene graph paradigm provides ready-to-use graphics programming patterns, and the object-oriented design encourages extensibility and customization to satisfy specific requirements. Open Inventor® is the most widely used scene graph API in the developer community. Optimized 3D Rendering Open Inventor® has been tuned for improved performance by utilizing the latest relevant OpenGL® features and extensions, automatically taking care of OpenGL® optimization techniques to provide a much higher-level programming interface. Advanced Support of OpenGL® Shaders OpenGL® shader rendering techniques can be applied to any Open Inventor® shape to further enhance the 3D visual experience by using special effects.
    [Show full text]
  • Algebraic Methods for Geometric Modeling Julien Wintz
    Algebraic Methods for Geometric Modeling Julien Wintz To cite this version: Julien Wintz. Algebraic Methods for Geometric Modeling. Mathematics [math]. Université Nice Sophia Antipolis, 2008. English. tel-00347162 HAL Id: tel-00347162 https://tel.archives-ouvertes.fr/tel-00347162 Submitted on 14 Dec 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universit´ede Nice Sophia-Antipolis Ecole´ Doctorale STIC THESE` Pr´esent´ee pour obtenir le titre de : Docteur en Sciences de l’Universit´ede Nice Sophia-Antipolis Sp´ecialit´e: Informatique par Julien Wintz Algebraic Methods for Geometric Modeling Soutenue publiquement `al’INRIA le 5 Mai 2008 devant le jury compos´ede : Pr´esident : Andr´e Galligo Universit´ede Nice, France Rapporteurs : Gershon Elber Technion, Israel Tor Dokken Sintef, Norway Examinateurs : Pascal Schreck Universit´eLouis Pasteur, France Christian Arber Missler, France Directeur : Bernard Mourrain Inria Sophia-Antipolis, France Algebraic methods for geometric modeling Julien Wintz Abstract The two fields of algebraic geometry and algorithmic geometry, though closely related, are traditionally represented by almost disjoint communi- ties. Both fields deal with curves and surfaces but objects are represented in different ways. While algebraic geometry defines objects by the mean of equations, algorithmic geometry use to work with linear models.
    [Show full text]
  • Inviwo — a Visualization System with Usage Abstraction Levels
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MAY 2019 1 Inviwo — A Visualization System with Usage Abstraction Levels Daniel Jonsson,¨ Peter Steneteg, Erik Sunden,´ Rickard Englund, Sathish Kottravel, Martin Falk, Member, IEEE, Anders Ynnerman, Ingrid Hotz, and Timo Ropinski Member, IEEE, Abstract—The complexity of today’s visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities. Index Terms—Visualization systems, data visualization, visual analytics, data analysis, computer graphics, image processing. F 1 INTRODUCTION The field of visualization is maturing, and a shift can be employing different layers of abstraction.
    [Show full text]
  • A Client/Server Based Online Environment for the Calculation of Medical Segmentation Scores
    A Client/Server based Online Environment for the Calculation of Medical Segmentation Scores Maximilian Weber, Daniel Wild, Jürgen Wallner, Jan Egger Abstract— Image segmentation plays a major role in medical for medical image segmentation are often very large due to the imaging. Especially in radiology, the detection and development broadly ranged possibilities offered for all areas of medical of tumors and other diseases can be supported by image image processing. Often huge updates are needed, which segmentation applications. Tools that provide image require nightly builds, even if only the functionality of segmentation and calculation of segmentation scores are not segmentation is needed by the user. Examples are 3D Slicer available at any time for every device due to the size and scope [8], MeVisLab [9] and MITK [10], [11], which have installers of functionalities they offer. These tools need huge periodic that are already over 1 GB. In addition, in sensitive updates and do not properly work on old or weak systems. environments, like hospitals, it is mostly not allowed at all to However, medical use-cases often require fast and accurate install these kind of open-source software tools, because of results. A complex and slow software can lead to additional security issues and the potential risk that patient records and stress and thus unnecessary errors. The aim of this contribution data is leaked to the outside. is the development of a cross-platform tool for medical segmentation use-cases. The goal is a device-independent and The second is the need of software for easy and stable always available possibility for medical imaging including manual segmentation training.
    [Show full text]
  • Do Mlabs Still Make a Difference? a Second Assessment Public Disclosure Authorized Public Disclosure Authorized
    Public Disclosure Authorized Do mLabs Still Make a Difference? A Second Assessment Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized infoDv INNOVATION & ENTREPRENEURSHIP Do mLabs Still Make a b Difference? A Second Assessment © 2017 The World Bank Group 1818 H Street NW Washington, DC 20433 Website: www.infodev.org Email: [email protected] Twitter: @infoDev Facebook: /infoDevWBG For more resources and information about mLabs, visit: https://www.infodev.org/report/do-mlabs-still-make- difference-second-assessment This work is a product of the staff of infoDev/World Bank Group. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of the donors of infoDev, the World Bank Group, its Board of Directors, or the governments they represent. The World Bank Group does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of the World Bank Group concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions: This work is available under the Creative Commons Attribution 3.0 Unported license (CC BY 3.0) http://creativecommons.org/licenses/ by/3.0. Under the Creative Commons Attribution license, you are free to copy, distribute, transmit, and adapt this work, including for commercial purposes, under the following conditions: Attribution: Please cite the work as follows: “Do mLabs Still Make a Difference? A Second Assessment” 2017. Washington, DC: The World Bank Group. License: Creative Commons Attribution CC BY 3.0 Photo Credits: Cover Photo: Shutterstock 2017 c ACKNOWLEDGEMENTS This assessment would not have been possible This assessment was produced by Sonjara, without the valuable contribution of all mLab Inc.
    [Show full text]
  • Introduction to MLAB the Royal Road to Dynamical Simulations
    Introduction to MLAB The Royal Road to Dynamical Simulations Revision Date: September 24, 2015 Foster Morrison, author Turtle Hollow Associates, Inc. P.O. Box 3639 Gaithersburg, MD 20885 USA Daniel Kerner, editor Civilized Software, Inc. 12109 Heritage Park Circle Silver Spring, MD 20906 USA Email: [email protected] Web-site: http://www.civilized.com (301) 962-3711 c 1992-2014 Turtle Hollow Associates, Inc. Contents Preface ii 1 BASIC MATHEMATICS AND ITS IMPLEMENTATION IN MLAB 1 1.1 What You Need to Know ................................ 1 1.2 Getting Started with MLAB ............................... 2 1.3 Foundations of Mathematics ............................... 2 1.4 Sets ............................................ 3 1.5 Numbers, Prime, Rational, and Real .......................... 4 1.6 Try Out MLAB ...................................... 6 2 PROGRAMMING IN MLAB 10 2.1 More Numerical Analysis vs. Analysis ......................... 10 2.2 Legendre Polynomials .................................. 11 3 VECTORS AND MATRICES 13 3.1 Vectors .......................................... 13 3.2 Matrices, Linear Algebra, and Modern Algebra .................... 14 3.3 Arrays ........................................... 16 3.4 Functional Analysis .................................... 16 i 4 LINEAR DYNAMIC SYSTEMS AND MODELS 19 4.1 Difference Equations ................................... 19 4.2 Differential Equations .................................. 21 4.3 Generalizations ...................................... 23 5 LINEAR DYNAMIC SYSTEMS WITH INPUTS
    [Show full text]
  • Medical Image Processing Software
    Wohlers Report 2018 Medical Image Processing Software Medical image Patient-specific medical devices and anatomical models are almost always produced using radiological imaging data. Medical image processing processing software is used to translate between radiology file formats and various software AM file formats. Theoretically, any volumetric radiological imaging dataset by Andy Christensen could be used to create these devices and models. However, without high- and Nicole Wake quality medical image data, the output from AM can be less than ideal. In this field, the old adage of “garbage in, garbage out” definitely applies. Due to the relative ease of image post-processing, computed tomography (CT) is the usual method for imaging bone structures and contrast- enhanced vasculature. In the dental field and for oral- and maxillofacial surgery, in-office cone-beam computed tomography (CBCT) has become popular. Another popular imaging technique that can be used to create anatomical models is magnetic resonance imaging (MRI). MRI is less useful for bone imaging, but its excellent soft tissue contrast makes it useful for soft tissue structures, solid organs, and cancerous lesions. Computed tomography: CT uses many X-ray projections through a subject to computationally reconstruct a cross-sectional image. As with traditional 2D X-ray imaging, a narrow X-ray beam is directed to pass through the subject and project onto an opposing detector. To create a cross-sectional image, the X-ray source and detector rotate around a stationary subject and acquire images at a number of angles. An image of the cross-section is then computed from these projections in a post-processing step.
    [Show full text]
  • Sr. Software Engineer @ Mlab
    Sr. Software Engineer @ mLab About mLab: mLab is a fully managed cloud database service featuring highly available MongoDB databases, automated backups, web- based tools, 24/7 monitoring, and expert support. Developers absolutely love us because our Database-as-a-Service (DBaaS) allows them to focus their attention on product development instead of operations. mLab is one of the fastest-growing companies in the cloud infrastructure space. We're headquartered in the Mission/Potrero area of San Francisco and are well-funded by premier venture and angel investors including Foundry Group, Baseline Ventures, Upfront Ventures, Freestyle Capital and David Cohen of TechStars. What makes us happiest? Innovating, automating, helping other software developers, and giving back to our community. In addition to checking out our website at http://mlab.com and our blog at http://blog.mlab.com. Who we’re looking for: We are looking for a Sr. Software Engineer who will join us in scaling mLab from managing >100,000 databases to managing millions of databases at ever-increasing levels of complexity. In the process, you’ll be exposed to every major cloud provider and infrastructure technology. We currently run on AWS, Google Cloud Platform, and Windows Azure and have integrated with all of the major Platform-as-a-Service providers (Heroku et al.). You'll become an expert in MongoDB, cloud automation, and mLab’s suite of automation tools (some of which we open-source). You’ll work on things like: n Node.js and Python tools/services for automating the entire
    [Show full text]
  • Getting Started First Steps with Mevislab
    Getting Started First Steps with MeVisLab 1 Getting Started Getting Started Copyright © 2003-2021 MeVis Medical Solutions Published 2021-05-11 2 Table of Contents 1. Before We Start ................................................................................................................... 10 1.1. Welcome to MeVisLab ............................................................................................... 10 1.2. Coverage of the Document ........................................................................................ 10 1.3. Intended Audience ..................................................................................................... 11 1.4. Conventions Used in This Document .......................................................................... 11 1.4.1. Activities ......................................................................................................... 11 1.4.2. Formatting ...................................................................................................... 11 1.5. How to Read This Document ..................................................................................... 12 1.6. Related MeVisLab Documents ................................................................................... 12 1.7. Glossary (abbreviated) ............................................................................................... 13 2. The Nuts and Bolts of MeVisLab ........................................................................................... 15 2.1. MeVisLab Basics ......................................................................................................
    [Show full text]
  • Migrating from Mongodb to Mongodb Atlas on the AWS Cloud AWS Prescriptive Guidance Migrating from Mongodb to Mongodb Atlas on the AWS Cloud
    AWS Prescriptive Guidance Migrating from MongoDB to MongoDB Atlas on the AWS Cloud AWS Prescriptive Guidance Migrating from MongoDB to MongoDB Atlas on the AWS Cloud AWS Prescriptive Guidance: Migrating from MongoDB to MongoDB Atlas on the AWS Cloud Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. AWS Prescriptive Guidance Migrating from MongoDB to MongoDB Atlas on the AWS Cloud Table of Contents Introduction ...................................................................................................................................... 1 Overview ........................................................................................................................................... 2 MongoDB migration at a glance ................................................................................................... 2 Roles and responsibilities ............................................................................................................ 3 Cost and licensing ...................................................................................................................... 3 MongoDB and MongoDB Atlas
    [Show full text]