Electro Optical Components, Inc. 5460 Skylane Boulevard, Santa Rosa, CA 95403 Toll Free: 855-EOC-6300 www.eoc-inc.com | [email protected]

5.1. Infrared (IR) Photodetectors Glossary

noise, improve high performance and increase the 5.1. Infrared (IR) Photodetectors dynamic range. Unfortunately, at the expense of flicker noise (1/f) in most cases. Infrared photodetectors are semiconductor electro-optical devices that convert infrared radiation into an electrical signal. Photovoltaic detectors are more vulnerable to electrostatic dis- charges than photoconductors.

Hg1-xCdxTe Photoelectromagnetic detectors (PEM)

Known also as Mercury Cadmium Telluride (MCT), HgCd- Photovoltaic detectors are based on the photoelectromagnetic Te, (Cd,Hg)Te or MerCadTel. It is a variable ba nd gap alloy, effect based on spatial separation of optically generated elec- commonly used for fabrication of photodetectors with tunable trons and holes in the magnetic field. The devices do not re- spectral response. quire electrical bias and show no flicker noise (1/f). The PEM 5 devices are typically used as fast, uncooled detectors of the long radiation. InAs1-xSbx

InAs Sb also known as Indium Arsenide Antimonide and In- 1-x x Detector formats AsSb is another variable band gap alloy used for fabrication of Detector formats photodetectors with tunable spectral response. Square or rectangular formats are typically used for any IR detectors. Circular geometry is soSquaremetim ore rectangulars used fo formatsr pho tareod itypicallyodes. used for any IR de- Physical detector area A Detector formats tectors. Circular geometry is sometimes used for photodiodes. Square or rectangEuqlaur ivfoarmleantst samre atyllp siciagllny auls dede tfeocr taonry cIRir cduetiet ctors. Circular geometry is Active area of a detector where the incidentsom radiationetimes uiss eabd- fEorlEquivalent epchtortiocd ipordoeps small.e rties signal of so detectorme phot ocircuitdetec tors can be described by the small signal detector sorbed and sensed. ‧ Equivalent smallc sirigcunaitl dwehteicchto rc coirncsuisitt s of photocurrent source Iph =Ri P, detector dynamic resistance Rsh , Electric properties of some photodetectors can be described Electric propertiesc abyopf aasc osmallimtaen cpsignaleh oCto detector,d eatencdto rscircuitse rciaens which bre sdi seconsiststsacnribce d of R bphotocursy . tRhes iss-m tahlle s ipganaral sdietitce crteors istance of the devices that Optical detector area Ao ‧ circuit which conrseisdtus coef aphvoatiolacburlere npt hsootuorccuer rIephn =tR. i UPn, fdoerteucntaort edlyy,n athmeic sriemsipsltea nmceo dReshl , cannot accurately describe rent source Iph=RiP, detector dynamic resistance Rsh, capaci- capacitance C , andtance ser iC,es andres seriesistanc resistancee R . R Ris. Rth eis pa aparasiticrasitic rresistanceesistanc eof of the devices that The apparent optical area of the detector which is “seen”. It is properties of long wasvelsens gtsh photodiodes operating at near room temperatures. equal to physical area of the detector activere elementduce a unlessvailab anle phtheoto devicescurren tthat. U nreducefortun availableately, th photocurrent.e simple mo Unfortunately,del canno t a ccurately describe optical concentrator is used. The optical detectorproper tareaies ocanf lo beng wtheave simplelength model phot ocannotdiode accuratelys operati ndescribeg at ne apropertiesr room te ofm longper atures. significantly magnified in detectors supplied with optical con- wavelength photodiodes operating at near room temperatures. centrators, for i.e., immersion (see Optical immersion

chapter).

Photoconductors (PC)

Photoconductive detectors based on the photoconductive effect. Infrared radiation generates charge carriers in the semiconductor active region decreasing its resistance. The resistance change is sensed as a current change by applying a constant voltage bias. The devices are characterized by near linear current-voltage characteristics. The electric field in pho- Figure 1. Equivalent small signal circuit of toconductors is constant across the device. It equals ratio of an IR photodetector bias voltage and distance between contacts Figure 1. EquivaleFnti gsmuraell 1si.g nEaql ucivrcauliet notf small signal circuit of an IR photodetector E= V/L an IR photodetector Photocurrent The optimum bias voltage is specified in the final test report and depends on detector size, operating temperature and spectral Photocurrent is a current generated by IR radiation, which is response. Photocurrent not in thermal equilibrium with detector. For small irradiation, Photocurrent is thPe hthecou rtphotocurrentroecntu grerennerta tise proportionald by IR rad itoat iincidenton, wh iradiationch is no tpower in the Prmal equilibrium with detector. For smaPll ihrroatdoiactuiornre, nthte i sp htohteoc cuurrrernetn ist pgreonpeortaiotneadl tboy i nIcRid reandt iraatdiioantio, nw phoicwhe ri sP not in thermal equilibrium with Photovoltaic detectors (PV, PVM) I = R ·P detector. For small irraphd iatiio n, the photocurrent is proportional to incident radiation power P where R is the current responsivity. Photovoltaic detectors (photodiodes) are semiconductori I = R ·P where R is the current responsivity. ph i structures with one (PV) or multiple (PVM),C homo-urren tor re heterospon-siwvihtye rRei Ri is the current responsivity. junctions. Absorbed produce charge carriers that are i Current responsivity (A/W) is the ratio of photocurrent and power of radiation. The current collected at the contacts, resulting in external photocurrent. CuCurrentrrent r eresponsivitysponsivity R Photodiodes have complex current voltageres pcharacteristics.onsivity is t ypically measured for moni ochromatic radiation (the spectral current responsivity) and blackbody radiation (the blackbody current responsivity). The responsivity The devices can operate either at flicker-free zero bias or with CuCurrentrrent responsivityresponsi v(A/W)ity ( Ais /aW ratio) i sof tphotocurrenthe ratio o andf p hpowoto- current and power of radiation. The current typically remains constant for weak radiation and tends to decrease with more strong reverse voltage. Reverse bias voltage is frequently applied to reersp ofo nradiation.sivity Theis tcurrentypica lresponsivityly meas uisr etypicallyd for measuredmonoc hromatic radiation (the spectral current increase responsivity, differential resistance,ra dreduceiation . the shot reforsp monochromaticonsivity) and radiation blackb (theod yspectral radia currenttion ( tresponsivihe blac-kbody current responsivity). The responsivity Current responsitvyiptyic-laelnlyg thre pmroadinusc t cRoi·Lns tant for weak radiation and tends to decrease with more strong The current respornasdiviaittyi oonf . unbiased PEM, PVM and biawww.vigo.com.plsed (with constant electric field E) 52 PC detectors is proportional to the . Therefore, the current responsivity Ri ·L is used to comparCe uderrveicnets roef svaproionus ifvoirtmya-ltse.n gth product Ri·L

Another normalizTehd e ccuurrrernetn tr ersepsopnosnivsitiyv, ityR i ·oLf/ Eu, nbisi ausseedd PtEo Mc,o mPpVaMre arnedsp obniassiveitdy (owf ith constant electric field E) photoconductive devices of various format, and operating with different electric fields. PC detectors is proportional to the reciprocal length. Therefore, the current responsivity Ri ·L Maximum bias voislt augse dV tmoa xc ompare devices of various formats. The maximum voltage that can be applied to a photoconductor or p hotovoltaic detector Another normalized current responsivity, Ri ·L/E, is used to compare responsivity of without a risk of itsp hdaomtoacgoen. ductive devices of various format, and operating with different electric fields. Dark current I dark V The current that flMowasx iinm au pmho tboidaeste vctoolrt iang thee rmmaal xe quilibrium with its surrounding. The maximum voltage that can be applied to a photoconductor or photovoltaic detector without a risk of its damage.

Dark current Idark The current that flows in a photodetector in thermal equilibrium with its surrounding. Detector formats DSeqtueacrteo ro fro rrmecattasn gular formats are typically used for any IR detectors. Circular geometry is S sqDouematreec ttiomorr e rfesoc rutmasneagdtus fl aorr fpohrmotaotds ioadree sty. pically used for any IR detectors. Circular geometry is sSoqmueatriem eosr urescetda nfogru plahro tfoodrmioadtess .a re typically used for any IR detectors. Circular geometry is Equivalent small signal detector circuit sometimes used for photodiodes. EEquleivcatrliecn pt rsompaelrlt iseisg noafl dseotmecet oprh coirtocudiet tectors can be described by the small signal detector Electric properties of some photodetectors can be described by the small signal detector Ecqiruciuviat lewnht iscmh acllo snisginsatsl doeft epchtorto cciurcrrueint t source I =R ‧P , detector dynamic resistance R , circuit which consists of photocurrent source I =R ‧pPh , dei tector dynamic resistance R , sh Electric proper tie s of some photodetector s ca nph bei described by the small signal deteshc tor capacitance C, and series resistan c e R s . Rs is the parasitic resistance of the devices that capacitance C, and series resistance Rs . Rs is the parasitic resistance of the devices that circuit which consists of photocurrent source I =R ‧P , detector dynamic resistance R , rerdeudcuec ea vaavilabilaleb pleh opthocoutorrceunrtr. eUnnt.f oUrtnufnoartteulny,a theely ,ps hitmhepil es imopdlee l mcaondneol t caacncnuorat tealcy cduersacterilbye dshescribe capacitance C , and series resistance R . R is the parasitic resistance of the devices that prporpoepretiertsie osf olofn lgo nwga vwealevneglethn gphtho tpohdoiotdoedsio sodpeessr aotipnegr at inega ar tr onoema rt eromopmer atetumrepse. ratures. reduce available photocurrent. Unfortunately, the simple model cannot accurately describe

properties of long wavelength photodiodes operating at near room temperatures.

Background generated current The photocurrent generated by thermal radiation emitted by detector surrounding

Noise current In BBaacckkggrroouunndd ggeenneerraatteedd ccuurrrreenntt Background generated current TBThahece k ppghhroottouocncuudrr rrgeeennntt gegerean2nteerdraa tcteeuddr brbeyyn tthh eerrmmaal l rraaddiaiattioionn eemmititteedd bbyy ddeetteeccttoorr ssuurrrroouunnddiningg Figure 1. Equivalent small signal Rciorocut imt eoaf n square noTihse pcuhrorteonctu Irrne=nt geIn(et)r ated by thermal radiation emitted by detector surrounding BTahcek pghrotuoncudr rgeennt√ egreantedra cteudr rbeyn tth ermal radiation emitted by detector surrounding anF IiRgu prheo t1o.d eEteqcutoivr alent small signBaal cckigrcrouuitn odf geneTrNNahotoeei isdpse hec o cuctuourrcrreruenernrnte tt n IItn ng e nerated by thermal radiation emitted by detector surrounding BNaockisger ocunrrde ngte dnenrasBtiNetaydoc ikicsngue r coreuunrnrtd e ngte Inne r ated current Figure 1. Equivalent small signal Tchirec upiht ootfo current geNnoeirsaet ecdu brrye tnhte rImn a l radiation emiItte=d byI 2 2d(te)t ector surrounding an IR photodetector The photocurrent genTReRhroaeoot oeptt dh mm obeteyoaa cntnhu sersqrrqemuunIaatr lreg er ea nndooeiiasirsateieto e cncdu u erbrrmreyen2 intthtt e edInrn mb=ya l draeIn2dnte(iatc) t tiorn seumrriottuendd binyg detector surrounding NRooioste m ceuarrne snqt uanr e noise curdrIen nt In = √√In(t) an IR photodetector in = √ 2 Noise current In Root mean square noise currdef nt In = In(t) Noise current In NNNoooiisisseee c ccuuurrrrrereennntt t I ddnee n nssiittyy iinn 2 R oot mean square noiBsea cc√k u grreonutn Idn g=e√neIrna(tt)e d current Noise current densit2y in √ Flicker noise I = 2 I (t) 2 22 Root mean square RnNoooisitse me c ecuaurrnrer nseqtn ut andren nsoitiTnsyhe e icn up rhroetnotc uI rr=ent gIe(nt)e rateddd IbIn y thermal radiation emitted by detector surrounding Photocurrent Root mean square noise current In = √In(t) n n n2 Flicker noise or 1/f nNooisies eis c au rfrreeqnut edn√ecnys diteyp einn dent noise. √Its pioinnw==er is ddtIdfynf p ically proportional to in = df2 Photocurrent is the current generaNteodis bey c uIRrr reandt idaetionnsi,t yw hinich is not in thermal equilibrium with √√dIn Noinise current In 2 Photocurrent N1o/ifs. e current densiNtyo isn e current density in = √dIdnf Flicker noise i = dPehteoctotocru. Frroern stm all irradiation, the photocurrent is proFploicrktieorn naol tiose in cident radiation2 power P n √ df 2 Flicker noise 2dIn 2 Photocurrent is the current generated by IR radiation, which is noRto iont tmdhIneearnm saq lu eaqreu niloibisreiu cmudrI nrwenitth In = In(t) 1/f noise c orner freqFFulilciecknkeecrry n nofocisi see oorr 11//ff nnooisisnee= isis aa ffrd refeq quueennccyy ddieepp=een√nddeenntt nnoo isisee.. IIttss ppoowweerr isis ttyyppicicaallyly pprrooppoorrttioionnaal l ttoo Photocurrent is the current generated byI pIhR = r aRdi ·iPa tiFollnic,k weerhr inncoohisi siese o nro 1t /ifn ni nothi=seer mis adafl fe reqquuileibnrciyu mden wpeitnhd ednf t noise. It√s power is typically proportional to detector. For small irradiation,F trheqeu penhcoyt,o actu wrrheicnhtF1 1til/shi/fcf.e . kp elroorw pn ofrirestqieou nenacl yt on oiniscei de√eqnuat lrsa tdoi athtieo wn hpitoe√w neoirs Pe (e.g. the Johnson or wdehteercet oR r . isF othr es mcuarlrle inrrta rdeisaptioonns, ivthitey .p hotocurrent is pFrolicpkoerrt inooniasel tor i1n/cf indoeNisnoet√i srisae d aci uafrrteiroqenune tp ndocewyn deseri tpP ye nindent noise. Its power is typically proportional to i Flicker noise F1li/cf .k er noise or 1/f noise is a frequency depende nt noise. Its power is typically proportional to Fslihcokte nr onisoeis) es o tIhpeh =fliF cRklieci ·rPk ne or inseo idsoem inates at f

Preamplifier is an electronic device that convertsconnec tae dweak in p elecara-lleli w –it hpreamplifier the preamplif iinputer inpu t.current noise density n trical signal at the input into an output signal sufficient for fur- ther processing. Density of the current noise, given in A/sqrt(Hz), generated by the equivalent current source connected in parallel with the preamplifier input.

54 www.vigo.com.pl 5.4. Detection module

Detection module integrates detector, preamplifier, thermoelectric cooler, and other components (e.g. detector biasing circuit, heat dissipation system, ) in a common package.T he operation of detection modules can be described in similar way as for detectors, by specifying their spectral and frequency characteristics of responsivity and detectivity.

Voltage responsivity Rv The output voltage divided by optical power incident on the detector. For spectral it can be expressed as

Rv(λ) = Ri(λ)·Ki

Frequency response Dependence of voltage responsivity on frequency.

Voltage swing V out The maximum and minimum voltages where detection module works in linear range.

Low cut-off frequency f lo A minimum frequency at which a AC coupled module responsivity reaches -3dB of the peak value or 0 Hz for DC coupling devices.

High cut-off frequency f hi A maximum frequency at which a module responsivity reaches -3dB of the peak value.

Output noise Noise voltage at detection module output.

Average output voltage noise density

f2 2 ∫ V out(f)dt f1 vn = √ f 2−f 1

Noise frequency f 0 Frequency at which output voltage noise density is measured selectively.

Output noise density at specific frequency vn(f 0) Noise voltage density measured at a given frequency.

Glossary Output impedance Rout Equivalent impedance exhibited by its output terminals.

5.4. Detection module LoadLoad resistanceresistance RL 5.4. Detection module 5.4. Detection module The expected resistance of the device connected to the detection module’s output. The The expected resistance of the device connected to detection Detection module integrates detector, preamplifier, thermo- parameters provided in the detection module test sheet are valid if the load resistance equals 5.4.Dete Detectionction mod umodulele integ rates detector, preamplifiermodule’s, therm ooutput.electr iThec c oparametersoler, an dprovided other in the detection Detection module electricintegr acooler,tes d andete cothertor, componentspreamplifie r(e.g.,, th detectorermoele biasingctric cooler, and other components (e.g. detector biasing circuit, heat dissimodulepation testsys sheettem, areop validtics) if ithen aload co resistancemmon equals RL. Usu- components (e.g. dcircuit,e5.4.tecto Detectionheatr bi adissipationsing c moduleirc system,uit, he aoptics)t dis sinip a tcommonion sys tpackage.em, optics ) in a comm on Detection module integrates detector, preamplifierRally, L .t hRUeL sr=mu a1o leMOhm,lyle RctLr ic= for 1c o modulesMoleOrh, m aoperating,n fdo r omtho ebelowdr ules 20 o pMHz,era tanding below 20 MHz, and 50 Ohm for devices Thep5.4.ac operationka Detectionge.Th eof detectionop emoduleratio modulesn o f d canete cbetio describedn modu inle similars can be described in similar way as for package.The operatci oo5.4.nm poo fDetection nednettse c(teio.gn. modulemdeotdeuclteosr bciaans inbge cidrceusict,r ibheeda t ind isssimiop50piala etOhmiro anwt in asforgy s odevicestaevsme r,f o2or 0operating p MticHs)z .i n over a c 20om MHz.mon wayd et easc fortor sdetectors,, by sp ebyc ispecifyingfying the theirir s pspectralectral andan dfrequency freque ncy characterist ics of responsivity and detectors, by specifyDi negte cthtieoin r smpeocdtrualel anindte gfrreaqteuse ncdye tcehcatorra,c teprriesatimcsp loififeR rrL,e . sUtphosenursmailvolyiet ylRe caL tnr=idc 1 cMooOlehrm, ,a fnodr moothdeur les operating below 20 MHz, and 50 Ohm for devices characteristicspdDaecetektecatcgivteiiot.yTn.h eofm responsivityodpuelrea tioinnt eandogfr a detectivity.tdeest ecdteiotenc tmoro, duplreesa mcpalnif ie br,e tdheesrmcroibeeledc tirnic sicmoiolaler r,w aayn da so tfhoer r 5.4.dete cDetectiontivity. modulecDomet peocntioen ts m(eo.dgu. led etinetcetogr abteiass indge teccirtcour,it , phreatm dpilsifosieippre,a rtaitohtnien rgsm yoosvetelemr c2,t r0ioc Mp tHiccoszo). leinr, aa ncodm motohne r d 5.4.etec Detectiontors, by sp moduleecifying their spectral and frequencOyOutput u cthpaurta cv tvoltageoelrtisatgic es o offsetofff sreets pVoonfsf i vity and compone nts (e.g. detector biasing circuit, heat dissRipLa . tUiosnu asyllyst eRmL , =o p1t iMcsO) hinm a, fcoor mmmoodnu les operating below 20 MHz, and 50 Ohm for devices d5.4. pecatoecmck Detectiontapivgoietny.eT. nhtes (oe pmodule.ge.r adtieotne c otof r dbeiatescintigo nc irmcuoidt,u lhees atc adnis sbipea tdioens csryibsetedm i,n ospitmicisla) r inw ay coams mfoorn VoltageVpoalctakgage e responsivityr.eT shpeo nospievriatyti oRnv of detection modules can Cobpoeen rsadtateinsgtc rDoibCvee dcr o2imn0 pMsoimHnezilna. tr owf athye aosu tpfour t voltage, present both with and without IR radiation. DVoetletacgtieo nr esmpodnusliev ityi nd pteReatvgec rckataotgerse, . Tdbheye t esocptpoeercr,i afytpiionrneg a mtohfpe lidirf ieestrep, cetcitohtrnea rl mmaonoedle ufclertersiq cu ceacnnocConstant oylb eecr, h adarea nsDCcdct eri rbcomponentoisethtdice sri n ofs i mrofei slVtheapro noutputws aivyi ty avoltage, sa nfdo r present in TDdheeette eccottiuootrnps u, tm byvo odslutpaleeg cei ifnydtineivgid raethtdee sir b ysd peetoecpcttrtiaoclar ,l a npdroe wafremerq puliineficenO ircd,uy e tntpchth ueatro mrnva ocetltethlaereicgs tteridci ceos t fefoccsoft eortrle e. sr,pF oooffanr nsidsv piteyo cttharenardl The output voltage Dddeeitvetiecdcteitovdoin try sb., myb oyod pustlpiece acli infypteiongwgr aetrhe esi inr cdsidepetenctt roaorl, n a pntrhdee a fmredpqelutifeieecnr tbotho,c yr. t h cwithFehoramrr aoandsceptlee withoutrcisttrrtiiacl s cIRoof o radiation.lreers, poannsdiv itoyt haenr d components (e.g. dTheeVctoem lcoutputttapogor enb er ivoltageenastsipn og(en .dividedscgi.rv cidutyeit t,bye Rchv topticale oar t bdi aipowersssinipga t iincidentcoirnc usity,s onthee mthea,t odpistsiCcipso)an tsiontan a n st cyDosCmte mcoo, mno poticnse)n tin o fa t hceo moumtpoun t voltage, present both with and without IR radiation. mdeeatescutriveimtye. nts it can be expressed as Power supply voltage V sup pmaecaksaugree.mT heen tso ipt ecraant ico bodneme etpoexofcp ntridveie nstytses.e cdt(i eoa.nsg . mdoedteucletosr bcaians inbge cdirecsucitr,i bheeda ti nd issimOipialuattripo nuw ta svyy osaltetsam gf,oe r oo pftficsse)t iVn oaff common detector.T p haec kaogu Foretp.Tu hspectralt e voolptae measurementsgraet iodniv idoef dd e itbt eycanc toi obepnt iexpressedcmalo dpuolwe seas r cainnc idbeen t deosnc ritbheed dine tescimtoirl.a r Fowra ys paesc trfaolr 5 pa ckage.T he operationR vo f detection modules can Sbuep pdleys vcorilbtaegde irne qsuimireiladr fowr acyo raresc tf omr odule operation. ±20% tolerance is allowed. d etectors, by specifmydVieenotagelts cautthgorersim rr, esbsnpyptes oc sintpr scaeialvc niaft ybynie dn gef xrtephqreeuisre snsecpdye accsthr aalr aacntedr isfrteicqsu eonf cCPoweryre oscnphsoatnaras nsupplycitv tiDetyrCi s atcinc ovoltagesdm opfo nrees npVto onfs ti vhiety o auntpdu t voltage, present both with and without IR radiation. dVeoteltcatogres ,r ebsyp osnpseicviiftyyin Rg v t heir spectraRl va(λn)d= fRrei(qλu)·eKniPc yo wchear rsauctpeprislyti cvso lotaf gres posnupsivity and detectivity. dTeVhtoel cttaoivguiettyp .ru ets pvoonltasRgive(iλ ty)d =iRvRvidi (eλd)· Kbi .y optical power inc ident on the detector. For spectral dTehtec tiovuit typ.u t voltage divided by optical po wer inSciudpepnlty voonl tathgee rdeeqtueicrteodr. foFr ocro rsrpeecct tmraol dule operation. ±20% tolerance is allowed. mTehaes uRoreuLm .t pUeunts tusva iotll lycta agRne Lb e=d ei v1xi dpMeredOs hsbemyd , aofsop rt icmaol dpuolewse ro pienPcSupplyraoidtwiennegt r voltage bsoeunlpo wpt hrequiredl ye2 0cd ueMrtre Heforcznto, tcorrect ra.I VnsuFdpo 5r module 0s pOehcm toperation.ra fl or dev ±20%ices Rv(λ) = Ri(λ)·Ki Power supply voltage sup F mreeqausReunr e .c myU esrneutsasp llioyt cnRasn e b=e 1e xMprOehssme,d faosr modules ope rating below 20 MHz, and 50 Ohm for devices VFroeltqaugeen rceys rpeosnpsoivnistye mRev a souLrpeemraetnintsg ito cvaeLnr 2bR0e eMxHprze. ssed as Stoleranceupply c isu rallowed.rent consumption during correct detection module operation. FrequencyDV eoplteangdee rnec seresponsep oofn vsoilvtaitgy e rev sponsivity on frequen cy. Supply voltage required for correct module operation. ±20% tolerance is allowed. Voltagoep ererastpinogn soivveitry 2 R0v M Hz. R (λ) = R (λ)·KP ower supply current Isup TDheep enoduetpnucte ovof lvtaogltae Fg Ter hde eirqve iusdoep unodtnc psyubi tvyr ie tyvso opoplotntain cgfraseele q udpeiovnwidceeyr.d inbcyi deonptt icoavnl pthoew eidr etienci t idoer.n tF oorn sptheec trdael tector. For spectral Rv(λ) = Ri(λ)·KSi upply current consumption during correct detection module operation. m easurements it canDependence Tbhee e xo pOuretups utsofpte uvoltagedvt a ovslto alg tresponsivityea ged ivoifdfesde ont b Vfrequency.y o pticaRlv (λp)o=w eRri (λi)n·KcPiid oewnte ro snu pthpel y dinetpeucto (r+. ) Faonrd s(p-)e ctral Dmeepaesnudrenmceen otsf viVto cltaang eb er eesxppornesisveitdoyf faosn frequency. PPowerower ssupplyupply currentcurrent Isup VmoelatasguOereu smtwpeuinnttg sv iot lctoaautng eb eo effxsperet sVsed as Voltage swing V out FrequeCnocnys traenstp DonCs ceo mponento offf the output v oltagePS,ou plparperilstyye cnoutf rbtrheoenth tp cwoowitnhes rua smnudpp twpioliytnh rodeulatr itIneRgd rctaood rtirhaeetcio tg ndr.oe utencdt.i oSnw mapopdiunlge souppepralyti ocno.n nectors may lead to T Fhree qmuaexnimcyu mre asnpdo nmsien imum voltages where detectionP moowdeurle s wuoprpklsy i nin lipnueat r( +ra) nagned. (-) The maximum and miDnFiemrpeueqmnCud oevenonsclcttyaea g rnoetfs Dv pwoCRohltvn aec(sλgroe)em = drpeRostie(pnλcoe)tn·ioKstn iov mift ytoh doeun Rl oefru e(wtλqpo)uur=ekt nsRv coi(nylλt. )a li·nKgeeam ,Supply rp orradenusgl eecurrenten .dt abmo taconsumptionhg we.i th and duringwitho correctut IR r adetectiondiation .module VoltageVDoeltpaegne d swingsewncineg o fV voultta ge responsivity on fvrequenci y. i Dependence of voltage responsivity onR vf(rλe)q=ueRni(cλy).· KiP operation.olarity of the power supply related to the ground. Swapping supply connectors may lead to The m aPxiomwuemr asnudp pmliyn ivmou lmta gvoel taVgseups where de tection module works in linear range. L ow cut-off frequency f Power supply input (+) and (-) TheV o maximumltage sw anding minimum V out voltageslo where detection module module damage. FLroewq uceunt-coyf fr fersepqounesnecF yre fqlouP eSonuwcpyep rlye s svupopoltpnalsgyee v roelqtaugire dV fosurp c orrect module op eration. ±20% tolerance is allowed. works AFV rmoeqlit nuainigme linearneu cmsyw frrange.irenesgqp uoVennousctye at which a AC coupled module Preoslpaorintys iovift yth ree apcohwees r- s3udpBp olyf trheela ptedak t o the ground. Swapping supply connectors may lead to DA empeinnimdeunmc ef roefq vuoelntacgyDTe Veha ropete el wstmnaSphdagoiucexenphni smps ciavwleuy i mtAi oynvC fogo av l ntcoVa dolftgr uoameuepgtq il enruee iedrmqen umscpimyroo.ed nvduos lfeilovta irrtg eyce sospnr orw enfrhcseetiqv rmueitye od ndreceutyeal.ec th iooepns 5.5.e Powerm-r3aodtdi BoThermoelectricu nloe. f supply ±wth2oe0r k%pse iat noinputk ll einreaan r(+)c recoolera nis gand ae.ll o w(-) controllerse d. LvDTaoehlwupee cm noud art e-x0oni mfHcfe uzf m rofeof qarv unDoedlCtn am gcieyon uirmfpelolsuin pmgo nvdsoeilvtaitcgye eoss.n w frheeqruee dnectye.c tionm moodduulele dwaomrkasg ien. linear range. value or 0 Hz for DC c oTuhpel i mnga xdiemvuicmes a. n d minimum voltages where detectio n module works in linear range. A minimPuomw efrre qsuuepnpclyy actu wrrheicnht aI sAupC coupled module responsivity reaches -3dB of the peak Voltage swing V outLow Volt acut-offge swi nfrequencyg V f Polarity of the power supply related to the ground. Swapping vLa oluwe coPSuro t0uw- opHepfzfrl yffsr oceuruq pDruporCuelt ync ctoc ycuu oprnlrlionesgun mtd epIvstuiocp en s d. u ring correct d5.5.eTtemc tThermoelectricipoenr amtoudreu lsee onpseorar tiicoolernopn.u ts controllers The maximum and m VinLoiomlwtau gmceu v tso-owltfaifng fgere sVq wuohueten rcey d ef ltoe ction module works in linea supplyr rang connectorse. may lead to module damage. TALh emo wminS iacmuxuupitm-mpoul yfmf r cef rauqenruqrdeu nnmectni yncc ioamynt usfwmluohm ivcophlt tiao gnAe Cds u wcroihnuegpr elce oddre rmteecoctdt iduolnee tT mereecomtsdipopuonelen rm sawitovouidtrykue sl res ei enao nclpishneoerrsa prt- i3oirnadnsnB. g– eo m.f tihgeh tp ebaek c onnected with any polarity. TheHTAhig emminimumh mi ncaiu mxti-umomfu ffrequency m ffrre eaqqnuude enmn caticyny iwhichma tfu hwim h anvicoh lACt ag AecoupledCs wchoeu rpmoduleele dde mte ocretdi-ounle 5.5.m reosdp uThermoelectricolen swivoirtkys r eina clinheas r- r3 acoolerdnBg eo.f th econtrollers peak High cut-off frequen vcAayl umfehii no irm 0u mHz f rfeoqr uDeCn ccyo uapt liwnhgi cdhe vaic AeCs. c oupled moduTlee rmesppeornastiuvritey sreeancshoers i-n3pduBt so f the peak sponsivity A v amluaex iomP rreachesou 0mw H efzre fsq-3dBouur peDnp Cofcly cthe oainut peakpwluhinticg (valueh +d )ae avm inorcoed d0s u( .Hz- l )e rfores DCpon cousivi-ty r eaches -3dB of the peak value. LAo mwa cxuimt-uomff ffrreeqquueennccLy yv oa awtfl ulw oce hu oitc-rho 0 fa fH fmzre ofqodur elDenC rce ycso pfuopn lsinivgi tdye rveiaccehse. s -3dB of the Tpeamkp vearlauteu.r e sensor pins – might be connected with any polarity. plingH ig hdevices. cPuPoto-wola effrr ift yrse uoqpfu ptehlnyec ipyno pwlhuoietr ( s+u) papnlyd r(e-)la ted to the groT u5.5.hnedr .Thermoelectricm Sowealepcptinrigc scuo pcooleroplleyr c s ocontrollersunpnpe lcyto irnsp muta (y+ l)e and dto ( -) A minimum frequencyL o awt w chuitc-ho faf fAreCq cuoeunpclye df lmo odule responsivity reaches T -e3mdBp eofr athtue rpee sake nsor inputs AOA ummtapinxuPitmm onulooamdirsi utfeyrlee o qdfu atehmneca ypg oeaawt.t wewhrh isiccuhhp aap mlyA oCrde ulcaloetue rpdel estopdo tmnhseoid vguitryloe ur Serneuadspc.pph oSelynsw s pa-i3vopidltpayBir n irtoegyfa sftcohuherpe tpshe ley-a3 Tckd oEBvnaC onlu.fe eTtch.ht eoo rspse ma pkai nys l eaared ftloo ating, which means they are not connected to AH imghin icmuut-mo fffr efrqeuqeunecnyc ayt fwh ich a AC coupled module Treesmppoensraivtiutyre r esaecnhseosr -p3idnBs –o fm thigeh pte baek connected with any polarity. vOaulutpeu otr n0o Hisze f or DC cvoaulupeli mnogro 0d euHvlzeic fedosar .mD Cag ceo.u plhini g devices. Thermoelectric cooler supply input (+) and (-) HighNvHaoiliugseh cut-off ovc rou l0tt-a oHgfze ffrequency faorter dqDeuCte nctociouy np f lmihni go dduelevi coeustp. u t. t he GND. Noise voltage at deteO cAtHui omtipgnau hmxt ic monudoutu-imsolee f ff or efurqtepuqueutn.e cny cayt wf hhi i ch a module responsivityS Temperatureruepapclhye ps o-3ladrBity o fsensorfo trh eth pee TainputsEk Cva. lTueh .o se pins are floating, which means they are not connected to A ma x imum frequency at which a module responsivity reaches -3dB of the peak value. AN maximumoAi smea vxoimlt afrequencyugme farte dqeu atteen cwhichctiyo na t m aw omodulehdicuhle a o responsivitymutopduut.l e re sreachesponsiv ittyhT erhe eGarcNmhDeos.e -le3dcBtr iocf cthoeo plera ks uvaplpuely. input (+) and (-) A vera g5.5.e ou Thermoelectrictput voltage noise cooler density controllers Maximum thermoelectric cooler controller output current IT EC HAivgehr acguet -oufft pfruetq vuoeln-3dBtaOc gyue toff pnh iutheo ti sn peakeo disee value.n sity f STemperatureupply pola sensorrity fo pinsr th –e mightTEC be. T connectedhose pin swith ar eany flo poat-ing, which means they are not connected to High cut-off frequency hi f2 Outp5.5.ut no Thermoelectricise f cooler controllers2 Mlarity.aximum current that is provided by the controller . HNOioguihste pc u vuott -lntoaofgfi sefre ae tq dueetnectyio fnh im2 odule output. V (f)dtthe GND. A maximum frequencAAyv ametr awaxghimeic uhom uat fpmreuoqtd uvueolenlt crayeg saept onwnohsiisic2vehit yda e rmenaoscdihtuyel es r-e3sdpBo on∫ fs tiovhutiety p reeaakc hveaslu -e3.d B of the peak value. Noise voltage at detection ∫mVod(fu)dlte output. f Maximum thermoelectric cooler controller output current IT EC A N moaisx eiTm veuommltap fgreer qaut uednreectye s caettino wnsh omircoo uhtidn aup lmeu toosdu utpleu tr.e spon1 sivity reaches -3dB of the peak value. f1 vn = f2 Output noise f 2−f 1 Maximum current that is provided by the controller . Temperatuvnre= sensorf i−nf pu ts ∫ V (f)dt Output noise OA uvtepruatgT ne omoiuspetep ruatt uvroel tsaegnes noor ip2sien1 sd e–n msiitgyh t be connouet cteMThermoelectricda wxiimthu amny t hpeorlamr iocoolertye. lectr supplyic cool einputr con (+)trol lander o u(-)tp ut current IT EC Noise voltage at detection module output. √f1 Average output voltage noise density OutpuTte nmopiseer ature s√ensor pins – mivgh=t be conf2necteMd awxiitmh aunmy tphoelarmritoy.e lectric cooler controller output voltage V Average output voltage noise densnity Noise voltage at deteNctoioisne m v odltualgee o autt pduett.e ction module output. f 2−2f 1 Maximum current that is provided by the controller . T EC f2V (f)dt ∫ f o2ut Noise voltage at detection module output. f 2 Supply polarity for the TEC. Those pins are floating which Thermoelectric c ooler supply in√put (+1∫ )V oau2tn(f)dMdt (a-x) imum voltage that is provided by the controller V (f) dt Average output voltage noise densityvn = f1∫ out Ma ximum thermoelectric cooler controller output voltage V Thermoelectric cooler supply input (+)f fa2−nf 1d means(-) they are not connected to the GND. T EC Average output voltAagve rnaogSiesu eop updtleypn upstoi tvlyao rlittayg foe r n tohies eT EdeCn. sTithvyon s=e pin s a1 re fl o a ting, which means they are not connected to Noise measurement frequency f vn = f 2−f 1 Average output voltage nfoise de0nsity √f f 2−fM1 aximum voltage that is provided by the controller 2 Noise measurement frequSetuhnpecp yGl yNf 0pD o.l arity for the 2TEC. Those pins a2 re floRaitpinpgl,e w ohfi cohu tmpeuat ncsu rthreny ta re not connected to √ 2 Maximum thermoelectric cooler controller output voltage V T EC Frequency at which output ∫vVolta(fg)det noise densityf is measured selectively. out √ ∫2 V out(f)d t 2 Frequency at which output tvh oelt aGgNe Dn.o ise densityf1 is measured selecti vf ely. UMaximumnwanted r ethermoelectricsidual periodic vcoolerariatio ncontroller of the DC (direct current) output of a power supply (or N oise measuremven=t frequency f 0 ∫1 V out(f)dtMaximum voltage that is provided by the controller n f −f vn = f Ri pple of output current Maximum thermoele2 c1tric cooler con t 1rof 2−llfe1 ro outputothuetrp duet vcurrentcicuerr) ewnht icIh ha s been derived from an AC (alternating current) source. This ripple is FOruetqpuuetn ncyo iaste w dheicnhs iotyu taptu ts vpoelctaifgice fn.roeiqsveun e=dnecnys itvy n (isf m) ea s ured selectively. T EC √ f02−f 1 Unwanted residual periodic variation of the DC (direct current) output of a power supply (or Noise measurement freqvnu(ef n)cy f √ Output noise density at sMpeacxifimic ufrmeq tuheenrcmyo elec0 t ric c0ooler controller douuetp tuo ti nccuormrepnlet tIe sup pression of the rectified DC waveform within the power supply. NNooisisee v Momlateaxagimseu udrmenm cseiutnyrr tme fnreeta qtshuuaerten idcs y ap tr fao v giidveedn √bfrye qt huen ccoyn. tRroilpleprl e. of outputT cEuCrrent FNreoqisue nmcye aast uwrheimche onut tfprue tq vuoelntacgye f0no ise densi ty is meoaMaximumthseure dde sv eicurrentcleec)t iwveh thatliyc.h is h providedas been by d theeri vcontroller.ed from an AC (alternating current) source. This ripple is Noise voltage densitNoiseyO mutepaus Mmeasurementtu nraeoxdims aeut dam eg ncivuseritrnye fnfrequencyarett qtshupaeetn cicsiyf i.pc r ofrve0iqdeude nbcyy t hv en( fco)n tr oller . Frequency at which output voltage noise dens ity i0s medUausneuw troae dnin tsecedol emrceptsilviedetuleya .s l uppepriroedsisci ovna roiaf ttihoen roefc tthifeie Dd CD C(d iwreacvte cfourmre nwt)it hoiunt pthuet opfo aw peor wsuepr psluyp. ply (or N oFirseeq uvoelntacgy ea td wenhsicithy omuetpa ustu vreodlt aagt ea ngoiviseen dfreenqs uiteyn icsy m. Oeaustupruedt csuelrercetnivte olyf. the built-in power supply O utput impedance Rout other device) which has been derived from an AC (alternating current) source. This ripple is NOouitspeu tm imeapseudraenmceen Frequency t ROf ruetq puuet nnatco ywhichi sfe d outputensity voltage at sp enoisecific density frequ ise nmeasuredcy vn(f ) Nouitse measu0rement frequency f 0 0 MMaximumaximum c uthermoelectricrrent Vthat c an b ecooler delive controllerred by pow er supply to the preamplifier, usually selectively.ENOqouistivpeau lmMet nneataox isimsmuepru edmdmean entsnhcitet y frerm eaxqtho iusebpeliteneccdtiy rfb iicyf ifct rseo oqouleteprnu ct oyte nrvmtnr(oifn0la)lel sr.d ouuet ptou itn vcomltapgleet e sTuEpCpression of the rectified DC waveform within the power supply. FErqeuqivuaelnecnyt iamt pwehdicahn coOeFuN Ourteoeptxuiqupshtutuep iMbev tuv oinitaotmelc txlnadytpai ogmabgeeitysed u wne aidmto hnsdei i sccneotehsnu ietsd topyRrieuut mnmyttp s oteauie taettyr msl veiusopicnr lemtetacrdlegiis cfae.i cs t0cn uaofor eoigesdiqleve u esrdne ec nlenforccsenytiqtit vyurve oeinsl(ynl fl.mce0 )yre. O ao+outputsuu/utt−prpeuu1dt0t s 0c vevoltagemuoleArltrca.et ignvet l yo V.f the built-in power supply FNreoqisuee Mvnocalytxa aigmte wu dmheic nvhso iotltyua otmgupteue tat hvsoualrtt eaisdg epa rtn oaov igisdieve edne b nfryse itqhyu eies nc mcoyne.at rsoullreerd selectively. T EC E qNuoivisaMele vanoxtl itimamgupeme d veaonslctieaty ge emx htehiabasittue irdse bdpy rao ittv sai d ogeuidvtpe bunyt f trteehrqemu cienonanclstyMr.. o allxeirm um current that can be delivered by power supply to the preamplifier, usually L oad re sistance RL Output current of the built-in power supply OLouatpdu rte nsoisitsaen dcen Rsit yO autt psupte icmifpice fdraenqcuee n Rcyou tv n(f ) +Maximum/ − 100m voltageA . that is provided by the controller. LOutput Outpu t nnoiseoise ddensityensity aatt sspecificpe0cific f rfrequencyequency vn(f 0) TOOhuuet tppeuuxtRtp n iepmocpitpseled d doarefn nsocissueitt ta ypnR uacoutet sc opufer rctehifneic t dfreevqicuee nccoyn nvenc(fte)d toSM eathrxieeim sd uermetes ccitsuiotranren mncteo t dhouafl tet ch’sae no c ubotepnu ndt.e lcTivthiener ged c bayb lpeower supply to the preamplifier, usually NThoeis ee vxopletacgteed d erenssiistytaN EmnOoqceiuseaite vps oavuflore te lnttihdamt egiapm eted paddee evagdninicavscenite ncyc e fmo rReneoxqnuahtues iecbutniretecdyd . taboty a tiht sge i ovdeuentpt efurcte ttqieournem nm0incoya.dl su. le’s output. The LpEoaqraaudmi vrReaeUtlisepninrspwsttl aiepmn roptcevfe dido RaeureLndtscp ieinud tuet hxacehlu ipdbrreitereteindoct dt biioycn ivt sma roiaudtupioluent tteoesfr tmt hsiehne aDelsMCt. aa (rtdeei rvieaclli tdp c aiufr trahrmeen elott)ea odr u -r terpesuissti tsoatfna acne cp eeo qwoufe atrlh sse u spupplyp l(yo rc able. It depends on cable length. parameters providedNoise N inEo iqtsh uevoltageei v vdaoelletean cgdensityt teiimo dnpe emn dmeasuredsoaidtnyuc mlee eeteax sathtui basr eihgiventeded ea tbt afrequency.yar iegts iv oaeulnidt pf riuef tqt htueeer mnlocianyda. lrs+e. s/i−st1a0n0cme Aeq. uals T he eUxpnewcatendt erde sreisstaidnucael poef rtiohde icd veavirciaet icoonn onfe tchted D tCSo Ripple e(trdhiiere sdc re teof tcesu cioutputrstritoeannn t)cm eoo ucurrentdotupf lueth’ts eo foc ua ot pnunotwe. ceTtrhi nsegu p cpalyb l(eo r RL oad roetshiesrt adnecveic eR) w hich has been derived from an AC (alternating current) source. This ripple is Output impedance pOaouruatpm uett eimrsp perdoavnidceed L iRno tuht e detection module test sheeMt arte rviaall ipd aifr athmee loteard - r reessisistatanncece e qouf athlse supply cable. It depends on cable length. OutputOLuotapduo trdt ehiimpedanceumseeirps ttdeoade nivancincceoce meR) Lw pR lheitceh s huapsp rbeesesnio dne orifv tehde frreocmti faiendS A DeCtCt l( iawnlgatev rtenimfaoterimn og fw ctiuhthrerine s nteht)te sd poeoutewrcceetro. sTr uhtpeispm lrypip.e prlaet iusr e Equivalent impedanceET Lqehouxeiah vdieab xliretpenesdtc i isbtmetyadp in etsrcd eeoas uniRstcptLeau noet ucxttehr imboiiftn eatdhl seb. y ditesv oicuet pcuot ntenremcitneadl stS.Unwantedo etrhie sd ree tresidualescistitoann periodiccmeo douf let hvariation’se ocuotnp unofte. the cTthi DCneg (directcable cur - The edxupee tcote idn croemsipslteatnec es uopfp rtehess idoenv iocfe t hceo nrneecctitfeiedd TtDoh Ceth wteim adveee ttfeaockrtmeion nw bimyth otihnde ut hlceeo’s op loinuwgtpe sur yts.s utTpehpmely t.o reach appropriate temperature of the detector. E pTqahuraeivm ae elextneptre sicm tpeprdoe vdriadenescidse ti anen xtcheeib idotef dtet hbceyti oidtnse moviuoctdepu uclte ot enternmset cinstheaedlse M.rent)t to a rtteh output revia adll iepdta eioffrc a ttahim oepowerne l otemardo -supply d rreueslesis’is t(ora taonn ucotherectpe eu qot. u device)f Tathlhsee s uwhichpply has ca ble. It depends on cable length. Equivalentparame timpedanceers provi dexhibiteded in th bye d itse toutputection terminals. module test sheSeet tatrlein vga ltiidm ife t hoef ltohaed sreesti sdteatneccet oeqr utaelms perature Load resistance R para mOeutetrpsu pt rcouvirdreedn tin o tfh teh dee bteucitlito-nin m poodwuler t essut psphle y beene t ar ederived valid fromif the an lo ACad (alternatingresistance current) equals source. This L Load resistance RL The time taken by the cooling system to reach appropriate temperature of the detector. Load OrMeusatipsxtiumatn uccmue rcrReunr rte ontf tthhaet bcaunil tb-ien dpeoliwveerre sdu bpyp plyoM waexr ismuupmply v tool tahge ep raecarmospsli ftiehre, rumsuoaellleyc tric cooler element The expected resistaTnhcee eoxfp ethcete dd erveisciesL taconncen eocft etdh eto dtehvei cdee cteocntnioenc tmedo d touS letht’stel i onduget ptteuicmt.t ieoT noh efm tohdeu slee’st doeuttepuct.o Tr htem perature parameters provided Tinh eth eeM xd+paee/xtec−imcte1tiudo0m 0nrm emcAsuois.rd rtuaelnect teteh saot fts chthaeene tb daeer evd icveeali lvicdeo rinfe ntdhe ebc ytleo pdao dtw MoTree hastrehxi se itmu aimpdnuepcemtel eyt a vcettkoqioelu ttnah glesbme yp o frtdoehurae ltem hc’seop roliomfliuenotrpge,u lsuet.ysc sutTrtaihecleml yc oto lerer ascuhp palpypinrogp. riate temperature of the detector. parameters provided in the detection module test sheeMt aa55xreim vaulmid ivf othleta lgoead a rcersoisstsa ntchee remquoaelsle ctric cowww.vigo.com.ploler element param+e t/e−rs1 p0r0omvAide. d in the detection module test shee t are valid if the load resistance equals M aximum voltage for thermoelectric cooler supplying.

Series resistance of the connecting cable Maximum voltage across thermoelectric cooler element SMeraiteesri arel spiasrtaamnectee ro -f rtehsei sctoancnee cotfi nthge csaubplpel y Mcaabxliem. uItm d evpoeltangdes ofonr cthaebrlme oleenlegcthtr.i c cooler supplying. M aterial parameter - resistance of the supply c able. It depends on cable length. Settling time of the set detector temperature STehttel itnimg eti mtakee onf bthy eth see ct odoelitnegc tsoyrs tem ptoe rraetaucrhe appropriate temperature of the detector. T he time taken by the cooling system to reach appropriate temperature of the detector. Maximum voltage across thermoelectric cooler element MMaaxximimuumm vvoltaaggee faocr rtohsesrm thoelremctoriecl eccotorliecr csouoplpelyr ienlge.m ent M aximum voltage for thermoelectric cooler supplying.

Glossary

ripple is due to incomplete suppression of the rectified DC Resistance vs. temperature for NCP03XM222E05RL waveform within power supply. thermistor

T [K] T [°C] Rmin [kΩ] Rnom [kΩ] Rmax [kΩ] Output current of the built-in power supply 180 -93 1594.97 1757.95 1935.84 Maximum current that can be delivered by power supply to 182 -91 1336.02 1469.90 1615.75 the preamplifier, usually +/-100mA. 184 -89 1124.16 1234.66 1354.81 186 -87 950.46 1042.11 1141.58 Series resistance of the connecting cable 188 -85 807.57 883.99 966.78 Material parameter - resistance of the supply cable. It depends 190 -83 689.57 753.62 822.88 on cable length. 192 -81 591.68 645.64 703.89 194 -79 510.07 555.75 604.98 196 -77 441.68 480.54 522.34 Settling time of the set detector temperature 198 -75 384.05 417.25 452.91 5 The time taken by the cooling system to reach appropriate 200 -73 335.23 363.71 394.26 temperature of the detector. 202 -71 293.65 318.17 344.43 204 -69 258.05 279.23 301.88 206 -67 227.41 245.76 265.36 Maximum voltage across thermoelectric cooler 208 -65 200.91 216.85 233.85 element 210 -63 177.89 191.77 206.55 Maximum voltage for thermoelectric cooler supplying. 212 -61 157.81 169.92 182.79 214 -59 140.22 150.80 162.03 5.6. Technical informations for VIGO products 216 -57 124.76 134.02 143.83 218 -55 111.14 119.25 127.83 Standard TEC parameters 220 -53 99.10 106.21 113.72 222 -51 88.44 94.67 101.25 224 -49 78.98 84.44 90.21 226 -47 70.57 75.37 80.42 Cooling 228 -45 63.09 67.30 71.73 Parameter -2TE -3TE -4TE 230 -43 56.42 60.12 64.01 232 -41 50.49 53.74 57.15 ~230 ~210 ~195 234 -39 45.19 48.05 51.04 Vdet 1.3 3.6 8.3 236 -37 40.47 42.98 45.61 T [K] 238 -35 36.26 38.47 40.77 5.6.I max Technical 1.2 information0.45 for0.5 VIGO Products 5.6. Technical information for VIGO [V]Products 240 -33 32.51 34.45 36.47 5.6. Technical information for VIGO Products Qmax 0.36 0.27 0.28 242 -31 29.16 30.87 32.64 Standard TEC parameters Standardmax [A] TEC parameters Standard TEC parameters 244 -29 26.18 27.68 29.24 max [W] 92 Cooling114 125 CoolingCooling Parameter 246 -27 23.51 24.84 26.21 ParameterParameter -2TE -3TE -4TE 248 -25 21.14 22.30 23.51 -2TE --2TE3TE -3TE-4TE ∆T-4TE [K] 250 -23 19.02 20.05 21.11 ~230 Temperature~230~210 ~210~195 ~195 sensor ~230 ~210 ~195 252 -21 17.13 18.04 18.98 1.3 1.33.6 3.68.3 8.3 1.3 3.6 8.3 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 254 -19 15.45 16.25 17.07 𝑇𝑇𝑇𝑇 [𝐾𝐾𝐾𝐾] 𝑇𝑇𝑇𝑇 [𝐾𝐾𝐾𝐾] 1.2 0.45 0.5𝑇𝑇𝑇𝑇 [𝐾𝐾𝐾𝐾] 1.2 0.45 0.5 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1.2 0.45 0.5 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 256 -17 13.95 14.65 15.38 𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝑉𝑉𝑉𝑉]𝑉𝑉𝑉𝑉 [[W]𝑉𝑉𝑉𝑉] The0.36 built-in0.27 thermistor0.28𝑉𝑉𝑉𝑉 [[W]𝑉𝑉𝑉𝑉] serves0.36 as0.27 a sensor 0.28 of the detec- [W] 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚0.36 0.27 0.28 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 258 -15 12.61 13.23 13.87 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐼𝐼𝐼𝐼 [𝐴𝐴𝐴𝐴[K]] tor92 operation114 125𝐼𝐼𝐼𝐼 temperature.[𝐴𝐴𝐴𝐴] TE-cooled detectors are 𝐼𝐼𝐼𝐼 [𝐴𝐴𝐴𝐴[K]] 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚92 114 125 [K] 92 114 125 260 -13 11.41 11.96 12.53 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄𝑄𝑄 equipped with𝑄𝑄𝑄𝑄 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚thermistor type NCP03XM222E05RL as a 𝑄𝑄𝑄𝑄 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 262 -11 10.34 10.83 11.33 ∆𝑇𝑇𝑇𝑇 standard. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∆𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∆𝑇𝑇𝑇𝑇 264 -9 9.38 9.82 10.26 Temperature sensor 266 -7 8.52 8.91 9.31 Temperature sensor TemperatureThe built sensor-in thermistor NCP03XM222E05RL serves as a sensor ofthermistor the detector characteristics operation temperature. TE-cooled detectors268 -5 7.75 8.10 8.45 The builtare-in thermistorequipped with serves thermistor as aThe sensor type built NCP03XM222E05RL of-in the thermistor detector serves operation as a standard. as a temperature.sensor of the detectorTE-cooled operation detectors270 temperature.-3 7.07 TE7.37-cooled7.69 detectors are equipped with thermistor typeare NCP03XM222E05RL equipped with thermistor as a standard. type NCP03XM222E05RL as a standard.272 -1 6.45 6.72 7.00 NCP03XM222E05RLThe electricity thermistor applied characteristic between terminals of thermistors 274 1 5.89 6.13 6.38 276 3 5.38 5.60 5.83 The electricityshould applied beto between underNCP03XM222E05RL theterminals maximum of thermistors thermistor power should dissipation characteristic be under a t the maximum power NCP03XM222E05RL thermistor characteristic 278 5 4.93 5.13 5.32 dissipation at 25OC notin order to destroy not tothe destroy thermosensor. the thermosensor. For the measurement of resistance, The electricity applied to betweenThe terminals electricity of applied thermistors to between should terminalsbe under ofthe thermistors maximum powershould280 7 be under4.52 the4.69 maximum4.87 power the power shouldFor not the exceed measurement . of resistance, the power should 282 9 4.15 4.30 4.46 dissipation at 25°𝐶𝐶𝐶𝐶 (100 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚notdissipation )to destroy at the thermosensor. not For tothe destroy measurement the thermosensor. of resistance, For the measurement of resistance, The relation betweennot exceed the res theistance relation and the between temperature: the resistance and the 284 11 3.81 3.95 4.09 the power should not exceed the1. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 power should not exceed . temperature: ( ) 286 13 3.50 3.63 3.75 25°𝐶𝐶𝐶𝐶 (100𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) The relation between25°𝐶𝐶𝐶𝐶 100the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚resistance and the temperature: The relation between the resistance and the temperature: 288 15 3.22 3.33 3.45 1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑇𝑇0 − 𝑇𝑇𝑇𝑇1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 290 17 2.96 3.06 3.17 𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝛽𝛽𝛽𝛽 0 ) at 𝑇𝑇𝑇𝑇 ∙ 𝑇𝑇𝑇𝑇 292 19 2.73 2.82 2.91 0 𝑇𝑇𝑇𝑇0 − 𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 294 21 2.51 2.59 2.68 𝑇𝑇𝑇𝑇0 0 𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝛽𝛽𝛽𝛽 ) 𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝛽𝛽𝛽𝛽 0 ) Resistance𝑅𝑅𝑅𝑅 = 2.2𝑘𝑘𝑘𝑘 vsΩ temperature± 3% 𝑇𝑇𝑇𝑇 = for298 NCP03XM222E05RL𝐾𝐾𝐾𝐾 at thermistor 𝑇𝑇𝑇𝑇 ∙ 𝑇𝑇𝑇𝑇0 . 𝑇𝑇𝑇𝑇 ∙ 𝑇𝑇𝑇𝑇 296 23 2.32 2.39 2.46 at 298 25 2.13 2.20 2.27 (Tabelka z parametrami termistora, źródło: Resistance vs temperature for NCP03XM222E05RL 𝑇𝑇𝑇𝑇0 0 𝑇𝑇𝑇𝑇0 thermistor.docx) 0 𝑅𝑅𝑅𝑅 = 2.2𝑘𝑘𝑘𝑘Ω ± 3% 𝑇𝑇𝑇𝑇 = 298𝐾𝐾𝐾𝐾 Resistance𝑅𝑅𝑅𝑅 = 2.2𝑘𝑘𝑘𝑘 vsΩ temperature± 3% 𝑇𝑇𝑇𝑇 = for298 NCP03XM222E05RL𝐾𝐾𝐾𝐾Resistance vs temperature thermistor for NCP03XM222E05RL thermistor (Tabelka z parametrami termistora, źródło: Resistance vs temperature for NCP03XM222E05RL (Tabelka z(Wykres parametrami z charakterystyką termistora, termistora, źródło: Resistanceźródło: Resistance vs temperature vs temperature for NCP03XM222E05RLfor NCP03XM222E05RL thermistor.docx) thermistor.docx)thermistor .xlsx) 56 www.vigo.com.pl

(WykresH ze charakterystykąat sinking termistora, (Wykres źródło: z charakterystyką Resistance vs temperaturetermistora, źródło: for NCP03XM222E05RL Resistance vs temperature for NCP03XM222E05RL thermistorSuitable.xlsx) heat sinking is necessarythermistor to dissipate.xlsx) heat generated by the Peltier cooler or excessive optical irradiation. Since heat is almost 100% dissipated at the base of the detector housing, it must be firmly Heat sinkingattached to the heat sink (FiguresHeat sinkinga and b).

Suitable heat sinking is necessary Suitableto dissipate heat heat sinking generated is necessary by the to Peltier dissipate cooler heat or generated excessive byoptical the Peltier cooler or excessive optical (źródło: Figure a.jpg) irradiation. Since heat is almost 100% dissipated at the base of the detector housing, it must be firmly irradiation.(źródło: Since Figure heat bis.jpg) almost 100% dissipated at the base of the detector housing, it must be firmly attached to the heat sink (Figures a and b). attachedHeat to the sinking heat viasink the (Figures mounting a and screw b). or via the detector housing cylindrical walls is not sufficient (Figures c and d). (źródło: Figure a.jpg) (źródło: Figure a.jpg) (źródło: Figure(źródło: b Figure.jpg) c.jpg) (źródło: Figure b.jpg) Heat sinking(źródło: via Figure the mounting d.jpg) screwHeat sinkingor via the via detectorthe mounting housing screw cylindrical or via thewalls detector is not sufficienthousing cylindrical walls is not sufficient (Figures c and d). (Figures c and d). A thin layer of heat conductive epoxy or silicone grease should be applied to improve thermal contact between detector housing and heat sink. (źródło: Figure c.jpg) (źródło: Figure c.jpg) (źródło: Figure d.jpg) (źródło: Figure d.jpg)

A thin layer of heat conductive epoxyA thin or layer silicone of heat grease conductive should be epoxy applied or siliconeto improve grease thermal should contact be applied to improve thermal contact between detector housing and heatbetween sink. detector housing and heat sink. Glossary

2000 Heat sinking via the mounting screw or via the detector housing cylindrical walls is not sufficient (Figures c and d).

1800 Rmin [kΩ] Rnom [kΩ]

] Rmax [kΩ] 1600 Ω [k resistance 1400 Thermistor

1200 5

1000

800

600

400

200

Temperature [K]

0 180 190 200 210 220 230 240 250 260 270 280 290 300

Heat sinking A thin layer of heat conductive epoxy or silicone grease should be applied to improve thermal contact between Suitable heat sinking is necessary to dissipate heat gener- detector housing and heat sink. ated by the Peltier cooler or excessive optical irradiation. A heat Asink heat thermal sink thermal resistance resistance of of is typicallytypically recommended recom- for the most one-, two- and three- Since heat is almost 100% dissipated at the base of the 𝐾𝐾𝐾𝐾 mendedstage Afor h eatPeltier the sink thermalmostcoolers. resistanceone-, For four two- of-stage and TEis typically coolerthree-stage, recommended thermal Peltierresistance for the most one is -recommended., two- and three- ~𝐾𝐾𝐾𝐾 2 𝑊𝑊𝑊𝑊 detector housing, it must be firmly attached to the heat 𝐾𝐾𝐾𝐾 coolers. Forstage four-stagePeltier coolers. ForTE fcooler,our-stage~2 TEthermal𝑊𝑊𝑊𝑊 cooler, therm resistanceal resistance is recommended. 𝐾𝐾𝐾𝐾 sink (Figures a and b). ~1 𝑊𝑊𝑊𝑊 is recommended. ~1 𝑊𝑊𝑊𝑊

Optical immersion OpticalOptical immersion immersion OpticalOptical immersion immersion isis achievedachieved by byusing using high highrefractive refractive index microlensesindex microlenses in order to in improve order to improve Opticalperformance immersionperformance of of theis devicesachieveddevices but but may bymay limit using limit acceptance acceptancehigh angle.refractive angle. in- Optical immersion is monolithic integration of detector element with hyperhemispherical microlens dex microlensesOptical immersion in order is monolithic to improve integration performance of detector of element the with hyperhemispherical microlens (basic(basic configuration) configuration) that that makes makes optical optical linear linear size of size detector of detector 11 times 11 larger times compared larger to compared its physical to its physical devices butsize. Thismay results limit in improvementacceptance of D* angle. by one order of magnitude and electric capacitance by a factor size.of twoThis orders results of inmagnitude improvement less compared of D* toby conventional one order ofdetector magnitude of the sameand electricoptical area. capacitance by a factor Opticalof immersionFunctiontwo orders and ofproperties ismagnitude a monolithicof hemispherical less compared integration and hyperhemispherical to conventional of a detec lensesdetector- are illustratedof the same in the optical Figure area. Functionand in the and Table properties below. of hemispherical and hyperhemispherical lenses are illustrated in the Figure tor element with hyperhemispherical microlens (basic and in the Table below. configuration) Immersed detectorsthat parametersmakes optical linear size of detector 11 timesImmersed larger detectors compared parameters to itsHemisphere physical size. ThisHyperhemisphere results Parameter Symbol an improvement of D* by oneTheory order GaAs of magnitudeTheory and GaAs electric capacitance by a factor Hemisphere of two orders of magHyperhemisphere- ParameterDistance SymbolL R R R(n+1) 4.3R nitude less compared to a conventionalTheory GaAs detector Theoryof the GaAs Linear size n 3.3 n2 10.9 same opticalDistanceratio area. L R R R(n+1) 4.3R 𝑑𝑑𝑑𝑑 Detectivity 2 ′ n 3.3 n 10.9 Linearratio size 𝑑𝑑𝑑𝑑∗ n 3.3 n2 10.9 Function and properties𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 of hemispherical and -hyper Aceptanceratio ∗ hemispherical lenses𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 areφ𝑑𝑑𝑑𝑑− 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 illustrated180 in 180Figure and in Table 35 Detectivityangle ′ 2 n 3.3 1 n 10.9 below. Fratio-number 𝑑𝑑𝑑𝑑∗ 2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ( ) [°] 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 for 𝐷𝐷𝐷𝐷 Aceptance ∗ F/# each each ≥1.57 objective 𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛φ− 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 180 180 2 35 angle 𝑎𝑎𝑎𝑎 1 lens ≥ √( ) − 1 F -number 2 2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎4 ( ) [°] 𝑎𝑎𝑎𝑎 for F/# each each ≥1.57 objective 2 www.vigo.com.pl𝑎𝑎𝑎𝑎 1 57 lens ≥ √( ) − 2 4

A heat sink thermal resistance of is typically recommended for the most one-, two- and three- 𝐾𝐾𝐾𝐾 stage Peltier coolers. For four-stage~2 TE𝑊𝑊𝑊𝑊 cooler, thermal resistance is recommended. 𝐾𝐾𝐾𝐾 A heat sink thermal resistance of is typically recommended for the most one-, two- and three- 𝐾𝐾𝐾𝐾 ~1 𝑊𝑊𝑊𝑊 stage Peltier coolers. For four-stage~2 TE𝑊𝑊𝑊𝑊 cooler, thermal resistance is recommended. 𝐾𝐾𝐾𝐾 Optical immersion ~1 𝑊𝑊𝑊𝑊

Optical immersion is achieved by using high refractive index microlenses in order to improve Optical immersion performance of the devices but may limit acceptance angle. A heat sink thermal resistance of is typically recommended for the most one-, two- and three- OpticalOptical immersion immersion isis monolithic achieved byintegration using𝐾𝐾𝐾𝐾 high of refractivedetector elementindex microlenses with hyperhemispherical in order to improve microlens performancestage of thePeltier devices coolers. but For fmayour-stage limit~2 TE 𝑊𝑊𝑊𝑊acceptance cooler, therm angle.al resistance is recommended. (basic configuration) that makes optical linear size of detector 11𝐾𝐾𝐾𝐾 times larger compared to its physical

Optical immersion is monolithic integration of detector element~ 1with𝑊𝑊𝑊𝑊 hyperhemispherical microlens size. This results in Aimprovement heat sink thermal resistance of D* of by one is typically order recommended of magnitude for the most and one electric-, two- and capacitancethree- by a factorGlossary 5.6. Technical information(basic configuration) for VIGO that makesProducts optical linear𝐾𝐾𝐾𝐾 size of detector 11 times larger compared to its physical of two ordersOptical of magnitude immersionstage Peltier coolers. less comparedFor four-stage~2 TE𝑊𝑊𝑊𝑊 to cooler conventional, thermal resistance detector is recommended. of the same optical area. 𝐾𝐾𝐾𝐾 size. This results in improvement of D* by one order of magnitude and electric capacitance by a factor Function andOptical properties immersion of ishemispherical achieved by using and high hyperhemispherical refractive index~ 1microlenses𝑊𝑊𝑊𝑊 lenses in areorder illustrated to improve in the Figure of two orders of magnitude less compared to conventional detector of the same optical area. and in the Tableperformance below.Optical of immersionthe devices but may limit acceptance angle. Immersed detectors parametersFunction andOptical properties immersion of ishemispherical monolithic integration and hyperhemispherical of detector element with lenses hyperhemispherical are illustrated microlens in the Figure Optical immersion is achieved by using high refractive index microlenses in order to improve and in the Table(basic configuration)below.performance ofthat the makesdevices opticalbut may linearlimit acceptance size of detector angle. 11 times larger compared to its physical

ImmersedParameter detectorssize. This Opticalresults parameters immersion in improvement is monolithic of D* integration by one orderof detector of magnitude element with and hyperhemispherical electric capacitance microlens by a factor

Symbol (basic configuration) thatHemisphere makes optical linear size of detectorHyperhemisphere 11 times larger compared to its physical Immersed detectorsof two orders parameters of magnitude less compared to conventional detector of the same optical area. Function size.and Thisproperties results in ofimprovement hemisphericalHemisphere of D* byand one hyperhemispherical order of magnitudeHyperhemisphere and lenses electric are capacitance illustrated by a in fac thetor Figure Parameter and inSymbol theof Table two orders below. of magnitude less compared to conventional detector of the same optical area. Function and propertiesTheoryHemisphere of hemisphericalGaAs and hyperhemisphericalTheoryHyperhemisphere lenses areGaAs illustrated in the Figure Theory GaAs Theory GaAs Parameter Symboland in the Table below. Immersed detectors parametersTheory GaAs Theory GaAs DistanceDistance ImmersedL detectors Rparameters RR R(n+1)R(n+1) 4.3R 4.3R Hemisphere Hyperhemisphere Distance ParameterL Symbol R R R(n+1) 4.3R LinearLinear size Hemisphere Hyperhemisphere2 Parameter Symboln Theory 3.33.3GaAs Theoryn2 n GaAs10.9 10.9 Linearratioratio size Theory GaAs Theory2 GaAs Distance L n R 3.3 R R(n+1)n 4.3R10.9 ratio 𝑑𝑑𝑑𝑑Distance L R R R(n+1) 4.3R Detectivity ′ 2 𝑑𝑑𝑑𝑑 2 Linear sizeLinear size n 3.3 22 n 10.9 DetectivityDetectivity ∗ ′ n n 3.33.3 nn2 10.910.9 ratio ratio𝑑𝑑𝑑𝑑 ratio nn 3.33.3 nn 10.910.9 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑∗ 𝑑𝑑𝑑𝑑 ratioratio 𝐷𝐷𝐷𝐷 Detectivity𝑑𝑑𝑑𝑑 2 Detectivity∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ′ ′ n 3.3 n 2 10.9 Aceptance 𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑∗ n 3.3 n 10.9 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∗ −𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ratio ∗ Aceptance 𝐷𝐷𝐷𝐷ratio φ 𝑑𝑑𝑑𝑑 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖180 180 35 Aceptance 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛φ−Aceptance 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗180 180 35 angle 𝐷𝐷𝐷𝐷 ∗ 𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛φ− 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 180 180 35 angle Aceptanceφangle 180 180 1 35 angle 𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛φ− 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 180 180 1 1 35 F-number angle F -number 2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎( ) ( ) F-number [°] 2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(1 ) 5 [°] for 𝑎𝑎𝑎𝑎 for [°] F-number F/# each each 2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ( 𝑎𝑎𝑎𝑎) ≥1.57 F-numberfor [°]objective each each 2 𝑎𝑎𝑎𝑎 ≥1.57 for F/#F/# each each 𝑎𝑎𝑎𝑎 1 ≥1.57 objective lens F/# each each 2 2 ≥1.57 forobjective objec- objective F/# each each ≥ √( ) 2− ≥1.57 tive lens 2𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎4 11 1 lenslens lens ≥≥√≥√((√)( −−) − 2 2 44 4

(rysunki (rysunki soczewek soczewek immersyjnych, immersyjnych, immersyjnych, żródło: żródło: Function Function and and properties properties of of of hemispherical hemispherical hemispherical and and and (rysunki soczewek soczewek immersyjnych, immersyjnych, żródło: żródło: Function Function and and properties properties of of hemispherical hemispherical and and hyperhemispherical lense.pdf,lense.pdf, podpispodpis “Function rysunku:rysunku: and “properties“FunctionFunction of andand hemispherical propertiesproperties and of ofhyperhemispherical hemispherical hemispherical lense.”andand and hyperhemispherical lense.pdf,lense.pdf, podpispodpis rysunku:rysunku: “Function“Function and and properties properties of ofhemispherical hemispherical and and hyperhemispherical lenselense.”.”.”)) hyperhemispherical lense lense.”.”) )

– refractivrefractive index of a lens material ( for GaAs used by VIGO) –– refractiv refractivrefractiveeeee index index indexindex index ofof ofof a a alens alens lenslensof material lensmaterial material material material ( ( ( ( for for ( for GaAs ̴3.3for GaAs GaAs GaAs usedfor used used usedbyGaAs by VIGO) byVIGO) by VIGO)used VIGO) by VIGO) – – opticaloptical optical (apparent) (apparent) (apparent)(apparent) (apparent) detector detector detectordetector detector size size size size size 𝑛𝑛𝑛𝑛 ~~33..3.3 𝑛𝑛𝑛𝑛 – physicalphysicalphysical detector detector detectordetector detector size size sizesize size ~~33.3.3 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 –– lenslenslens lens radius radiusradiusradius radius 𝑑𝑑𝑑𝑑′ 𝑑𝑑𝑑𝑑 ′ –– lens lenslenslens face facefaceface face to to tototo objective objective to objectiveobjectiveobjective objective focal focal focalfocalfocal plane plane plane planefocalplane distance distance distancedistance distanceplane distance 𝑅𝑅𝑅𝑅 = - -- lens- lens lens lenslenslens thickness thickness thickness thicknessthicknessthickness 𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

ℎ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅++𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 TheThe valuesvalues in in inin the the thethe TableTable TableTable show show showshow the the the the relative relative relative relative change change change change of of a of agivenof givena a given given parameter parameter parameter parameter comparing comparing comparing comparing to toa non a to non to -aimmersed anon-immersed non--immersedimmersed-immersed detector of ofof the the thethe same same samesame optical optical opticaloptical size. size. size. size. Detectors Detectors Detectors Detectors with with with with custom custom custom custom acceptance acceptance acceptance acceptance angles angles angles angles are are available are available are available available upon upon upon upon Therequest. values in the Table show the relative change of a given parameter comparing to a non-immersed detector of the request.request. same optical size. Detectors with custom acceptance angles are available upon request.

58 www.vigo.com.pl