Mining Disasters Index
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Solutions for Energy Crisis in Pakistan I
Solutions for Energy Crisis in Pakistan i ii Solutions for Energy Crisis in Pakistan Solutions for Energy Crisis in Pakistan iii ACKNOWLEDGEMENTS This volume is based on papers presented at the two-day national conference on the topical and vital theme of Solutions for Energy Crisis in Pakistan held on May 15-16, 2013 at Islamabad Hotel, Islamabad. The Conference was jointly organised by the Islamabad Policy Research Institute (IPRI) and the Hanns Seidel Foundation, (HSF) Islamabad. The organisers of the Conference are especially thankful to Mr. Kristof W. Duwaerts, Country Representative, HSF, Islamabad, for his co-operation and sharing the financial expense of the Conference. For the papers presented in this volume, we are grateful to all participants, as well as the chairpersons of the different sessions, who took time out from their busy schedules to preside over the proceedings. We are also thankful to the scholars, students and professionals who accepted our invitation to participate in the Conference. All members of IPRI staff — Amjad Saleem, Shazad Ahmad, Noreen Hameed, Shazia Khurshid, and Muhammad Iqbal — worked as a team to make this Conference a success. Saira Rehman, Assistant Editor, IPRI did well as stage secretary. All efforts were made to make the Conference as productive and result oriented as possible. However, if there were areas left wanting in some respect the Conference management owns responsibility for that. iv Solutions for Energy Crisis in Pakistan ACRONYMS ADB Asian Development Bank Bcf Billion Cubic Feet BCMA -
Mount Hope Nurseries, Three Superb Hardy Roses
Mount Hope Nurseries, Three Superb Hardy Roses. Attention is directed to the colored illustration on back of cover. PRICE OF F>I_HNTS: No. I. Mrs. John Laing (see page 151) ©ach 75c No. 2. Earl of Dufferin (see page 148) - " 75c No. 3. Marshall P. Wilder (see page 150) " 5°c THE SET FOR $1.50. For New and Rare Fruits, and Ornamental Trees and Shrub*, see Index pages 157 and 158. TKBLB OF5 CONTENTS. Advice to Correspondents 6 Articles by mail 6 Brief suggestions to Planters - 47 Bulbs, Miscellaneous 129 Bulbs, Summer and Autumn Flowering 128 Business Announcement 4 Cannas - 180 Catalogues 160 Chrysant hemums - 130 Clematis 106 Climbing and Trailing Shrubs -- 106 Conifer® 75 Dahlias 130 Deciduous Trees -- 49 " " flowering 74 " " having bright colored bark in winter 74 " " possessing remarkable characteristics of foliage 73 " " producing ornamental fruit 74 " select assortments at reduced prices 74 " Weeping... 72 Deciduous Shrubs... 81 " " producing ornamental fruit 103 " select assortments at reduced prices 103 " " with variegated foliage 102 Esculent Roots 45 Evergreen Shrubs 105 Evergreen Trees _ 75 Fruit Department 7 Hardy Herbaceous Flowering Plants 114 Hedge Plants 109 Hints on Transplanting . 7 Hollyhocks 114 Index, General 159 Index to New and Rare Trees and Shrubs, to which especial attention is requested 157 Miscellaneous Fruits 45 Ornamental Department 47 Packing Season 6 Pajonies, Herbaceous 110 Tree 110 Phloxes 113 Rose Department. _ 131 Roses, New Varieties 134 Scions 45 Special attention is invited to our select assortments of Deciduous Trees and Shrubs at reduced prices, pages 74 and 103. NOTE: The illustrations in this Catalogue are mostly from specimens in our collection. -
Explosibility of Coal Dust
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEOKGE OTIS SMITH, DIRECTOR BULLETIN 425 THE EXPLOSIBILITY OF COAL DUST BY GEORGE S. RICE WITH CHAPTERS BX J. C. W. FRAZER, AXEL LARSEN, FRANK HAAS, AND CARL SCHOLZ WASHINGTON GOVERN M E N T P K I N T IN G OFFICE 1910 CONTENTS. Page. Introd uctory statement...................................... ............ 9 The coal-dust, problem................................................ 9 i Acknowledgments.................................................... 10 Historical review of the coal-dust question in Europe ....................... 11 Observations in England prior to 1850................................. 11 Observations by French engineers prior to 1890........................ 12 Experiments in England between 1850 and 1885........................ 12 Experiments in Prussia............................,.............:..... 14 Experiments in Austria between 1885 and 1891......................... 16 Views of English authorities between 1886 and 1908.................... 17 German, French, and Belgian stations for testing explosives............ 19 Altofts gallery, England, 1908......................................... 21 Second report of Royal Commission on Mines, 1909...................... 21 Recent Austrian experiments.......................................... 22 Historical review of the coal-dust question in the United States.............. 23 Grahamite explosions in West Virginia, 1871 and 1873.................. 23 Flour-mill explosion at Minneapolis, 1878............................. -
COAL CONFERENCE University of Pittsburgh · Swanson School of Engineering ABSTRACTS BOOKLET
Thirty-Fifth Annual INTERNATIONAL PITTSBURGH COAL CONFERENCE University of Pittsburgh · Swanson School of Engineering ABSTRACTS BOOKLET Clean Coal-based Energy/Fuels and the Environment October 15-18, 2018 New Century Grand Hotel Xuzhou Hosted by: The conference acknowledges the support of Co-hosted by: K. C. Wong Education Foundation, Hong Kong A NOTE TO THE READER This Abstracts Booklet is prepared solely as a convenient reference for the Conference participants. Abstracts are arranged in a numerical order of the oral and poster sessions as published in the Final Conference Program. In order to facilitate the task for the reader to locate a specific abstract in a given session, each paper is given two numbers: the first designates the session number and the second represents the paper number in that session. For example, Paper No. 25.1 is the first paper to be presented in the Oral Session #25. Similarly, Paper No. P3.1 is the first paper to appear in the Poster Session #3. It should be cautioned that this Abstracts Booklet is prepared based on the original abstracts that were submitted, unless the author noted an abstract change. The contents of the Booklet do not reflect late changes made by the authors for their presentations at the Conference. The reader should consult the Final Conference Program for any such changes. Furthermore, updated and detailed full manuscripts, published in the Conference Proceedings, will be sent to all registered participants following the Conference. On behalf of the Thirty-Fifth Annual International Pittsburgh Coal Conference, we wish to express our sincere appreciation and gratitude to Ms. -
Summits on the Air – ARM for USA - Colorado (WØC)
Summits on the Air – ARM for USA - Colorado (WØC) Summits on the Air USA - Colorado (WØC) Association Reference Manual Document Reference S46.1 Issue number 3.2 Date of issue 15-June-2021 Participation start date 01-May-2010 Authorised Date: 15-June-2021 obo SOTA Management Team Association Manager Matt Schnizer KØMOS Summits-on-the-Air an original concept by G3WGV and developed with G3CWI Notice “Summits on the Air” SOTA and the SOTA logo are trademarks of the Programme. This document is copyright of the Programme. All other trademarks and copyrights referenced herein are acknowledged. Page 1 of 11 Document S46.1 V3.2 Summits on the Air – ARM for USA - Colorado (WØC) Change Control Date Version Details 01-May-10 1.0 First formal issue of this document 01-Aug-11 2.0 Updated Version including all qualified CO Peaks, North Dakota, and South Dakota Peaks 01-Dec-11 2.1 Corrections to document for consistency between sections. 31-Mar-14 2.2 Convert WØ to WØC for Colorado only Association. Remove South Dakota and North Dakota Regions. Minor grammatical changes. Clarification of SOTA Rule 3.7.3 “Final Access”. Matt Schnizer K0MOS becomes the new W0C Association Manager. 04/30/16 2.3 Updated Disclaimer Updated 2.0 Program Derivation: Changed prominence from 500 ft to 150m (492 ft) Updated 3.0 General information: Added valid FCC license Corrected conversion factor (ft to m) and recalculated all summits 1-Apr-2017 3.0 Acquired new Summit List from ListsofJohn.com: 64 new summits (37 for P500 ft to P150 m change and 27 new) and 3 deletes due to prom corrections. -
Coal Mine Safety Engineering
Scholars' Mine Professional Degree Theses Student Theses and Dissertations 1941 Coal mine safety engineering Charles F. Herbert Follow this and additional works at: https://scholarsmine.mst.edu/professional_theses Part of the Mining Engineering Commons Department: Recommended Citation Herbert, Charles F., "Coal mine safety engineering" (1941). Professional Degree Theses. 152. https://scholarsmine.mst.edu/professional_theses/152 This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Professional Degree Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. COAL MINE SAFETY ENGINEERING BY CHARLES F. HERBERT A THESIS submitted t o the f aculty of the SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI ill pa::: tial fulfillment of the wC l'k I'squi:l;'ed fo1' the Degree Of ENGINEER OF MINES Rolla , ->1:0 . 1941 Approved by ...... ~ .................. ... ~, ' Professor of Mining Engineering CHAPTER I Page HISTORY OF COAL MINE SAFETy. ................... 1 CHAPTER II ENGINEERING. • . 7 Surface Operations.......................... 8 Underground Mine Methods and Conditions ..... 14 Roof and Floor. 15 Explosives and Blasting ...•••.............. 17 Ventilation. • . • . • . 20 Dust..... ...•. ...................... .. .• 25 Haulage. • . 27 Elec trici ty. -
Arch. Min. Sci., Vol. 59 (2014), No 4, P
Arch. Min. Sci., Vol. 59 (2014), No 4, p. 1107–1118 Electronic version (in color) of this paper is available: http://mining.archives.pl DOI 10.2478/amsc-2014-0077 PETR BURYAN*1, ZDENĚK BUČKO*, PETR MIKA* A COMPLEX USE OF THE MATERIALS EXTRACTED FROM AN OPEN-CAST LIGNITE MINE WIELORAKIE WYKORZYSTANIE MINERAŁÓW WYDOBYWANYCH Z ODKRYWKOWEJ KOPALNI LIGNITU The company Sokolovská uhelná, was the largest producer of city gas in the Czech Republic. After its substitution by natural gas the gasification technology became the basis of the production of electricity in the combine cycle power plant with total output 400 MW. For the possibility of gasification of liquid by- -products forming during the coal gasification a entrained-flow gasifier capable to process also alternative liquid fuels has been in installed. The concentrated waste gas with these sulphur compounds is conducted to the desulphurisation where the highly desired, pure, 96 % H2SO4 is produced. Briquettable brown coal is crushed, milled and dried and then it is passed into briquetting presses where briquettes, used mainly as a fuel in households, are pressed without binder in the punch under the pressure of 175 MPa. Fine brown coal dust (multidust) is commercially used for heat production in pulverized-coal burners. It forms not only during coal drying after separation on electrostatic separators, but it is also acquired by milling of dried coal in a vibratory bar mill. Slag from boilers of classical power plant, cinder form generators and ashes deposited at the dump are dehydrated and they are used as a quality bedding material during construction of communications in the mines of SUAS. -
The Action of Small Amounts of Quartz and Larger Amounts of Coal and Graphite on the Lungs of Rats by S
Brit. J. indusir. Med., 1951, 8, 68. THE ACTION OF SMALL AMOUNTS OF QUARTZ AND LARGER AMOUNTS OF COAL AND GRAPHITE ON THE LUNGS OF RATS BY S. C. RAY, E. J. KING, and C. V. HARRISON From the Postgraduate Medical School, London (RECEIVED FOR PUBLICATION OCrOBER 26, 1950) Experimental and field work on silicosis, while increase of siliceous matter in the coal. Gough concentrating attention on the danger of exposure (1947) wrote: to the dust from hard rock, has produced a sense of "It has now been generally acknowledged that false security in regard to the coal miner. Mavro- chronic respiratory disease of South Wales coal gordato (1918) stated: " It may be regarded as miners is due to the inhalation of the dust encountered in everyday work in the mines or in such an occupa- established that all forms of dust enter the lungs tion as loading coal in ships." and that some, such as coal, are relatively harmless, while others, such as flint, are deadly ". Bronchitis He also stated: and emphysema were prevalent among old miners, " It is recognized that dust of relatively low silica but, as colliers were thought to be relatively immune content, such as commercial coal, can cause disability to tuberculosis, it was assumed that inhalation of and fatal lung disease." coal dust did not produce silicosis (Oliver, 1909; This disease was termed " coal workers' pneumo- Collis, 1915; Haldane, 1931). Coal dust, as a coniosis "' by the Industrial Pulmonary Diseases result of experimental study, was not only claimed Committee (1942) to distinguish it from classical to be exempt from blame, but even came to be silicosis, which may occur in those coal miners regarded as a beneficent agent capable of neutra- exposed to the dust of highly siliceous rocks. -
Mine Safety and Health Administration (MSHA)
THE USE OF STONE DUST TO CONTROL COAL DUST EXPLOSIONS: A REVIEW OF INTERNATIONAL PRACTICE Prepared by Peter Cain, Ph.D., P.Eng For The Stakeholders of the Federal Government / Industry Underground Coal Mines Safety Research Collaboration Administered by Natural Resources Canada. March, 2003 THE USE OF STONE DUST TO CONTROL COAL DUST EXPLOSIONS: A REVIEW OF INTERNATIONAL PRACTICE EXECUTIVE SUMMARY The Underground Coal Mine Safety Research Collaboration (UCMSRC) is an ad-hoc association of stakeholders in the Canadian underground coal mining industry. It was established in 1998 after the closure of the federal governments CANMET Coal Research Laboratory in Sydney, N.S. The UCMSRC provides a forum for the discussion of safety and health topics in underground coal mines. Stakeholders include operating companies, Federal and Provincial government agencies, universities and consultants. In 2001 UCMSRC stakeholders responded to a request from the Nova Scotia Department of Labour to review methods of controlling coal dust explosions. At their specific request, a review of passive and triggered explosion barriers in underground coal mines was commissioned (Zhou and Panawalage, 2001). To complement this work on explosion barriers, the UCMSRC commissioned a review of international practice relating to the use of stone-dust to control coal dust explosions after a request from several stakeholders. The resulting report was compiled from technical reports and regulatory standards relating to coal dust explosions and stone-dusting practices in underground coal mines obtained from both library and on-line resources. It summarizes the present- day understanding of coal dust explosion hazards and presents a comparison of some national and international regulatory standards. -
About Possibility to Classify Coal Layers Hazardous Characteristics by Genetic and Process Parameters of Coals
Science Review ISSN 2544-9346 LIFE SAFETY ABOUT POSSIBILITY TO CLASSIFY COAL LAYERS HAZARDOUS CHARACTERISTICS BY GENETIC AND PROCESS PARAMETERS OF COALS 1Professor, Mykola Antoshchenko, 1Associate Professor, Vadym Tarasov, 2Associate Professor, Mihail Filatiev, 2Assistant Professor, Elvira Filatieva, 3Field Production Engineer, Oleg Levadnyi Ukraine, Severodonetsk, Volodymyr Dahl East Ukrainian National University; 1Department of Chemistry and Industrial Safety Measures 2Department of Chemical Engineering and Ecology 3Kazakhstan, Production Field Tengiz, Ariadna LLP DOI: https://doi.org/10.31435/rsglobal_sr/31012020/6870 ARTICLE INFO ABSTRACT Received 18 November 2019 The analysis of Ukrainian legal environment has been performed for solid Accepted 17 January 2020 fossil fuels production, which has shown existing of contradictories between Published 31 January 2020 parameters describing the accuracy of forecast to manifest the coal layers hazardous characteristics during independent of mining and does not exclude KEYWORDS any possibility for emergency situation to occur, independent of the preventive measures full implementation. The base to determine the coal layers hazardous metamorphism, characteristics are: average reflectance of vitrinite, presence of some spontaneous fire, components in organic matter (С0, О0, Н0, N0), alteration of moisture and geological and genetic factors, mineral impurities content. For these classificatory parameters, their elemental constituents. quantitative assessment is available in the whole multiplicity of coals metamorphic transformation. The specific electrical resistivity logarithm and other proxy parameters may serve as additional classificatory parameters to reveal any hazardous characteristics of anthracites after grounding their using in some ranges of metamorphism series. It has been established that the existing wide range of vitrinite reflectance alteration for anthracites specifies significant alterations in the fossil fuel structure and properties. -
Asphalt & Coal Tar Pitch
EPA-560/2-77-005 us EPA RECORDS CENTER REGION S 514117 INVESTIGATION OF SELECTED POTENTIAL ENVIRONMENTAL CONTAMINANTS: ASPHALT AND COAL TAR PITCH FINAL REPORT V r ^ ENVIRONMENTAL PROTECTION AGENCY OFFICE OF TOXIC SUBSTANCES •> WASHINGTON, D.C. 20460 SEPTEMBER 1978 EPA-560/2-77-005 INVESTIGATION OF SELECTED POTENTIAL ENVIRONMENTAL CONTAMINANTS: ASPHALT AND COAL TAR PITCH Ruth P. Trosset, Ph.D David Warshawsky, Ph.D. Constance Lee Menefee, B.S. Eula Bingham, Ph.D. I Deputment of Environmental Health College of Medicine 'i University of Cincinnati Cincinnati, Ohio 45267 Contract No.; 68-01-4188 Final Report September, 1978 Project Officer; Elbert L. Dage Prepared for Office of Toxic Substances U.S. Environmental Protection Agency Washington, D. C. 20460 Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151 NOTICE This report has been reviewed by the Office of Toxic Sxabstances, Environmental Protection Agency, euid approved for publication. Approval does not signify that the contents neces sarily reflect the views and policies of the Environmental Pro tection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. % - i - TABLE OF CCMJTENTS Page Executive Summary 1 Introduction 5 Glossary 6 I. PHYSICAL AND OlEMICAL PROPERTIES 8 A. Bituminous Materials 8 B. Asphaltic Materials 11 1. Petroleum Asphalt 11 a. Composition of Crude Oil 11 b. Types of Petroleum Asphalts 12 c. Fractionation of Asphalt 13 2. Native Bitumens 22 a. Native Asphalts 22 b. Asphaltites 23 C. Coal Tar Pitch 24 1. Source 24 2. Physical Properties 29 3. Chemical Propeirties 30 II. -
Analyses of Rocks and Minerals
UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director / rf Bulletin 878 ANALYSES OF ROCKS AND MINERALS FROM THE LABORATORY OF THE UNITED STATES GEOLOGICAL SURVEY 1914-36 TABULATED BY ROGER C. WELLS Chief Chemist UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1937 For sale by the Superintendent of Documents, Washington, D. C. ------ Price 15 cents V CONTENTS Page Introduction._____________________________________________________ 1 The elements and their relative abundance.__________________________ 3 Abbreviations used._______________________________________________ 5 Classification.___________________________________________________ 5 Analyses of igneous and crystalline rocks____-_________.._____________ 6 Alaska._____-_____-__________---_-_--___-____-_____-_________ 6 \ Central Alaska________________________________________ 6 Southeastern Alaska___________-_--________________________ 7 Arizona._________--____-_---_-------___-_--------_----_______ 8 Ajo district.-_--_.____---------______--_-_--__---_______ 8 Oatman district____________-___-_-________________________ 9 Miscellaneous rocks....-._...._-............_......_._.... 10 Arkansas.____________________________________________________ 11 Austria._____________________________________________________ 11 California.__,_______________--_-_----______-_-_-_-___________ 11 T ' Ivanpah quadrangle.____-_----__--_____----_--_--__.______ 11 Lassen Peak__________________ ___________________________ 12 Mount Whitney quadrangle________________________________