The Emergence of Insecticide Resistance in Central Mozambique

Total Page:16

File Type:pdf, Size:1020Kb

The Emergence of Insecticide Resistance in Central Mozambique Abilio et al. Malaria Journal 2011, 10:110 http://www.malariajournal.com/content/10/1/110 RESEARCH Open Access The emergence of insecticide resistance in central Mozambique and potential threat to the successful indoor residual spraying malaria control programme Ana P Abilio1, Immo Kleinschmidt2, Andrea M Rehman2, Nelson Cuamba1, Varsha Ramdeen3, David S Mthembu3, Sarel Coetzer3, Rajendra Maharaj3, Craig S Wilding4, Andrew Steven4, Marlize Coleman4, Janet Hemingway4 and Michael Coleman4* Abstract Background: Malaria vector control by indoor residual spraying was reinitiated in 2006 with DDT in Zambézia province, Mozambique. In 2007, these efforts were strengthened by the President’s Malaria Initiative. This manuscript reports on the monitoring and evaluation of this programme as carried out by the Malaria Decision Support Project. Methods: Mosquitoes were captured daily through a series of 114 window exit traps located at 19 sentinel sites, identified to species and analysed for sporozoites. Anopheles mosquitoes were collected resting indoors and tested for insecticide resistance following the standard WHO protocol. Annual cross sectional household parasite surveys were carried out to monitor the impact of the control programme on prevalence of Plasmodium falciparum in children aged 1 to 15 years. Results: A total of 3,769 and 2,853 Anopheles gambiae s.l. and Anopheles funestus, respectively, were captured from window exit traps throughout the period. In 2010 resistance to the pyrethroids lambda-cyhalothrin and permethrin and the carbamate, bendiocarb was detected in An. funestus. In 2006, the sporozoite rate in An. gambiae s.s. was 4% and this reduced to 1% over 4 rounds of spraying. The sporozoite rate for An. funestus was also reduced from 2% to 0 by 2008. Of the 437 Anopheles arabiensis identified, none were infectious. Overall prevalence of P. falciparum in the sentinel sites fell from 60% to 32% between October 2006 and October 2008. Conclusion: Both An. gambiae s.s. and An. funestus were controlled effectively with the DDT-based IRS programme in Zambézia, reducing disease transmission and burden. However, the discovery of pyrethroid resistance in the province and Mozambique’s policy change away from DDT to pyrethroids for IRS threatens the gains made here. Background To successfully control malaria, programmes must use The Roll Back Malaria, United Nations Millennium current tools efficiently. In moderate to high transmis- Development Goals and World Health Assembly univer- sion areas this requires the combination of effective vec- sal access and coverage targets for malaria prevention tor interventions, either indoor residual spraying of and treatment have been established to reduce disease insecticides (IRS) and/or insecticide-treated nets (ITNs), transmission. To meet these targets malaria control with effective drug treatment. To achieve this, continu- interventions are now being scaled up [1,2]. ous surveillance, monitoring and evaluation (M & E) need to be integrated into the malaria control pro- gramme. There are very few examples of good malaria M * Correspondence: [email protected] 4Liverpool School of Tropical Medicine, Pembroke Place, Liverpool. L3 5QA, & E, which include parasitological, disease transmission UK and entomological data assessment. These include Bioko Full list of author information is available at the end of the article © 2011 Abilio et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abilio et al. Malaria Journal 2011, 10:110 Page 2 of 9 http://www.malariajournal.com/content/10/1/110 island [3,4], the cross border Lubombo Spatial Develop- out in Oct/Nov 2006 and subsequently each year in all ment Initiative (LSDI) [5], Eritrea [6] and Zambia [7]. districts except for Maganja da Costa, where LLINs (both In Mozambique, the National Malaria Control Pro- Olyset, Sumitomo Chemical and Permanent, Vestergaard gramme (NMCP) used DDT for IRS before a change in Frandsen) were distributed from 2009 (Figure 1). Ento- policy in 1993, when the pyrethroid lambda-cyhalothrin mological surveillance and cross-sectional malaria indica- was introduced in the southern part of the country. With tor surveys were carried out at all 19 sites. the discovery of Anopheles funestus resistant to pyre- throids in South Africa [8], the LSDI implemented an Insecticide resistance testing insecticide resistance monitoring programme in southern Indoor resting blood fed adult female Anopheles gam- Mozambique that showed in 1999 that both An. funestus biae s.l and An. funestus for insecticide resistance bioas- and Anopheles arabiensis were resistant to pyrethroids says were collected between hours 06.00-10.00 in houses [9,10] due to elevated p450s [11]. This resulted in an using an aspirator during the period Oct 2006 to May informed insecticide policy change to the carbamate 2010. Until 2009, wild caught mosquitoes were used for bendiocarb for IRS [5]. Bendiocarb was sprayed bi- insecticide susceptibility assays following the WHO annually in southern Mozambique until 2005, when, due insecticide susceptibility test protocol (WHO 1998). to the high economic costs associated with this insecti- Assays carried out on wild-caught mosquitoes did not cide, an operational change was made back to DDT. No allow for standardisation in age, physiological state or resistance has yet been detected to DDT in Mozambique. pre-exposure to insecticides. After the establishment of In 2005 the U.S. Government initiated the President’s an insectary in 2009, wild-caught female mosquitoes Malaria Initiative (PMI) [12], which supported the rapid were transported to the laboratory, kept in individual scale-up of malaria prevention and treatment in 15 coun- oviposition tubes with access to 10% sucrose and tries in Africa, including Mozambique. In central allowed to lay eggs. Each family was reared separately Mozambique, an IRS programme was initiated in six dis- through to 1-3 day old F1 adults at 26°C +/- 2°C and tricts in Zambézia province. Previously, the NMCP had 70-80% relative humidity allowing standardisation of age carried out vector control with sporadic IRS and fogging physiological state and testing conditions. Families were between 1995 and 2003 in this area. In 2005, the NMCP mixed prior to testing to avoid bias from isofemale lines resumed IRS in Zambézia in three districts, using DDT. where offspring may all be genetically similar. Between Limited expansion of activities occurred in 2006 to cover five and 25 adult mosquitoes were exposed to insecti- 5 districts and this effort was strengthened in 2007 by cide treated or control papers, impregnated with the PMI. The IRS was focused on densely populated areas carrier oil alone, for 1 hour and then transferred to using DDT or lambda-cyhalothrin, the latter being holding tubes with access to 10% sugar solution for 24 applied on structures not suitable for DDT (i.e. finished hours before the percentage mortality was determined. or painted walls). In 2009, pyrethroids were the sole class The insecticides tested were, deltamethrin (0.05%), of insecticides purchased for IRS, although all remaining lambda-cyhalothrin (0.05%), bendiocarb (0.01%), and stocks of DDT were sprayed during that year [13]. DDT (4%). All papers were supplied by WHO. Zambézia province was used to pilot and refine a new Malaria Decision Support System (MDSS) [14], which Species abundance and sporozoite rates was implemented in 19 sentinel sites in Zambézia pro- Prior to the initiation of IRS in 2006 a window exit trap vince in 2006 and served to evaluate and monitor the was installed in six houses at each sentinel site with the interventions described above. The objective of this home-owner’s permission. Home-owners were trained work was to determine whether the system, which was to empty the traps daily into pre-labelled specimen jars continuously improved during the course of the study, containing isopropanol and complete checklists indicat- could be deployed in a resource poor setting, with low ing the nights for which the traps were checked. level infrastructure and limited human capacity. The uti- lity to control programme managers of an integrated Species identification surveillance system providing real time monitoring Wild-caught females were morphologically identified as through a number of performance and impact indica- belonging to the An. gambiae s.l. complex or An. funes- tors, was clearly demonstrated. tus s.l. group [15,16]. Species identification within each complex was carried out by DNA-polymerase chain Methods reaction on a sample of specimens [17,18]. Study site and insecticide usage In 2006, 19 sentinel sites were established in six districts Sporozoite identification in Zambézia province, Mozambique. IRS with DDT (Hin- DNA was extracted from the head and thorax of a sub- dustan Insecticide limited, New Delhi, India) was carried sample of mosquitoes using the Livak method [19] and Abilio et al. Malaria Journal 2011, 10:110 Page 3 of 9 http://www.malariajournal.com/content/10/1/110 Figure 1 Map showing the location of sentinel sites in Zambézia province, Mozambique. infection with Plasmodium species was determined sentinel site were estimated taking account of clustering using a multiplex real time PCR [20]. by sentinel site using the statistical
Recommended publications
  • Malawi ALMA Quarterly Report, September 2011
    Malawi ALMA Quarterly Report Quarter Three, 2020 Scorecard for Accountability and Action Key Malaria is endemic in all parts of Malawi. The annual reported number of malaria cases in 2018 was 5,865,476 with 2,967 deaths. Target achieved or on track Progress but more effort required Not on track No data Not applicable Malawi ALMA Quarterly Report Quarter Three, 2020 Malaria Sustaining Essential Health Services During the COVID-19 Pandemic The COVID-19 pandemic is putting an incredible strain on health systems across Africa. Health systems are required to maintain routine health services for other illnesses even as they handle the additional burden. In order to prevent widespread morbidity and mortality, it is of vital importance that we work to sustain the delivery of essential life- saving interventions during this difficult time including for Reproductive, Maternal, Newborn, Adolescent and Child health and malaria. WHO underlines the critical importance of sustaining efforts to prevent, detect and treat malaria during the COVID-19 pandemic. It is of vital importance to ensure the continuity of malaria prevention and treatment services including distribution of insecticide-treated nets and indoor residual spraying, as well as chemoprevention for pregnant women (intermittent preventive treatment in pregnancy). Any intervention must consider the importance of both lowering malaria-related mortality and ensuring the safety of communities and health workers given the ease of transmission of COVID-19. For Malawi, it will be of vital importance to ensure that the planning for the universal coverage campaign for long-lasting insecticidal nets (LLINs) campaign scheduled for 2021 and the indoor residual spraying campaign go ahead, whilst taking into account physical distancing, in accordance with the recent guidance and recommendations from WHO and the RBM Partnership to End Malaria.
    [Show full text]
  • Community Knowledge and Acceptance Of
    Magaço et al. Malar J (2019) 18:27 https://doi.org/10.1186/s12936-019-2653-x Malaria Journal RESEARCH Open Access Community knowledge and acceptance of indoor residual spraying for malaria prevention in Mozambique: a qualitative study Amílcar Magaço1*, Carlos Botão1, Pedroso Nhassengo1, Mohomede Saide1, Arminda Ubisse1, Sérgio Chicumbe1 and Rose Zulliger2 Abstract Background: Malaria control remains a leading health challenge in Mozambique. Indoor residual spraying (IRS) is an efective strategy to control malaria transmission, but there are often barriers to reaching the coverage necessary for attaining maximum community protective efect of IRS. Mozambique recorded a high number of household refusals during the 2016 IRS campaign. This study sought to evaluate household and community factors related to the accept- ability of IRS to inform strategies for future campaigns in Mozambique and the region. Methods: A cross-sectional, qualitative study was conducted in eight urban and rural communities in two high malaria burden provinces in Mozambique. Data were collected through in-depth interviews with community mem- bers, leaders, sprayers, and representatives of district health directorates; focus group discussions with community members who accepted and who refused IRS during the 2016 campaign; systematic feld observations; and informal conversations. Data were systematically coded and analysed using NVIVO-11®. Results: A total of 61 interviews and 12 discussions were conducted. Community participants predominantly described IRS as safe, but many felt that it had limited efcacy. The main factors that participants mentioned as having infuenced their IRS acceptance or refusal were: understanding of IRS; community leader level of support; characteristics of IRS programmatic implementation; environmental, political and historical factors.
    [Show full text]
  • Toolkit for the Sound Management of Ddt for Disease Vector Control
    Stockholm Convention on Persistent Organic Pollutants (POPs) Scientific and Technical Document Series: DDT TOOLKIT FOR THE SOUND MANAGEMENT OF DDT FOR DISEASE VECTOR CONTROL Acknowledgements The Secretariat of the Stockholm Convention (SSC) acknowledges the collaboration and support extended by the Global Malaria Programme of the World Health Organization and its Africa and South-East Asia regional offices for technical inputs in the development of this document. Contributions by delegates representing national malaria control programmes and national focal points of the Stockholm Convention from Botswana, Cambodia, China, Congo DRC, Comoros, Eritrea, Ethiopia, Ghana, India, Indonesia, Kenya, Malaysia, Mauritius, Morocco, Mozambique, Namibia, Nepal, Papua New Guinea, Senegal, South Africa, Sri Lanka, Swaziland, Vietnam and Zambia, and those from academia and non- governmental organizations are gratefully acknowledged. The Secretariat acknowledges the collaboration and support in organizing the workshops provided by Jiangsu Institute of Parasitic Diseases (JIPD), Wuxi, Jiangsu province, China, The Basel Convention Regional Centre for Asia and the Pacific/Stockholm Convention Regional Centre for Capacity-building and the Transfer of Technology in Asia and the Pacific, China and the Stockholm Convention Regional Center, Kenya. The financial support of Government of France on this work is gratefully acknowledged. The views expressed herein can in no way be taken to reflect the official opinion of France. 2 Copyright @ Secretariat of the Stockholm Convention (SSC), January 2016 This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, i.e. SSC, provided acknowledgement of the source is made. SSC would appreciate receiving a copy of any publication that uses this publication as a source.
    [Show full text]
  • An Observational Analysis of the Impact of Indoor Residual Spraying
    Wagman et al. Malar J (2018) 17:19 https://doi.org/10.1186/s12936-017-2168-2 Malaria Journal RESEARCH Open Access An observational analysis of the impact of indoor residual spraying with non‑pyrethroid insecticides on the incidence of malaria in Ségou Region, Mali: 2012–2015 Joseph Wagman1*, Christelle Gogue1, Kenzie Tynuv1, Jules Mihigo2, Elie Bankineza3, Mamadou Bah3, Diadier Diallo4, Andrew Saibu5, Jason H. Richardson6, Diakalkia Kone7, Seydou Fomba7, Jef Bernson8, Richard Steketee9, Laurence Slutsker9 and Molly Robertson1 Abstract Background: Ségou Region in Central Mali is an area of high malaria burden with seasonal transmission, high access to and use of long-lasting insecticidal nets (LLINs), and resistance to pyrethroids and DDT well documented in Anoph- eles gambiae s.l. (the principal vector of malaria in Mali). Ségou has recently received indoor residual spraying (IRS) sup- ported by Mali’s collaboration with the US President’s Malaria Initiative/Africa Indoor Residual Spraying programme. From 2012 to 2015, two diferent non-pyrethroid insecticides: bendiocarb in 2012 and 2013 and pirimiphos-methyl in 2014 and 2015, were used for IRS in two districts. This report summarizes the results of observational analyses carried out to assess the impact of these IRS campaigns on malaria incidence rates reported through local and district health systems before and after spraying. Methods: A series of retrospective time series analyses were performed on 1,382,202 rapid diagnostic test-confrmed cases of malaria reported by district routine health systems in Ségou Region from January 2012 to January 2016. Malaria testing, treatment, surveillance and reporting activities remained consistent across districts and years dur- ing the study period, as did LLIN access and use estimates as well as An.
    [Show full text]
  • DRONES in INTERNATIONAL DEVELOPMENT Innovating the Supply Chain to Reach Patients in Remote Areas
    DRONES IN INTERNATIONAL DEVELOPMENT Innovating the Supply Chain to Reach Patients in Remote Areas AUTHORS: SCOTT DUBIN, ASHLEY GREVE, RYAN TRICHE DISCLAIMER: This activity was funded by the U.S. President's Emergency Plan for AIDS Relief, through the U.S. Agency for International Development. The views and opinions of authors expressed herein are our own and do not necessarily state or reflect those of the U.S. Government. TABLE OF CONTENTS INTRODUCTION 1 EXECUTIVE SUMMARY 2 KEY RECOMMENDATIONS FOR SUCCESS 2 SECTION I: PLANNING 9 ACTIVITY OVERVIEW AND OBJECTIVES 9 SELECTING THE RIGHT DRONE 11 INITIAL INVESTIGATIONS AND SCOPING VISITS 12 VALIDATION OF USE CASES 13 ACTIVITY DESIGN 14 CONTRACTING WITH DRONE SERVICE PROVIDERS 17 SECTION II: IMPLEMENTATION 19 FLIGHT OPERATIONS APPROVALS 19 COMMUNITY SENSITIZATION 20 START-UP 20 PHASE 1: JUNE-JULY 2019 21 PHASE 2: AUGUST-OCTOBER 2019 23 PHASE 3: NOVEMBER 2019-FEBRUARY 2020 23 STAKEHOLDER AND PARTNERSHIP MANAGEMENT 25 INCIDENT MANAGEMENT 27 SECTION III: ASSESSING AND COMMUNICATING VALUE 29 HEALTH IMPACT ANALYSIS 30 CARGO DATA 33 SAMPLE TURNAROUND TIME 34 SAMPLE COLLECTIONS 35 COMMUNICATING VALUE 36 COST CONSIDERATIONS 37 ACKNOWLEDGEMENTS 39 ANNEX 1. RESULTS FRAMEWORK 40 ANNEX 2. FLIGHT DATA REQUIREMENTS 42 ANNEX 3. UAV PROCUREMENT GUIDE 43 ANNEX 4. MEDICINE DELIVERIES MISSION NOTES 48 ANNEX 5. SAMPLE INITIAL SCOPE OF WORK FOR DRONE SERVICE PROVIDER 49 INTRODUCTION The USAID Global Health Supply Chain Program-Procurement and Supply Management (USAID GHSC- PSM) project works to ensure an uninterrupted supply of public health commodities. Through procurement and delivery of medicines and in-country technical assistance, the project strengthens health supply chains for HIV/AIDS, malaria, family planning, and maternal, newborn, and child health.
    [Show full text]
  • The Impact of Indoor Residual Spraying (IRS) on Malaria Prevalence Between 2001 and 2009 in Mpumalanga Province, South Africa
    The impact of indoor residual spraying (IRS) on malaria prevalence between 2001 and 2009 in Mpumalanga province, South Africa By LINDOKUHLE M. NGOMANE A dissertation submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN EPIDEMIOLOGY in the School of Health Systems and Public Health Faculty of Health Sciences UNIVERSITY OF PRETORIA SUPERVISOR: PROF C. DE JAGER January 2012 © University of Pretoria © University of Pretoria ACKNOWLEDGEMENTS I would like to thank my supervisor, Prof Christiaan de Jager for his valuable and professional guidance and support as well as continuous motivation throughout this project. A special thank you to the Mpumalanga Department of Health: Malaria Control Programme for providing me with malaria data and support with additional relevant documents. I also thank the South African Weather Service for assisting me with climate data. This study would not have been possible without these Departments’ assistance with data provided in a timely manner. I thank Dr Steve Olorunju of the Medical Research Council (MRC) for his assistance with the statistical analysis and interpretation of the data. I am grateful to Mandla Zwane from Mpumalanga Department of Health for his comments and suggestions as well as support and encouragement during this project. Lastly, I thank my family, friends and colleagues for their patience, continued encouragement and support. L.M. Ngomane University of Pretoria, 2012 i DECLARATION I declare that the dissertation, which I hereby submit for the degree Master of Science (MSc) in Epidemiology at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.
    [Show full text]
  • RE-INTRODUCTION of INDOOR RESIDUAL SPRAYING INTO PACIFIC ISLANDS Background and Current Status
    RE-INTRODUCTION OF INDOOR RESIDUAL SPRAYING INTO PACIFIC ISLANDS Background and current status Dr Tessa Knox WHO Vanuatu Country Liaison Office APMEN Tech Talks - 30 September 2020 1 Background: Solomon Islands including targeted IRS 1/10/2020 2 Source: Adapted from - Solomon Islands Strategic Plan for Malaria Control and Elimination, 2012-2025 Background: Papua New Guinea 1/10/2020 3 Source: Papua New Guinea National Malaria Strategic Plan, 2012-2025 Background: Vanuatu Deaths, cases by parasite species, and annual parasite incidence (API) (2000-19) Tropical Cyclone Pam Source: National Malaria and Other Vector Borne Diseases Control Program Similarities across three Pacific countries • Ongoing persistent malaria transmission in some areas (An. farauti) • High vulnerability to natural disasters and outbreaks • High rural population and severe logistical challenges • Issues with LLIN access, usage or efficacy • Additional measures required to accelerate progress towards malaria elimination • IRS used successfully in the past though no empirical evidence • New tools (insecticide formulations, spray machines) give opportunity to increase spray quality and efficacy • Additional funding through GF (regular allocation, MEMTI and PAAR) • Recent Malaria Program Reviews and new Malaria Strategic Plans present renewed opportunity to emphasise importance of IRS Status: New strategic plans SOLOMON ISLANDS PAPUA NEW GUINEA VANUATU LLINs (mass + continuous) LLINs (mass + continuous) LLINs (mass + continuous) IRS in outbreak areas IRS in high burden/low LLIN use Responsive IRS in outbreaks (non-pyrethroid) areas (non-pyrethroid) and foci (non-pyrethroid) Alternative tools + personal Supplementary tools + personal Alternative tools + personal protection (high-risk, high- protection (high-risk, high- protection (high-risk, high- exposure populations) exposure populations) exposure populations) 6 Focal responsive (outbreaks, foci) Status: progress and plans • Drive is to re-commenced IRS in all three countries by 2021 • Additional resources identified (eg.
    [Show full text]
  • Schistosomiasis in Lake Malaŵi and the Potential Use of Indigenous Fish for Biological Control
    6 Schistosomiasis in Lake Malaŵi and the Potential Use of Indigenous Fish for Biological Control Jay R. Stauffer, Jr.1 and Henry Madsen2 1School of Forest Resources, Penn State University, University Park, PA 2DBL Centre for Health Research and Development, Faculty of Life Sciences, University of Copenhagen, Frederiksberg 1USA 2Denmark 1. Introduction Schistosomiasis is a parasitic disease of major public health importance in many countries in Africa, Asia, and South America, with an estimated 200 million people infected worldwide (World Health Organization, 2002). The disease is caused by trematodes of the genus Schistosoma that require specific freshwater snail species to complete their life cycles (Fig. 1). People contract schistosomiasis when they come in contact with water containing the infective larval stage (cercariae) of the trematode. Fig. 1. Life cycle of schistosomes (Source: CDC/Alexander J. da Silva, PhD/Melanie Moser) www.intechopen.com 120 Schistosomiasis Schistosome transmission, Schistosoma haematobium, is a major public health concern in the Cape Maclear area of Lake Malaŵi (Fig. 2), because the disease poses a great problem for local people and reduces revenue from tourism. Until the mid-1980’s, the open shores of Lake Malaŵi were considered free from human schistosomes (Evans, 1975; Stauffer et al., 1997); thus, only within relatively protected areas of the lake or tributaries would transmission take place. These areas were suitable habitat of intermediate host snail, Bulinus globosus. During mid-1980’s, reports indicated that transmission also occurred along open shorelines. It is now evident that in the southern part of the lake, especially Cape Maclear on Nankumba Peninsula, transmission occurs along exposed shorelines with sandy sediment devoid of aquatic plants via another intermediate host, Bulinus nyassanus (Madsen et al., 2001, 2004).
    [Show full text]
  • Impact of Indoor Residual Spraying with Lambda-Cyhalothrin On
    Am. J. Trop. Med. Hyg., 86(6), 2012, pp. 997–1004 doi:10.4269/ajtmh.2012.11-0621 Copyright © 2012 by The American Society of Tropical Medicine and Hygiene Impact of Indoor Residual Spraying with Lambda-Cyhalothrin on Malaria Parasitemia and Anemia Prevalence among Children Less than Five Years of Age in an Area of Intense, Year-Round Transmission in Malawi Jacek Skarbinski,* Dyson Mwandama, Adam Wolkon, Madalitso Luka, James Jafali, Alison Smith, Themba Mzilahowa, John Gimnig, Carl Campbell, John Chiphwanya, Doreen Ali, and Don P. Mathanga Malaria Branch, and Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia; Malaria Alert Centre, and Department of Community Health, College of Medicine, Blantyre, Malawi; Center for Tropical and Global Emerging Diseases, University of Georgia, Athens, Georgia; National Malaria Control Programme, Ministry of Health, Lilongwe, Malawi Abstract. Little is known about the impact of indoor residual spraying (IRS) in areas with intense malaria transmis- sion such as sub-Saharan Africa. In Malawi, IRS with lambda-cyhalothrin has been applied annually in an area of intense year-long transmission since 2007. We evaluated the impact of IRS on parasitemia and anemia prevalence in children less than five years of age by using a cross-sectional household survey conducted in 2009, six months after the second IRS spray round. We measured malaria parasitemia and anemia (hemoglobin level < 11 g/dL) in 899 children less than five years of age and used binomial regression to assess the impact of IRS by comparing children living in a household sprayed with IRS (direct IRS) with those in a household not sprayed with IRS, but in an IRS area (indirect IRS) and those living in a household not sprayed with IRS and not in an IRS area (no IRS).
    [Show full text]
  • Indoor Residual Spraying for Preventing Malaria (Review)
    Indoor residual spraying for preventing malaria (Review) Pluess B, Tanser FC, Lengeler C, Sharp BL This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2010, Issue 4 http://www.thecochranelibrary.com Indoor residual spraying for preventing malaria (Review) Copyright © 2010 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 BACKGROUND .................................... 2 OBJECTIVES ..................................... 4 METHODS ...................................... 4 RESULTS....................................... 7 Figure1. ..................................... 10 Figure2. ..................................... 11 DISCUSSION ..................................... 18 AUTHORS’CONCLUSIONS . 19 ACKNOWLEDGEMENTS . 19 REFERENCES ..................................... 20 CHARACTERISTICSOFSTUDIES . 27 DATAANDANALYSES. 45 HISTORY....................................... 45 CONTRIBUTIONSOFAUTHORS . 45 DECLARATIONSOFINTEREST . 45 SOURCESOFSUPPORT . 45 DIFFERENCES BETWEEN PROTOCOL AND REVIEW . .... 45 Indoor residual spraying for preventing malaria (Review) i Copyright © 2010 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. [Intervention Review] Indoor residual spraying for preventing malaria Bianca Pluess1, Frank C Tanser2, Christian Lengeler1, Brian L Sharp3 1Public Health and Epidemiology, Swiss Tropical
    [Show full text]
  • Evaluating the Additive Effect of an Indoor Residual Spraying Campaign
    Evaluating the additive effect of an indoor residual spraying campaign for reducing the burden of malaria in an Eritrean low-transmission setting Impact Evaluation Concept Note IRS Impact Evaluation: Eritrea: version 05.14.09 1 Table of Contents A. Background ........................................................................................................................ 3 B. Project Goal ........................................................................................................................ 3 C. Research Design and Methods ........................................................................................... 4 C.1. Study Site Description ..................................................................................................... 5 C.2. Intervention and Control Arm Description ..................................................................... 5 C.3. Evaluation Plan ............................................................................................................... 6 C.4. Study Outcomes and Indicators....................................................................................... 6 C.5. Sampling Design ............................................................................................................. 7 C.6. Sample Size and Power Calculations .............................................................................. 8 C.7. Data Collection Activities ............................................................................................... 8 C.7.1 Entomological
    [Show full text]
  • Is Indoor Residual Spraying Broken and What Should Be Fixed?
    SL-1 Is Indoor Residual Spraying broken and what should be fixed? Hindrik Bouwman*1, Henrik Kylin1,2, Riana Bornman3 1Research Unit: Environmental Sciences and Management, North-West University, South Africa 2Department of Thematic Studies, Linkoping University, Sweden 3University of Pretoria Centre for Sustainable Malaria Control, and School of Health Systems and Public Health, University of Pretoria, South Africa Indoor residual spraying (IRS) has been and is still a very successful method to control malaria. We are concerned that not enough research attention is given to improving IRS and that most funding goes towards modern but seemingly still ineffectual methods. We believe that there is ample scope for improving IRS, while reducing insecticide exposure Keywords: Indoor residual spray, IRS, Botha de Meillon, policy 1. Introduction Indiscriminate use and use in agriculture may have The effectiveness of DDT and other insecticides led to resistance in many areas. Combining basic when properly used as indoor residual spray (IRS) biological knowledge about reproductive behaviour to prevent the transmission of malaria is not in of the female vector mosquito with residual question [1] (Fig 1). We can safely assume that toxic chemicals within and close to residential millions of lives have been saved in the more than areas where most infections occur, is effective at 80 years since it was first used [1]. The high body preventing transmission, but bad at preventing burden of DDT of those protected by IRS, as well as chemical exposure and uptake of the chemicals by the human health consequences of those protected residents - posing a paradox. by all IRS insecticides are of great concern [1,2].
    [Show full text]