Writing Secure Code / Michael Howard, David Leblanc
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Medtronic Care Management Services, LLC CC FM TLS/SRTP FIPS 140
Medtronic Care Management Services, LLC CC FM TLS/SRTP FIPS 140‐2 Cryptographic Module Non‐Proprietary Security Policy Version: 1.6 Date: March 16, 2016 Copyright Medtronic Care Management Services 2016 Version 1.6 Page 1 of 14 Medtronic Care Management Services Public Material – May be reproduced only in its original entirety (without revision). Table of Contents 1 Introduction .................................................................................................................... 4 1.1 Cryptographic Boundary ..............................................................................................................5 1.2 Mode of Operation .......................................................................................................................5 2 Cryptographic Functionality ............................................................................................. 6 2.1 Critical Security Parameters .........................................................................................................7 2.2 Public Keys ....................................................................................................................................8 3 Roles, Authentication and Services .................................................................................. 8 3.1 Assumption of Roles .....................................................................................................................8 3.2 Services and CSP Access Rights ....................................................................................................8 -
No Random, No Ransom: a Key to Stop Cryptographic Ransomware
No Random, No Ransom: A Key to Stop Cryptographic Ransomware Ziya Alper Genç, Gabriele Lenzini, and Peter Y.A. Ryan Interdisciplinary Centre for Security Reliability and Trust (SnT) University of Luxembourg Abstract. To be effective, ransomware has to implement strong encryp- tion, and strong encryption in turn requires a good source of random numbers. Without access to true randomness, ransomware relies on the pseudo random number generators that modern Operating Systems make available to applications. With this insight, we propose a strategy to miti- gate ransomware attacks that considers pseudo random number generator functions as critical resources, controls accesses on their APIs and stops unauthorized applications that call them. Our strategy, tested against 524 active real-world ransomware samples, stops 94% of them, including WannaCry, Locky, CryptoLocker and CryptoWall. Remarkably, it also nullifies NotPetya, the latest offspring of the family which so far has eluded all defenses. Keywords: ransomware, cryptographic malware, randomness, mitigation. 1 Introduction Ransomware is a malware, a malicious software that blocks access to victim’s data. In contrast to traditional malware, whose break-down is permanent, ransomware’s damage is reversible: access to files can be restored on the payment of a ransom, usually a few hundreds US dollars in virtual coins. Despite being relatively new, this cyber-crime is spreading fast and it is believed to become soon a worldwide pandemic. According to [24], a US Govern- ment’s white paper dated June 2016, on average more than 4,000 ransomware attacks occurred daily in the USA. This is 300-percent increase from the previous year and such important increment is probably due to the cyber-crime’s solid business model: with a small investment there is a considerable pecuniary gain which, thanks to the virtual currency technology, can be collected reliably and in a way that is not traceable by the authorities. -
Cryptanalysis of the Random Number Generator of the Windows Operating System
Cryptanalysis of the Random Number Generator of the Windows Operating System Leo Dorrendorf School of Engineering and Computer Science The Hebrew University of Jerusalem 91904 Jerusalem, Israel [email protected] Zvi Gutterman Benny Pinkas¤ School of Engineering and Computer Science Department of Computer Science The Hebrew University of Jerusalem University of Haifa 91904 Jerusalem, Israel 31905 Haifa, Israel [email protected] [email protected] November 4, 2007 Abstract The pseudo-random number generator (PRNG) used by the Windows operating system is the most commonly used PRNG. The pseudo-randomness of the output of this generator is crucial for the security of almost any application running in Windows. Nevertheless, its exact algorithm was never published. We examined the binary code of a distribution of Windows 2000, which is still the second most popular operating system after Windows XP. (This investigation was done without any help from Microsoft.) We reconstructed, for the ¯rst time, the algorithm used by the pseudo- random number generator (namely, the function CryptGenRandom). We analyzed the security of the algorithm and found a non-trivial attack: given the internal state of the generator, the previous state can be computed in O(223) work (this is an attack on the forward-security of the generator, an O(1) attack on backward security is trivial). The attack on forward-security demonstrates that the design of the generator is flawed, since it is well known how to prevent such attacks. We also analyzed the way in which the generator is run by the operating system, and found that it ampli¯es the e®ect of the attacks: The generator is run in user mode rather than in kernel mode, and therefore it is easy to access its state even without administrator privileges. -
Vulnerabilities of the Linux Random Number Generator
Black Hat 2006 Open to Attack Vulnerabilities of the Linux Random Number Generator Zvi Gutterman Chief Technology Officer with Benny Pinkas Tzachy Reinman Zvi Gutterman CTO, Safend Previously a chief architect in the IP infrastructure group for ECTEL (NASDAQ:ECTX) and an officer in the Israeli Defense Forces (IDF) Elite Intelligence unit. Master's and Bachelor's degrees in Computer Science from the Israeli Institute of Technology. Ph.D. candidate at the Hebrew University of Jerusalem, focusing on security, network protocols, and software engineering. - Proprietary & Confidential - Safend Safend is a leading provider of innovative endpoint security solutions that protect against corporate data leakage and penetration via physical and wireless ports. Safend Auditor and Safend Protector deliver complete visibility and granular control over all enterprise endpoints. Safend's robust, ultra- secure solutions are intuitive to manage, almost impossible to circumvent, and guarantee connectivity and productivity, without sacrificing security. For more information, visit www.safend.com. - Proprietary & Confidential - Pseudo-Random-Number-Generator (PRNG) Elementary and critical component in many cryptographic protocols Usually: “… Alice picks key K at random …” In practice looks like random.nextBytes(bytes); session_id = digest.digest(bytes); • Which is equal to session_id = md5(get next 16 random bytes) - Proprietary & Confidential - If the PRNG is predictable the cryptosystem is not secure Demonstrated in - Netscape SSL [GoldbergWagner 96] http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html Apache session-id’s [GuttermanMalkhi 05] http://www.gutterman.net/publications/2005/02/hold_your_sessions_an_attack_o.html - Proprietary & Confidential - General PRNG Scheme 0 0 01 Stateseed 110 100010 Properties: 1. Pseudo-randomness Output bits are indistinguishable from uniform random stream 2. -
Wheel of Fortune ANALYZING EMBEDDED OS (CS)PRNGS
Wheel of Fortune ANALYZING EMBEDDED OS (CS)PRNGS JOS WETZELS ALI ABBASI WHOIS • Jos Wetzels1,2 • Researcher, MSc student • samvartaka.github.io • Ali Abbasi1,3 • Ph.D. candidate • http://wwwhome.cs.utwente.nl/~abbasia/ 1Distributed and Embedded System Security (DIES) group, University of Twente, Netherlands 2SEC Group, Eindhoven University of Technology, Netherlands 3SYSSEC Group, Ruhr-University Bochum, Germany ABOUT • Introduction to Embedded OS Random Number Generators • Embedded Challenges Overview • Case Studies • Product of ongoing research EMBEDDED SYSTEMS ARE EVERYWHERE EMBEDDED SYSTEMS ARE BOOMING © DigiReach EMBEDDED RANDOMNESS IS HARD ROADMAP • Why Does This Matter? • OS PRNGs • Embedded Challenges • Case Studies SOME TERMS • Interested in random bits • Cannot predict next bit with Pr. > 0.5 • Entropy (Shannon / Renyi / …) • Measure of information unpredictability • High entropy → very random WHY RANDOMNESS IS IMPORTANT? • Cryptography • Keys, Nonces, Etc. • Exploit Mitigations • ASLR → Randomize address space • Stack Smashing Protection → Randomize canaries • Randomness is critical to security ecosystem • Failure has massive impact TRUE RANDOM NUMBER GENERATORS • Physical (‘true’) entropy source • Radioactive Decay, Shot Noise, Etc. • Two ways to implement it: • External (dedicated device) • Trusted Platform Module (TPM) • Hardware Security Module (HSM) • Integrated • Intel Ivy Bridge RdRand • Certain Smartcards • Downsides • Expensive • Portability issues PSEUDO RANDOM NUMBER GENERATORS • Software based • Deterministic algorithm -
Programmation Utilisant Les Interruptions Du Syst`Eme D’Exploitation : Le Cas De MS-DOS
Programmation utilisant les interruptions du syst`eme d’exploitation : le cas de MS-DOS Patrick C´egielski Janvier 2019 Pour Ir`ene et Marie Legal Notice Copyright c 2019 Patrick C´egielski Universit´eParis XII – IUT de S´enart-Fontainebleau Route foresti`ere Hurtault F-77300 Fontainebleau [email protected] iv Table des mati`eres Pr´eface ix 0.1 Bibliographie ...................................... x 1 Lesgrandesfonctionsd’unsyst`emed’exploitation 1 1.1 Etudeg´en´erale´ ..................................... 2 1.1.1 Les deux tˆaches d’un syst`eme d’exploitation . .... 2 1.1.2 Principe des syst`emes d’exploitation . 3 1.2 CasdeMS-DOS .................................... 5 1.2.1 Mod`eleentroiscouches ............................ 5 1.3 Historique........................................ 6 1.4 Bibliographie ...................................... 9 I Le syst`eme d’exploitation comme machine virtuelle 11 2 Programmer avec le DOS 13 2.1 Lesentr´ees-sortiesstandard . ....... 14 2.1.1 Fonction 02h d’affichaged’uncaract`ere . 14 2.1.2 Fonction 01h desaisied’uncaract`ereavec´echo . 15 2.1.3 Fonction 08h desaisied’uncaract`eresans´echo . 17 2.1.4 Saisie d’une chaˆıne de caract`eres . .. 17 2.2 L’interruption 33h de manipulation de la souris . 18 2.2.1 Fonction 00h d’initialisation de la souris . 18 2.2.2 Fonctions 01h et 02h d’affichage et de transparence du pointeur . 18 2.2.3 Fonction 03h de r´ecup´eration de la position du pointeur . 19 2.2.4 Fonction 04h ded´eplacementdupointeur . 20 2.3 Fonction 05h d’impression............................... 21 2.4 Lesyst`eme ....................................... 22 2.4.1 Fonction 2Ah d’obtentiondeladate ..................... 22 2.4.2 R´ecup´eration de l’heure . -
Security Policy for FIPS 140-2 Validation
Enhanced Cryptographic Provider Security Policy for FIPS 140‐2 Validation Microsoft Windows 8 Microsoft Windows Server 2012 Microsoft Windows RT Microsoft Surface Windows RT Microsoft Surface Windows 8 Pro Microsoft Windows Phone 8 Microsoft Windows Storage Server 2012 Enhanced Cryptographic Provider (RSAENH.DLL) DOCUMENT INFORMATION Version Number 1.2 Updated On December 17, 2014 © 2014 Microsoft. All Rights Reserved Page 1 of 25 This Security Policy is non‐proprietary and may be reproduced only in its original entirety (without revision). Enhanced Cryptographic Provider The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication. This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT. Complying with all applicable copyright laws is the responsibility of the user. This work is licensed under the Creative Commons Attribution-NoDerivs- NonCommercial License (which allows redistribution of the work). To view a copy of this license, visit http://creativecommons.org/licenses/by-nd-nc/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property. -
Swsoft Gewinnt Ex-Microsoft-Systemarchitekten Als Senior Technical Advisor
SWsoft gewinnt Ex-Microsoft-Systemarchitekten als Senior Technical Advisor Mark Zbikowski kommt mit Expertenwissen über Windows- Systemprogrammierung zum Unternehmen für Virtualisierungs- und Automatisierungssoftware Darmstadt, 17.01.2008. – SWsoft vermeldet einen prominenten neuen Berater: Mark Zbikowski, ehemaliger Systemarchitekt bei Microsoft und einer der Pioniere der Softwareentwicklung überhaupt, wird für das Unternehmen als Senior Technical Advisor tätig. In dieser Funktion wird er SWsoft unterstützen, indem er das Entwicklungsteam und die Führungskräfte berät. Während seiner Zeit bei Microsoft leitete Zbikowski MS-DOS-, OS/2-, Cairo- und NT-Projekte. Im Jahre 2006 wurde er für seine 25 Dienstjahre in der Firma geehrt und war der erste Mitarbeiter - nach Bill Gates und Steve Ballmer - der diese Karrieremarke erreichte. Zbikowski entwarf das Dateiformat der „EXE“-Programme unter MS-DOS; seine Initialen „MZ“ zieren bis heute die Kopfdaten dieses Formats für ausführbare Dateien. Er war ein wichtiger Designer und Entwickler für das gängigste Dateisystem Windows NTFS. Heute lehrt Zbikowski an der University of Washington, nachdem er im Juni 2006 bei Microsoft ausgeschieden war. Er besitzt einen von Harvard verliehenen Bachelor-Grad in angewandter Mathematik und einen Master-Abschluss von Yale. "Die Unternehmenskultur bei SWsoft erinnert an die aufregenden Anfangsjahre von Microsoft – eine junge Firma voller Energie und mit riesigen Chancen, die Veränderungen wesentlich mitzugestalten, die es im Einsatz der Informationstechnologie zum Nutzen von Verbrauchern und Unternehmen überall auf der Welt geben wird“, sagt Zbikowski. „Ich freue mich sehr auf den Beginn meiner Mitarbeit an SWsofts kontinuierlicher Entwicklung von Weltklasse-Software für Virtualisierung, Management und Automatisierung.“ “Marks Erfahrungen mit der Erstellung von Systemkomponenten für die meistverbreitete Software weltweit – Microsoft Windows – sind von großer Bedeutung für unsere Arbeit", so Serguei Beloussov, CEO bei SWsoft. -
Random Number Generator
Random number generator A random number generator (often abbreviated as RNG) is a computational or physical device designed to generate a sequence of numbers or symbols that lack any pattern, i.e. appear random . Computer-based systems for random number generation are widely used, but often fall short of this goal, though they may meet some statistical tests for randomness intended to ensure that they do not have any easily discernible patterns. Methods for generating random results have existed since ancient times, including dice , coin flipping , the shuffling of playing cards , the use of yarrow stalks in the I Ching , and many other techniques. "True" random numbers vs. pseudo-random numbers There are two principal methods used to generate random numbers. One measures some physical phenomenon that is expected to be random and then compensates for possible biases in the measurement process. The other uses computational algorithms that produce long sequences of apparently random results, which are in fact determined by a shorter initial seed or key. The latter type are often called pseudo-random number generators . A "random number generator" based solely on deterministic computation cannot be regarded as a "true" random number generator, since its output is inherently predictable. John von Neumann famously said "Anyone who uses arithmetic methods to produce random numbers is in a state of sin." How to distinguish a "true" random number from the output of a pseudo-random number generator is a very difficult problem. However, carefully chosen pseudo-random number generators can be used instead of true random numbers in many applications. -
1Password Security Design White Paper
1Password Security Design 1Password Memberships [git] • Branch: main @ adb528d • Release: v0.3.1 (2021-04-19) Head tags: v0.3.1 Key Security Features 1Password offers a number of notable security features, including True end-to-end encryption All cryptographic keys are generated and man- aged by the client on your devices, and all encryption is done locally. Details are in A deeper look at keys. Server ignorance We are never in the position of learning your Master Password or your cryptographic keys. Details are in A modern ap- proach to authentication. Nothing “crackable” is stored Often a server will store the password hash. If captured, this can be used in password cracking attempts. Our two-secret key derivation mixes your locally held Secret Key with your Master Password so that data we store cannot be used in cracking attempts. See Making verifiers uncrackable with 2SKD for details. Thrice encrypted in transport When your already encrypted data travels between your device and our servers, it is encrypted and authenti- cated by Transport Layer Security (TLS) and our own transport en- cryption. Details are in Transport Security. You control sharing Only someone who holds the keys to a vault can share that data with someone else. We do not have those keys, so sharing decisions come from you. See How Vault Items Are Securely Shared for details. Team managed data recovery We do not have the ability to recover your data if you forget your Master Password or lose your Secret Key (since you have end-to-end security). But recovery keys can be shared with team members. -
Portable Executable מאת Spl0it
Portable Executable מאת Spl0it הקדמה - מה זה PE? ויקיפדיה: "PE )קיצור של Portable Executable( הוא פורמט שפותח ע"י Microsoft עבור קבצי ריצה, קבצי אובייקט, ספריות קישור-דינמי )DLL(, קבצי פונטים )FON( ועוד אשר משומשים בגרסאות ה32- וה- 64 ביט של מערכות המשתמשות במערכת ההפעלה PE .Windows הוא מבנה נתונים אשר מקבץ את המידע ההכרחי בשביל שה-Loader של Windows יצליח לנהל את הקוד בזמן ריצה". סוגי הקבצים הנפוצים ביותר המשתמשים בפורמט PE: exe - קובץ ריצה dll - ספריית קישור-דינמי sys/drv - קובץ מערכת )דרייבר לקרנל( ocx - קובץ שליטה ב-ActiveX cpl - לוח בקרה scr - שומר מסך הערה: לקבצי lib. )ספריות סטטיות( יש פורמט שונה, לא PE. מערכת ההפעלה Windows עושה שימוש בקבועים הנ"ל כדי לייצג גדלים של משתנים: גודל טיפוס בית CHAR (Character) 1 2 בתים WORD 2 בתים (SHORT (Short Integer 4 בתים (DWORD (Double Word 4 בתים (LONG (Long Integer 8 בתים (QWORD (Quad Word 8 בתים LONGLONG כלים לחקירת ה-PE: PEView - לטובת הסתכלות על ה-PE של קבצים בפורמט זה CFF Explorer - אותו דבר, אך עם פיצ'רים נוספים כגון עריכת ה-PE בהקסדצימלי והמרת הקובץ לשפת אסמבלי WinDbg - עבור ניפוי שגיאות )Debugging( בסיסי פורמט ה-PE נראה כך )התמונה ממוספרת כדי שההסברים בהמשך המאמר יהיו ברורים יותר. לתמונה "נקייה" יותר, לחצו כאן(: Portable Executable www.DigitalWhisper.co.il גליון 90, ינואר 2018 2 DOS-Header המבנה הראשון, הנמצא ב-0x0 Offset, נקרא DOS-Header והוא נראה כך )מספר 1 בתמונת פורמט ה- :)PE הערה להמשך המאמר: שדות המסומנים בכחול הם שדות שחשובים לנו. לא אוכל לכסות את כלל השדות במאמר זה, לכן אכסה רק את השדות החשובים. -
Assurance Activity
Assurance Activities Report for Nessus Agent 8.0.0 Version 1.1 4 December 2020 Evaluated By: Leidos Inc. https://www.leidos.com/civil/commercial-cyber/product-compliance Common Criteria Testing Laboratory 6841 Benjamin Franklin Drive Columbia, MD 21046 Prepared for: National Information Assurance Partnership Common Criteria Evaluation and Validation Scheme © 2020 Leidos. All rights reserved The Developer of the TOE: Tenable, Inc. 7021 Columbia Gateway Dr. Columbia, MD 21046 The TOE Evaluation was Sponsored by: Tenable, Inc. 7021 Columbia Gateway Dr. Columbia, MD 21046 Evaluation Personnel: Anthony J. Apted Pascal Patin Allen Sant Furukh Siddique Common Criteria Version: Common Criteria for Information Technology Security Evaluation Part 1: Introduction and general model, Version 3.1, Revision 5, April 2017. Common Criteria for Information Technology Security Evaluation Part 2: Security functional components, Version 3.1, Revision 5, April 2017. Common Criteria for Information Technology Security Evaluation Part 3: Security assurance components, Version 3.1, Revision 5, April 2017. Common Evaluation Methodology Version: Common Methodology for Information Technology Security Evaluation, Evaluation Methodology, Version 3.1, Revision 5, April 2017. Protection Profiles: Protection Profile for Application Software, Version 1.3, 1 March 2019 Functional Package for Transport Layer Security (TLS), Version 1.1, 12 February 2019 Page i of iv © 2020 Leidos. All rights reserved Revision History Version Date Description 0.1 17 February 2020 Initial internal draft 0.2 22 April 2020 Update for modified ST 1.0 30 October 2020 Final version for Check-out 1.1 4 December 2020 Updated for Check-out resubmission Page ii of iv © 2020 Leidos.