Slow Light in Nanophotonic Materials from ‘Trapped Rainbows’ to Quantum Memories
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Slow and Stopped Light by Light-Matter Coherence Control
Slow and stopped light by light-matter coherence control Jonas Tidström Doctoral Thesis in Photonics Stockholm, Sweden 2009 TRITA-ICT/MAP AVH Report 2009:09 KTH School of Information and ISSN 1653-7610 Communication Theory ISRN KTH/ICT-MAP/AVH-2009:09-SE SE-164 40 Kista ISBN 978-91-7415-429-0 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska Högskolan framlägges till offentlig granskning för avläggande av filosofie doktorsexamen i fotonik, tors- dagen den 29 november 2009 kl 13:15 i sal 432, Forum, Kungl Tekniska Högskolan, Isafjordsgatan 39 Kista. c Jonas Tidström, September 2009 ° Typesset with LATEX 2ε on September 28, 2009 Universitetsservice US AB, September 2009, Abstract In this thesis we study light-matter coherence phenomena related to the interaction of a coherent laser field and the so-called Λ-system, a three-level quantum sys- tem (e.g., an atom). We observe electromagnetically induced transparency (EIT), slow and stored light in hot rubidium vapor. For example, a 6 µs Gaussian pulse 1 propagate at a velocity of 1kms− (to be compared with the normal velocity 1 ∼ of 300 000 km s− ). Dynamic changes of the control parameter allows us to slow down a pulse to a complete stop, store it for 100 µs, and then release it. During the storage time, and also during the release∼ process, some properties of the light pulse can be changed, e.g., frequency chirping of the pulse is obtained by means of Zeeman shifting the energy levels of the Λ-system. If, bichromatic continuous light fields are applied we observe overtone generation in the beating signal, and a narrow ‘dip’ in overtone generation efficiency on two-photon resonance, narrower than the ‘coherent population trapping’ transparency. -
Quantum Dots
Quantum Dots www.nano4me.org © 2018 The Pennsylvania State University Quantum Dots 1 Outline • Introduction • Quantum Confinement • QD Synthesis – Colloidal Methods – Epitaxial Growth • Applications – Biological – Light Emitters – Additional Applications www.nano4me.org © 2018 The Pennsylvania State University Quantum Dots 2 Introduction Definition: • Quantum dots (QD) are nanoparticles/structures that exhibit 3 dimensional quantum confinement, which leads to many unique optical and transport properties. Lin-Wang Wang, National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. <http://www.nersc.gov> GaAs Quantum dot containing just 465 atoms. www.nano4me.org © 2018 The Pennsylvania State University Quantum Dots 3 Introduction • Quantum dots are usually regarded as semiconductors by definition. • Similar behavior is observed in some metals. Therefore, in some cases it may be acceptable to speak about metal quantum dots. • Typically, quantum dots are composed of groups II-VI, III-V, and IV-VI materials. • QDs are bandgap tunable by size which means their optical and electrical properties can be engineered to meet specific applications. www.nano4me.org © 2018 The Pennsylvania State University Quantum Dots 4 Quantum Confinement Definition: • Quantum Confinement is the spatial confinement of electron-hole pairs (excitons) in one or more dimensions within a material. – 1D confinement: Quantum Wells – 2D confinement: Quantum Wire – 3D confinement: Quantum Dot • Quantum confinement is more prominent in semiconductors because they have an energy gap in their electronic band structure. • Metals do not have a bandgap, so quantum size effects are less prevalent. Quantum confinement is only observed at dimensions below 2 nm. www.nano4me.org © 2018 The Pennsylvania State University Quantum Dots 5 Quantum Confinement • Recall that when atoms are brought together in a bulk material the number of energy states increases substantially to form nearly continuous bands of states. -
Hyperbolic Metamaterials Based on Quantum-Dot Plasmon-Resonator Nanocomposites
Downloaded from orbit.dtu.dk on: Oct 04, 2021 Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites. Zhukovsky, Sergei; Ozel, T.; Mutlugun, E.; Gaponik, N.; Eychmuller, A.; Lavrinenko, Andrei; Demir, H. V.; Gaponenko, S. V. Published in: Optics Express Link to article, DOI: 10.1364/OE.22.018290 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Zhukovsky, S., Ozel, T., Mutlugun, E., Gaponik, N., Eychmuller, A., Lavrinenko, A., Demir, H. V., & Gaponenko, S. V. (2014). Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites. Optics Express, 22(15), 18290-18298. https://doi.org/10.1364/OE.22.018290 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites 1, 2 2,3 4 S. V. Zhukovsky, ∗ T. Ozel, E. Mutlugun, N. Gaponik, A. -
Quantum Dot and Electron Acceptor Nano-Heterojunction For
www.nature.com/scientificreports OPEN Quantum dot and electron acceptor nano‑heterojunction for photo‑induced capacitive charge‑transfer Onuralp Karatum1, Guncem Ozgun Eren2, Rustamzhon Melikov1, Asim Onal3, Cleva W. Ow‑Yang4,5, Mehmet Sahin6 & Sedat Nizamoglu1,2,3* Capacitive charge transfer at the electrode/electrolyte interface is a biocompatible mechanism for the stimulation of neurons. Although quantum dots showed their potential for photostimulation device architectures, dominant photoelectrochemical charge transfer combined with heavy‑metal content in such architectures hinders their safe use. In this study, we demonstrate heavy‑metal‑free quantum dot‑based nano‑heterojunction devices that generate capacitive photoresponse. For that, we formed a novel form of nano‑heterojunctions using type‑II InP/ZnO/ZnS core/shell/shell quantum dot as the donor and a fullerene derivative of PCBM as the electron acceptor. The reduced electron–hole wavefunction overlap of 0.52 due to type‑II band alignment of the quantum dot and the passivation of the trap states indicated by the high photoluminescence quantum yield of 70% led to the domination of photoinduced capacitive charge transfer at an optimum donor–acceptor ratio. This study paves the way toward safe and efcient nanoengineered quantum dot‑based next‑generation photostimulation devices. Neural interfaces that can supply electrical current to the cells and tissues play a central role in the understanding of the nervous system. Proper design and engineering of such biointerfaces enables the extracellular modulation of the neural activity, which leads to possible treatments of neurological diseases like retinal degeneration, hearing loss, diabetes, Parkinson and Alzheimer1–3. Light-activated interfaces provide a wireless and non-genetic way to modulate neurons with high spatiotemporal resolution, which make them a promising alternative to wired and surgically more invasive electrical stimulation electrodes4,5. -
1.07 Quantum Dots: Theory N Vukmirovic´ and L-W Wang, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
1.07 Quantum Dots: Theory N Vukmirovic´ and L-W Wang, Lawrence Berkeley National Laboratory, Berkeley, CA, USA ª 2011 Elsevier B.V. All rights reserved. 1.07.1 Introduction 189 1.07.2 Single-Particle Methods 190 1.07.2.1 Density Functional Theory 191 1.07.2.2 Empirical Pseudopotential Method 193 1.07.2.3 Tight-Binding Methods 194 1.07.2.4 k ? p Method 195 1.07.2.5 The Effect of Strain 198 1.07.3 Many-Body Approaches 201 1.07.3.1 Time-Dependent DFT 201 1.07.3.2 Configuration Interaction Method 202 1.07.3.3 GW and BSE Approach 203 1.07.3.4 Quantum Monte Carlo Methods 204 1.07.4 Application to Different Physical Effects: Some Examples 205 1.07.4.1 Electron and Hole Wave Functions 205 1.07.4.2 Intraband Optical Processes in Embedded Quantum Dots 206 1.07.4.3 Size Dependence of the Band Gap in Colloidal Quantum Dots 208 1.07.4.4 Excitons 209 1.07.4.5 Auger Effects 210 1.07.4.6 Electron–Phonon Interaction 212 1.07.5 Conclusions 213 References 213 1.07.1 Introduction laterally by electrostatic gates or vertically by etch- ing techniques [1,2]. The properties of this type of Since the early 1980s, remarkable progress in technology quantum dots, sometimes termed as electrostatic has been made, enabling the production of nanometer- quantum dots, can be controlled by changing the sized semiconductor structures. This is the length scale applied potential at gates, the choice of the geometry where the laws of quantum mechanics rule and a range of gates, or external magnetic field. -
Electrodynamic Modeling of Quantum Dot Luminescence in Plasmonic Metamaterials † ‡ † ‡ ‡ § Ming Fang,*, , Zhixiang Huang,*, Thomas Koschny, and Costas M
Article pubs.acs.org/journal/apchd5 Electrodynamic Modeling of Quantum Dot Luminescence in Plasmonic Metamaterials † ‡ † ‡ ‡ § Ming Fang,*, , Zhixiang Huang,*, Thomas Koschny, and Costas M. Soukoulis , † Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei 230001, China ‡ Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States § Institute of Electronic Structure and Laser, FORTH, 71110 Heraklion, Crete, Greece ABSTRACT: A self-consistent approach is proposed to simulate a coupled system of quantum dots (QDs) and metallic metamaterials. Using a four-level atomic system, an artificial source is introduced to simulate the spontaneous emission process in the QDs. We numerically show that the metamaterials can lead to multifold enhancement and spectral narrowing of photoluminescence from QDs. These results are consistent with recent experimental studies. The proposed method represents an essential step for developing and understanding a metamaterial system with gain medium inclusions. KEYWORDS: photoluminescence, plasmonics, metamaterials, quantum dots, finite-different time-domain, spontaneous emission he fields of plasmonic metamaterials have made device design based on quantum electrodynamics. In an active − T spectacular experimental progress in recent years.1 3 medium, the electromagnetic field is treated classically, whereas The metal-based metamaterial losses at optical frequencies atoms are treated quantum mechanically. According to the are unavoidable. Therefore, control of conductor losses is a key current understanding, the interaction of electromagnetic fields challenge in the development of metamaterial technologies. with an active medium can be modeled by a classical harmonic These losses hamper the development of optical cloaking oscillator model and the rate equations of atomic population devices and negative index media. -
PHYS 352 Electromagnetic Waves
Part 1: Fundamentals These are notes for the first part of PHYS 352 Electromagnetic Waves. This course follows on from PHYS 350. At the end of that course, you will have seen the full set of Maxwell's equations, which in vacuum are ρ @B~ r~ · E~ = r~ × E~ = − 0 @t @E~ r~ · B~ = 0 r~ × B~ = µ J~ + µ (1.1) 0 0 0 @t with @ρ r~ · J~ = − : (1.2) @t In this course, we will investigate the implications and applications of these results. We will cover • electromagnetic waves • energy and momentum of electromagnetic fields • electromagnetism and relativity • electromagnetic waves in materials and plasmas • waveguides and transmission lines • electromagnetic radiation from accelerated charges • numerical methods for solving problems in electromagnetism By the end of the course, you will be able to calculate the properties of electromagnetic waves in a range of materials, calculate the radiation from arrangements of accelerating charges, and have a greater appreciation of the theory of electromagnetism and its relation to special relativity. The spirit of the course is well-summed up by the \intermission" in Griffith’s book. After working from statics to dynamics in the first seven chapters of the book, developing the full set of Maxwell's equations, Griffiths comments (I paraphrase) that the full power of electromagnetism now lies at your fingertips, and the fun is only just beginning. It is a disappointing ending to PHYS 350, but an exciting place to start PHYS 352! { 2 { Why study electromagnetism? One reason is that it is a fundamental part of physics (one of the four forces), but it is also ubiquitous in everyday life, technology, and in natural phenomena in geophysics, astrophysics or biophysics. -
Quantum Computation with Two-Dimensional Graphene
Quantum computation with two-dimensional graphene quantum dots* Jason Lee(李杰森), Zhi-Bing Li(李志兵), and Dao-Xin Yao (姚道新)†† State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China Keywords: graphene, quantum dot, quantum computation, Kagome lattice PACS: 73.22.Pr, 73.21.La, 73.22.–f, 74.25.Jb Abstract We study an array of graphene nano sheets that form a two-dimensional S = 1/2 Kagome spin lattice used for quantum computation. The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation. We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots. It is shown that both schemes contain a great amount of information for quantum computation. The corresponding gate operations are also proposed. 1. Introduction There has been increasing interest in grapheme since its discovery. [1−3] It has shown excellent electronic[4,5] and mechanical [6,7] properties and is also a promising candidate for biosensors.[8,9] Before this amazing discovery, Wallace had studied the band structure of graphite and found a linear dispersion around the Dirac point in the Brillouin zone. [10]Much research has been done on this linear dispersion and in particular on the transport properties of graphene. [11−13] Nakada and Fujita studied the edge state and the nano size effect of graphene, and found that the charge can be localized in the zigzag edge[14] to form quantum dots (QDs). -
Fundamentals and Applications of Slow Light by Zhimin
Fundamentals and Applications of Slow Light by Zhimin Shi Submitted in Partial Ful¯llment of the Requirements for the Degree Doctor of Philosophy Supervised by Professor Robert W. Boyd The Institute of Optics Arts, Sciences and Engineering Edmund A. Hajim School of Engineering and Applied Sciences University of Rochester Rochester, New York 2010 ii To Yuqi (Miles) and Xiang iii Curriculum Vitae Zhimin Shi was born in Hangzhou, Zhejiang, China in 1979. He completed his early education in Hangzhou Foreign Language School in 1997. Following that, He studied in Chu Ke Chen Honors College as well as the Department of Optical Engi- neering at Zhejiang University and received B.E. with highest honors in Information Engineering in 2001. He joined the Center for Optical and Electromagnetic Research at Zhejiang University under the supervision of Dr. Sailing He and Dr. Jian-Jun He in 1999, where he focused his study on integrated di®ractive devices for wavelength division multiplexing applications and the performance analysis of blue-ray optical disks. After receiving his M.E. with honors in Optical Engineering from the same university in 2004, he joined the Institute of Optics, University of Rochester and has been studying under the supervision of Prof. Robert W. Boyd. His current research interests include nonlinear optics, nano-photonics, spectroscopic interferometry, ¯ber optics, plasmonics, electromagnetics in nano-composites and meta-materials, etc. iv Publications related to the thesis 1. \Enhancing the spectral sensitivity of interferometers using slow-light media," Z. Shi, R. W. Boyd, D. J. Gauthier and C. C. Dudley, Opt. Lett. 32, 915{917 (2007). -
Slow-Light Enhancement of Radiation Pressure in an Omnidirectional-Reflector Waveguide M
APPLIED PHYSICS LETTERS VOLUME 85, NUMBER 9 30 AUGUST 2004 Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide M. L. Povinelli,a) Mihai Ibanescu, Steven G. Johnson, and J. D. Joannopoulos Department of Physics and the Center for Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (Received 23 January 2004; accepted 6 July 2004) We study the radiation pressure on the surface of a waveguide formed by omnidirectionally reflecting mirrors. In the absence of losses, the pressure goes to infinity as the distance between the mirrors is reduced to the cutoff separation of the waveguide mode. This divergence at constant power input is due to the reduction of the modal group velocity to zero, which results in the magnification of the electromagnetic field. Our structure suggests a promising alternative, microscale system for observing the variety of classical and quantum-optical effects associated with radiation pressure in Fabry–Perot cavities. © 2004 American Institute of Physics. [DOI: 10.1063/1.1786660] The group velocity of light can be dramatically slowed low-dielectric layers with period a. For definiteness, we take in photonic crystals. Slow light enhances a variety of optical the refractive indices to be nhi=3.45 and nlo=1.45, corre- phenomena, including nonlinear effects, phase-shift sponding to Si and SiO2 at 1.55 m. The relative layer thick- 1 sensitivity, and low-threshold laser action due to distributed nesses are determined by the quarter-wave condition nhidhi 2,3 feedback gain enhancement. Here, we demonstrate that =nlodlo, which we later show to be an optimal case, along slow light can also enhance radiation pressure. -
Slow Light in Optical Waveguides
Slow Light in Optical Waveguides Zhaoming Zhu and Daniel J. Gauthier Department of Physics, Duke University, Durham, NC 27708 Alexander L. Gaeta School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 Robert W. Boyd Institute of Optics, University of Rochester, Rochester, NY 14627 As evidenced by this Volume, there has been a flurry of activity over the last decade on tailoring the dispersive properties of optical materials [1]. What has captured the attention of the research community were some of the early results on creating spectral regions of large normal dispersion [2–4]. Large normal dispersion results in extremely small group velocities, where the group velocity is the approximate speed at which a pulse of light propagates through a material. We denote the group velocity by υg = c/ng, where c is the speed of light in vacuum and ng is known as the group index. In the early experiments, described in greater detail in Chapter *, a dilute gas of atoms is illuminated by a “control” or “coupling” beam whose frequency is tuned precisely to an optical transition of an atom. This control field modifies the absorption and dispersion properties of another atomic transition that share a common energy level. A narrow transparency window is created on this second transition – a process known as electromagnetically induced transparency (EIT) – and, within this window, υg takes on extremely small values. Many experiments have now observed υg ∼ 1 8 m/s or less, implying ng > 10 . This result is remarkable considering that fact that the refractive index n of a material rarely exceeds 3 in the visible part of the spectrum. -
Sub-Kelvin Transport Spectroscopy of Fullerene Peapod Quantum Dots Pawel Utko, Jesper Nygård, Marc Monthioux, Laure Noé
Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots Pawel Utko, Jesper Nygård, Marc Monthioux, Laure Noé To cite this version: Pawel Utko, Jesper Nygård, Marc Monthioux, Laure Noé. Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots. Applied Physics Letters, American Institute of Physics, 2006, 89 (23), pp.233118. 10.1063/1.2403909. hal-01764467 HAL Id: hal-01764467 https://hal.archives-ouvertes.fr/hal-01764467 Submitted on 12 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots Pawel Utko, Jesper Nygård, Marc Monthioux, and Laure Noé Citation: Appl. Phys. Lett. 89, 233118 (2006); doi: 10.1063/1.2403909 View online: https://doi.org/10.1063/1.2403909 View Table of Contents: http://aip.scitation.org/toc/apl/89/23 Published by the American Institute of Physics Articles you may be interested in Quantum conductance of carbon nanotube peapods Applied Physics Letters 83, 5217 (2003); 10.1063/1.1633680 APPLIED PHYSICS LETTERS 89, 233118 ͑2006͒ Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots ͒ Pawel Utkoa and Jesper Nygård Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark Marc Monthioux and Laure Noé Centre d’Elaboration des Matériaux et d’Etudes Structurales (CEMES), UPR A-8011 CNRS, B.P.