Module-4 Unit-5 NSNT Quantum Dots Introduction a Quantum Dot (QD) Is an Extremely Small Particle Whose Properties Can Be Drasti
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
会议详细议程(Final Program)
会议详细议程(Final Program) 2019 International Conference on Display Technology March 26th—29th, 2019 (Tuesday - Friday) Kunshan International Convention and Exhibition Center Kunshan, Suzhou, China Plenary Session Wednesday, Mar. 27/14:00—18:00/Reception Hall Chair: Shintson Wu (吴诗聪), University of Central Florida (UCF) Title: Laser display Technology (14:00-14:30) Zuyan Xu (许祖彦), Technical Institute of Physics and Chemistry, China Academy of Engineering (CAE) Title: Thin film transistor technology and applications (14:30-15:00) Ming Liu (刘明), Institute of Microelectronics of the Chinese Academy of Sciences Title: Technology creates a win-win future (15:00-15:30) Wenbao Gao (高文宝), BOE Title: Gallium nitride micro-LEDs: a novel multi-mode, high-brightness and fast-response display technology (15:30-16:00) Martin Dawson, the University of Strathclyde’s Institute of Photonics, the Fraunhofer Centre for Applied Photonics Title: Virtual and Augmented Reality: Hope or Hype? (16:00-16:30) Achin Bhowmik, Starkey Hearing Technologies Title: Monocular Vision Impact: Monocular 3D and AR Display and Depth Detection with Monocular Camera (16:30-17:00) Haruhiko Okumura, Media AI Lab, Toshiba Title: ePaper, The Most Suitable Display Technology in AIoT (17:00-17:30) Fu-Jen (Frank) Ko, E Ink Holdings Inc. Title: Application Advantage of Laser Display in TV Market and Progress of Hisense (17:30- 18:00) Weidong Liu (刘卫东), Hisense Thursday, Mar. 28/8:30—12:30/Reception Hall Chair: Hoi S. Kwok (郭海成), Hong Kong University of Science and Technology Title: High Performance Tungsten-TADF OLED Emitters (8:30-9:00) Chi-Ming CHE (支志明), The University of Hong Kong Title: Challenges of TFT Technology for AMOLED Display (9:00-9:30) Junfeng Li (李俊峰), Nanyang Technological University, Innovation Research Institute of Visionox Technology Co., Ltd. -
Quantum Dots
Quantum Dots www.nano4me.org © 2018 The Pennsylvania State University Quantum Dots 1 Outline • Introduction • Quantum Confinement • QD Synthesis – Colloidal Methods – Epitaxial Growth • Applications – Biological – Light Emitters – Additional Applications www.nano4me.org © 2018 The Pennsylvania State University Quantum Dots 2 Introduction Definition: • Quantum dots (QD) are nanoparticles/structures that exhibit 3 dimensional quantum confinement, which leads to many unique optical and transport properties. Lin-Wang Wang, National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. <http://www.nersc.gov> GaAs Quantum dot containing just 465 atoms. www.nano4me.org © 2018 The Pennsylvania State University Quantum Dots 3 Introduction • Quantum dots are usually regarded as semiconductors by definition. • Similar behavior is observed in some metals. Therefore, in some cases it may be acceptable to speak about metal quantum dots. • Typically, quantum dots are composed of groups II-VI, III-V, and IV-VI materials. • QDs are bandgap tunable by size which means their optical and electrical properties can be engineered to meet specific applications. www.nano4me.org © 2018 The Pennsylvania State University Quantum Dots 4 Quantum Confinement Definition: • Quantum Confinement is the spatial confinement of electron-hole pairs (excitons) in one or more dimensions within a material. – 1D confinement: Quantum Wells – 2D confinement: Quantum Wire – 3D confinement: Quantum Dot • Quantum confinement is more prominent in semiconductors because they have an energy gap in their electronic band structure. • Metals do not have a bandgap, so quantum size effects are less prevalent. Quantum confinement is only observed at dimensions below 2 nm. www.nano4me.org © 2018 The Pennsylvania State University Quantum Dots 5 Quantum Confinement • Recall that when atoms are brought together in a bulk material the number of energy states increases substantially to form nearly continuous bands of states. -
Feature Article: Will Quantum Dots Make for a Brighter Future?
Renishaw plc T +44 (0)1453 524524 New Mills, Wotton-under-Edge, F +44 (0)1453 524901 Gloucestershire, GL12 8JR E [email protected] United Kingdom www.renishaw.com Feature article Will quantum dots make for a brighter future? First discovered in 1980, colloidal semiconductor lighting component market will surpass US$ 2 billion by the nanocrystals or quantum dots (QDs) are typically between end of 2016 and reach US$ 10.6 billion by 2025. 2 - 10 nanometres (nm) in diameter and are now being QD-backlit LCDs and QLEDs commercialised with possible applications in a variety of thin film devices including solar cells, photodetectors and The most immediate applications for QDs are in LCD LEDs. QDs have profound implications for the flat panel backlighting applications (LED TVs). QDs have been display (FPD) industry, but is it really a case of all change incorporated into a filter film designed to be inter-leaved from here on in? between the LED backlight unit and LCD panel. Current LCD backlights use white LEDs, which are blue LEDs coated with a One of the many advantages of QDs is their colour tunability phosphor layer - making them rather inefficient. The quantum resulting from a quantum mechanical effect known as dot filter allows the use of pure blue LEDs in the backlight as ‘confinement’. Quantum dots are also both photo- and it converts some of the incident blue light, by absorption and electro-luminescent as a result of their material composition, re-emission, into very pure green and red. As a result, the LCD which may include Cadmium Selenide (CdSe) and Zinc panel receives a richer white light which expands the range Sulphide (ZnS). -
Hyperbolic Metamaterials Based on Quantum-Dot Plasmon-Resonator Nanocomposites
Downloaded from orbit.dtu.dk on: Oct 04, 2021 Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites. Zhukovsky, Sergei; Ozel, T.; Mutlugun, E.; Gaponik, N.; Eychmuller, A.; Lavrinenko, Andrei; Demir, H. V.; Gaponenko, S. V. Published in: Optics Express Link to article, DOI: 10.1364/OE.22.018290 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Zhukovsky, S., Ozel, T., Mutlugun, E., Gaponik, N., Eychmuller, A., Lavrinenko, A., Demir, H. V., & Gaponenko, S. V. (2014). Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites. Optics Express, 22(15), 18290-18298. https://doi.org/10.1364/OE.22.018290 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites 1, 2 2,3 4 S. V. Zhukovsky, ∗ T. Ozel, E. Mutlugun, N. Gaponik, A. -
Quantum Dot and Electron Acceptor Nano-Heterojunction For
www.nature.com/scientificreports OPEN Quantum dot and electron acceptor nano‑heterojunction for photo‑induced capacitive charge‑transfer Onuralp Karatum1, Guncem Ozgun Eren2, Rustamzhon Melikov1, Asim Onal3, Cleva W. Ow‑Yang4,5, Mehmet Sahin6 & Sedat Nizamoglu1,2,3* Capacitive charge transfer at the electrode/electrolyte interface is a biocompatible mechanism for the stimulation of neurons. Although quantum dots showed their potential for photostimulation device architectures, dominant photoelectrochemical charge transfer combined with heavy‑metal content in such architectures hinders their safe use. In this study, we demonstrate heavy‑metal‑free quantum dot‑based nano‑heterojunction devices that generate capacitive photoresponse. For that, we formed a novel form of nano‑heterojunctions using type‑II InP/ZnO/ZnS core/shell/shell quantum dot as the donor and a fullerene derivative of PCBM as the electron acceptor. The reduced electron–hole wavefunction overlap of 0.52 due to type‑II band alignment of the quantum dot and the passivation of the trap states indicated by the high photoluminescence quantum yield of 70% led to the domination of photoinduced capacitive charge transfer at an optimum donor–acceptor ratio. This study paves the way toward safe and efcient nanoengineered quantum dot‑based next‑generation photostimulation devices. Neural interfaces that can supply electrical current to the cells and tissues play a central role in the understanding of the nervous system. Proper design and engineering of such biointerfaces enables the extracellular modulation of the neural activity, which leads to possible treatments of neurological diseases like retinal degeneration, hearing loss, diabetes, Parkinson and Alzheimer1–3. Light-activated interfaces provide a wireless and non-genetic way to modulate neurons with high spatiotemporal resolution, which make them a promising alternative to wired and surgically more invasive electrical stimulation electrodes4,5. -
1.07 Quantum Dots: Theory N Vukmirovic´ and L-W Wang, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
1.07 Quantum Dots: Theory N Vukmirovic´ and L-W Wang, Lawrence Berkeley National Laboratory, Berkeley, CA, USA ª 2011 Elsevier B.V. All rights reserved. 1.07.1 Introduction 189 1.07.2 Single-Particle Methods 190 1.07.2.1 Density Functional Theory 191 1.07.2.2 Empirical Pseudopotential Method 193 1.07.2.3 Tight-Binding Methods 194 1.07.2.4 k ? p Method 195 1.07.2.5 The Effect of Strain 198 1.07.3 Many-Body Approaches 201 1.07.3.1 Time-Dependent DFT 201 1.07.3.2 Configuration Interaction Method 202 1.07.3.3 GW and BSE Approach 203 1.07.3.4 Quantum Monte Carlo Methods 204 1.07.4 Application to Different Physical Effects: Some Examples 205 1.07.4.1 Electron and Hole Wave Functions 205 1.07.4.2 Intraband Optical Processes in Embedded Quantum Dots 206 1.07.4.3 Size Dependence of the Band Gap in Colloidal Quantum Dots 208 1.07.4.4 Excitons 209 1.07.4.5 Auger Effects 210 1.07.4.6 Electron–Phonon Interaction 212 1.07.5 Conclusions 213 References 213 1.07.1 Introduction laterally by electrostatic gates or vertically by etch- ing techniques [1,2]. The properties of this type of Since the early 1980s, remarkable progress in technology quantum dots, sometimes termed as electrostatic has been made, enabling the production of nanometer- quantum dots, can be controlled by changing the sized semiconductor structures. This is the length scale applied potential at gates, the choice of the geometry where the laws of quantum mechanics rule and a range of gates, or external magnetic field. -
Electrodynamic Modeling of Quantum Dot Luminescence in Plasmonic Metamaterials † ‡ † ‡ ‡ § Ming Fang,*, , Zhixiang Huang,*, Thomas Koschny, and Costas M
Article pubs.acs.org/journal/apchd5 Electrodynamic Modeling of Quantum Dot Luminescence in Plasmonic Metamaterials † ‡ † ‡ ‡ § Ming Fang,*, , Zhixiang Huang,*, Thomas Koschny, and Costas M. Soukoulis , † Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei 230001, China ‡ Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States § Institute of Electronic Structure and Laser, FORTH, 71110 Heraklion, Crete, Greece ABSTRACT: A self-consistent approach is proposed to simulate a coupled system of quantum dots (QDs) and metallic metamaterials. Using a four-level atomic system, an artificial source is introduced to simulate the spontaneous emission process in the QDs. We numerically show that the metamaterials can lead to multifold enhancement and spectral narrowing of photoluminescence from QDs. These results are consistent with recent experimental studies. The proposed method represents an essential step for developing and understanding a metamaterial system with gain medium inclusions. KEYWORDS: photoluminescence, plasmonics, metamaterials, quantum dots, finite-different time-domain, spontaneous emission he fields of plasmonic metamaterials have made device design based on quantum electrodynamics. In an active − T spectacular experimental progress in recent years.1 3 medium, the electromagnetic field is treated classically, whereas The metal-based metamaterial losses at optical frequencies atoms are treated quantum mechanically. According to the are unavoidable. Therefore, control of conductor losses is a key current understanding, the interaction of electromagnetic fields challenge in the development of metamaterial technologies. with an active medium can be modeled by a classical harmonic These losses hamper the development of optical cloaking oscillator model and the rate equations of atomic population devices and negative index media. -
Quantum Dots for Wide Color Gamut Displays from Photoluminescence
Kang et al. Nanoscale Research Letters (2017) 12:154 DOI 10.1186/s11671-017-1907-1 NANO EXPRESS Open Access Quantum Dots for Wide Color Gamut Displays from Photoluminescence to Electroluminescence Yongyin Kang1, Zhicheng Song2*, Xiaofang Jiang1, Xia Yin1, Long Fang1, Jing Gao1, Yehua Su1 and Fei Zhao1* Abstract Monodisperse quantum dots (QDs) were prepared by low-temperature process. The remarkable narrow emission peak of the QDs helps the liquid crystal displays (LCD) and electroluminescence displays (QD light-emitting diode, QLED) to generate wide color gamut performance. The range of the color gamut for QD light-converting device (QLCD) is controlled by both the QDs and color filters (CFs) in LCD, and for QLED, the optimized color gamut is dominated by QD materials. Keywords: Quantum dots (QDs), Quantum dot light-converting device (QLCD), Color filter (CF), Quantum dot light-emitting diode (QLED), Wide color gamut, Solution process Background ways to produce white light using LEDs, and the color Colloidal quantum dots (QDs) have been actively pursued gamut is determined by the contour of the emission for both fundamental research and industrial development peak from the phosphors. The conventional method uses due to their solution processibility and size-dependent a blue LED chip with YAG (yttrium-aluminum-garnet)- optical properties associated with quantum confinement based phosphor directly packaged on its top, the color [1–4]. The most promising application of QDs is as emit- gamut is typically ~72% NTSC (National Television ters in biomedical labeling, solid-state lighting, and display Standards Committee). Advanced phosphor-based tech- [5–7]. For instance, in 2009, the US Department of Energy nologies replace the YAG by green phosphors and the (DOE) highlighted a high-performance solid-state lighting red phosphors, namely RG phosphor solution. -
Quantum Computation with Two-Dimensional Graphene
Quantum computation with two-dimensional graphene quantum dots* Jason Lee(李杰森), Zhi-Bing Li(李志兵), and Dao-Xin Yao (姚道新)†† State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China Keywords: graphene, quantum dot, quantum computation, Kagome lattice PACS: 73.22.Pr, 73.21.La, 73.22.–f, 74.25.Jb Abstract We study an array of graphene nano sheets that form a two-dimensional S = 1/2 Kagome spin lattice used for quantum computation. The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation. We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots. It is shown that both schemes contain a great amount of information for quantum computation. The corresponding gate operations are also proposed. 1. Introduction There has been increasing interest in grapheme since its discovery. [1−3] It has shown excellent electronic[4,5] and mechanical [6,7] properties and is also a promising candidate for biosensors.[8,9] Before this amazing discovery, Wallace had studied the band structure of graphite and found a linear dispersion around the Dirac point in the Brillouin zone. [10]Much research has been done on this linear dispersion and in particular on the transport properties of graphene. [11−13] Nakada and Fujita studied the edge state and the nano size effect of graphene, and found that the charge can be localized in the zigzag edge[14] to form quantum dots (QDs). -
Download the Entire Issue in PDF Format Here
Mar-Apr Cover_SID Cover 3/15/2015 4:57 PM Page 1 DISPLAY WEEK PREVIEW / TOPICS IN APPLIED VISION Mar./Apr. 2015 Official Monthly Publication of the Society for Information Display • www.informationdisplay.org Vol. 31, No. 2 Test Solutions for Perfect Display Quality New Name. Still Radiant. Radiant Zemax is now Radiant Vision Systems! The name is new, but our commitment to delivering advanced display test solutions remains unchanged. The world’s leading makers of display devices rely on Radiant’s automated visual inspection systems to measure uniformity, chromaticity, and detect Mura and other defects throughout the manufacturing process. Visit our all new website, www.RadiantVisionSystems.com to learn how our integrated test solutions can help you improve supply chain performance, reduce production costs, and ensure a customer experience that is nothing less than Radiant. Visit us at booth 834 Radiant Vision Systems, LLC Global Headquarters - Redmond, WA USA | +1 425 844-0152 | www.RadiantVisionSystems.com | [email protected] ID TOC Issue2 p1_Layout 1 3/18/2015 6:31 PM Page 1 SOCIETY FOR INFORMATION DISPLAY Information SID MARCH/APRIL 2015 DISPLAY VOL. 31, NO. 2 ON THE COVER: This year’s winners of the Society for Information Display’s Honors and Awards include Dr. Junji Kido, who will receive the Karl Ferdinand Braun Prize; Dr. Shohei contents Naemura, who will receive the Jan Rajchman 2 Editorial: The Pace of Innovation Prize; Dr. Ingrid Heynderickx, who will be awardedMar-Apr Cover_SID Coverthe 3/15/2015 Otto 4:57 PM Page 1 Schade Prize; Dr. Jin Jang, n By Stephen P. -
Sub-Kelvin Transport Spectroscopy of Fullerene Peapod Quantum Dots Pawel Utko, Jesper Nygård, Marc Monthioux, Laure Noé
Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots Pawel Utko, Jesper Nygård, Marc Monthioux, Laure Noé To cite this version: Pawel Utko, Jesper Nygård, Marc Monthioux, Laure Noé. Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots. Applied Physics Letters, American Institute of Physics, 2006, 89 (23), pp.233118. 10.1063/1.2403909. hal-01764467 HAL Id: hal-01764467 https://hal.archives-ouvertes.fr/hal-01764467 Submitted on 12 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots Pawel Utko, Jesper Nygård, Marc Monthioux, and Laure Noé Citation: Appl. Phys. Lett. 89, 233118 (2006); doi: 10.1063/1.2403909 View online: https://doi.org/10.1063/1.2403909 View Table of Contents: http://aip.scitation.org/toc/apl/89/23 Published by the American Institute of Physics Articles you may be interested in Quantum conductance of carbon nanotube peapods Applied Physics Letters 83, 5217 (2003); 10.1063/1.1633680 APPLIED PHYSICS LETTERS 89, 233118 ͑2006͒ Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots ͒ Pawel Utkoa and Jesper Nygård Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark Marc Monthioux and Laure Noé Centre d’Elaboration des Matériaux et d’Etudes Structurales (CEMES), UPR A-8011 CNRS, B.P. -
Metamaterial Based Broadband Engineering of Quantum Dot
Metamaterial based broadband engineering of quantum dot spontaneous emission Harish N S Krishnamoorthy1, Zubin Jacob2, Evgenii Narimanov2, Ilona Kretzschmar3and Vinod M. Menon1 1Laboratory for Nano and Micro Photonics, Department of Physics, Queens College of the City University of New York (CUNY) Tel. (718) 997-3147, Fax: (718) 997-3349, Email: [email protected] 2Birck Nanotechnology Center, School of Electrical and Computer engineering, Purdue University, West Lafayette, IN 47907, U.S.A 3Department of Chemical Engineering, City College of the City University of New York (CUNY) Abstract: We report the broadband (~ 25 nm) enhancement of radiative decay rate of colloidal quantum dots by exploiting the hyperbolic dispersion of a one-dimensional nonmagnetic metamaterial structure. Control of spontaneous emission is one of the fundamental concepts in the field of quantum optics with applications such as lasers, light emitting diodes, single photon sources among others. The control of emission of quantum dots (QDs) has been reported using photonic crystals and microcavities through the Purcell effect [1-4]. Increasing the photonic density of states (PDOS) is the key to enhancing the spontaneous emission from emitters which have a low quantum yield [5]. There have been several reports on the enhancement of spontaneous emission from QDs embedded in microcavities [3, 4, 6-8]. In all of these demonstrations, the emitter and the emission was confined within the microcavity which enabled the greater interaction between the emitter and the cavity mode. In contrast, the system that we present here does not rely on localization of electromagnetic field for increase in PDOS and thereby the enhancement in spontaneous emission.