Papers of the Year 2011 (New Version: 09.01.2012)

Total Page:16

File Type:pdf, Size:1020Kb

Papers of the Year 2011 (New Version: 09.01.2012) www.shark-references.com Version 09.01.2012 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichtyes: Elasmobranchii, Holocephali) Papers of the year 2011 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany ISSN: 2195-6499 - 1 - please inform me about missing papers E-Mail: [email protected] www.shark-references.com Version 09.01.2012 Abstract: This collection is the result of research in numerous journals, books and online publications. It contains more than 700 citations of papers about living/fossil sharks, rays and chimaeras (Chondrichtyes: Elasmobranchii, Holocephali) and a list of 2011 new described species. Notice: This paper is intended to be consulted for advice and information. This information has been compiled to the best of my abilities based on current knowledge and practice, however, please note that possible errors cannot be altogether/entirely excluded. Citation: Pollerspöck, J. (2012), Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichtyes: Elasmobranchii, Holocephali) - Papers of the year 2011 -, www.shark- references.com, World Wide Web electronic publication, Version 01/2012; ISSN: 2195-6499 © Edited By: Jürgen Pollerspöck, Benediktinerring 34, D-94569 Stephansposching; Germany Please support www.shark-references.com Please send me missing, not listed references! Send me publications that are not incorporated so far (marked in red lettering)! - 2 - please inform me about missing papers E-Mail: [email protected] www.shark-references.com Version 09.01.2012 Tabel of Contents 1. Fossil................................................................................................................. - 3 - 1.1. Papers ............................................................................................................ - 3 - 1.1.1 Complete list (arrange in alphabetical order) .................................... - 3 - 1.2. Abstracts ....................................................................................................... - 6 - 1.2.1 Complete list (arrange in alphabetical order) .................................... - 6 - 2. Rezent ............................................................................................................... - 7 - 2.1 Papers ............................................................................................................. - 7 - 2.1.1. Complete list (arrange in alphabetical order) ................................... - 7 - 2.2. Abstracts ..................................................................................................... - 38 - 2.2.1 Complete list (arrange in alphabetical order) .................................. - 38 - 3. Database Reports .......................................................................................... - 49 - 3.1 Species Descriptions –fossil- ............................................................... - 49 - 3.2 Species Descriptions –recent- ............................................................. - 50 - 3.3 Parasitology ........................................................................................... - 51 - 3.4 Distribution ............................................................................................ - 53 - 3.5 Reproduction ......................................................................................... - 60 - 3.6 Diet .......................................................................................................... - 63 - 3.7 Size ......................................................................................................... - 64 - 3.8 Taxonomy .............................................................................................. - 66 - 4. Index................................................................................................................ - 68 - 1. Fossil 1.1. Papers 1.1.1 Complete list (arrange in alphabetical order) ADNET, S. & CAPPETTA, H. & ELNAHAS, S. & STROUGO, A. (2011) A new Priabonian Chondrichthyans assemblage from the Western desert, Egypt: Correlation with the Fayum oasis. Journal of African Earth Sciences, 61 (1): 27-37 Abstract: http://dx.doi.org/10.1016/j.jafrearsci.2011.04.005 BOURDON, J. & EVERHART, M.J. (2011) Analysis of an Associated Cretoxyrhina mantelli Dentition from the Late Cretaceous (Smoky Hill Chalk, Late Coniacian) of Western Kansas. Transactions of the Kansas Academy of Science, 114 (1/2): 15-32 Abstract: http://dx.doi.org/10.1660/062.114.0102 BOURDON, J. & WRIGHT, K. & LUCAS, S.G. & SPIELMANN, J.A. & PENCE, R. (2011) Selachians from the Upper Cretaceous (Santonian) Hosta Tongue of the Point Lookout Sandstone, central New Mexico. New Mexico Museum of Natural History and Science, Bulletin 52: 1-52 BRITO, P.M. & YABUMOTO, Y. (2011) An updated review of the fish faunas from the Crato and Santana formations in Brazil, a close relationship to the Tethys fauna. Bulletin of the Kitakyushu Museum of Natural History and Human History, Series A Natural History, 9: 107-136 - 3 - please inform me about missing papers E-Mail: [email protected] www.shark-references.com Version 09.01.2012 CAHUZAC, B. & DUPUY, J.-P. & LAVERGNE, G. & VARONE, G. (2011) Géologie dans le Crétacé de l'Île Madame, Charente-Maritime ; aperçu sur les faunes d'Oursins fossiles. Bulletin de la Société Linnéenne de Bordeaux, 146 (39): 329-358 CANDEIRO, C.R.A. & FANTI, F. & THERRIEN, F. & LAMANNA, M.C. (2011) Continental fossil vertebrates from the mid-Cretaceous (Albian-Cenomanian) Alcântara Formation, Brazil, and their relationship with contemporaneous faunas from North Africa Journal of African Earth Sciences, 60 (3): 79-92 Abstract: http://dx.doi.org/10.1016/j.jafrearsci.2011.02.004 CANEVET, J.-M. (2011) Les Chondrichthyens du Miocène moyen (Serravallien) de Salles (Gironde, France). Cossmanniana, 13: 59-79 CARPENTER, D. & FALCON-LANG, H.J. & BENTON, M.J. & NELSON, W.J. (2011) Fishes and tetrapods in the Upper Pennsylvanian (Kasimovian) Cohn Coal Member of the Mattoon Formation of Illinois, United States: Systematics, Paleoecology, and Paleoenvironments. Palaios, 26 (10): 639-657 Abstract: http://dx.doi.org/10.2110/palo.2010.p10-121r CASE, G.R. & COOK, T.D. & WILSON, M.V.H. (2011) A new genus and species of fossil myliobatoid ray from the Fishburne Formation (lower Eocene/Ypresian) of Berkeley County, South Carolina, USA. Historical Biology, 23 (2-3): 139-144 Abstract: http://dx.doi.org/10.1080/08912963.2010.497607 CIONE, A.L. & COZZUOL, M.A. & DOZO, M.T. & HOSPITALECHE, C.A. (2011) Marine vertebrate assemblages in the southwest Atlantic during the Miocene. Biological Journal of the Linnean Society, 103: 423-440 Abstract: http://dx.doi.org/10.1111/j.1095-8312.2011.01685.x CLAESON, K.M. & HILGER, A. (2011) Morphology of the anterior vertebral region in elasmobranchs: special focus, Squatiniformes. Fossil Record, 14 (2): 129-140 Abstract: http://dx.doi.org/10.1002/mmng.201100003 COOK, T.D. & NEWBREY, M.G. & MURRAY, A.M. & WILSON, M.V.H. & SHIMADA, K. & TAKEUCHI, G.T. & STEWART, J.D. (2011) A Partial Skeleton of the Late Cretaceous Lamniform Shark, Archaeolamna kopingensis, from the Pierre Shale of Western Kansas, U.S.A. Journal of Vertebrate Paleontology, 31 (1): 8-21 Abstract: http://dx.doi.org/10.1080/02724634.2011.539968 DE SCHUTTER, P. (2011) Carcharias vorax (Le Hon, 1871) (Chondrichthyes, Lamniformes), from the Miocene of Belgium: redescription and designation of a neotype and paraneotype. Geologica Belgica, 14 (3-4): 175-192 DERYCKE, C. & GOUJET, D. (2011) Multicuspidate shark teeth associated with chondrichthyan and acanthodian scales from the Emsian (Devonian) of southern Algeria. Geodiversitas, 33 (2): 209-226 Abstract: http://dx.doi.org/10.5252/g2011n2a1 ERIKSSON, M.E. & LINDGREN, J. & CHIN, K. & MÅNSBY, U. (2011) Coprolite morphotypes from the Upper Cretaceous of Sweden: novel views on an ancient ecosystem and implications for coprolite taphonomy. Lethaia, 44 (4): 455-468 Abstract: http://dx.doi.org/10.1111/j.1502-3931.2010.00257.x EVERHART, M.J. (2011) Occurrence of the hybodont shark genus Meristodonoides (Chondrichthyes; Hybodontiformes) in the Cretaceous of Kansas. Transactions of the Kansas Academy of Science, 114 (1/2): 33-46 FISCHER, J. & VOIGT, S. & SCHNEIDER, J.W. & BUCHWITZ, M. & VOIGT,S. (2011) A selachian freshwater fauna from the Triassic of Kyrgyzstan and its implication for Mesozoic shark nurseries. Journal of Vertebrate Paleontology, 31 (5): 937-953 Abstract: http://dx.doi.org/10.1080/02724634.2011.601729 GINTER, M. & HAIRAPETIAN, V. & GRIGORYAN, A. (2011) Chondrichthyan microfossils from the Famennian and Tournaisian of Armenia. Acta Geologica Polonica, 61 (2): 153-173 GROGAN, E.D. & LUND, R. (2011) Superfoetative viviparity in a Carboniferous chondrichthyan and reproduction in early gnathostomes. Zoological Journal of the Linnean Society, 161 (3): 587-594 Abstract: http://dx.doi.org/10.1111/j.1096-3642.2010.00653.x GUINOT, G. & CAPPETTA, H. (2011) Enameloid microstructure of some Cretaceous Hexanchiformes and Synechodontiformes (Chondrichthyes, Neoselachii): new structures and systematic implications. Microscopy Research and Technique, 74 (2): 196-205 Abstract: http://dx.doi.org/10.1002/jemt.20892 HABIBI, T. & GINTER, M. (2011) Early Carboniferous chondrichthyans from the Mobarak Formation, Central Alborz Mountains, Iran. Acta Geologica Polonica, 61 (1): 27-165 - 4 - please inform me about missing papers E-Mail: [email protected]
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Symmoriiform Sharks from the Pennsylvanian of Nebraska
    Acta Geologica Polonica, Vol. 68 (2018), No. 3, pp. 391–401 DOI: 10.1515/agp-2018-0009 Symmoriiform sharks from the Pennsylvanian of Nebraska MICHAŁ GINTER University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, PL-02-089 Warsaw, Poland. E-mail: [email protected] ABSTRACT: Ginter, M. 2018. Symmoriiform sharks from the Pennsylvanian of Nebraska. Acta Geologica Polonica, 68 (3), 391–401. Warszawa. The Indian Cave Sandstone (Upper Pennsylvanian, Gzhelian) from the area of Peru, Nebraska, USA, has yielded numerous isolated chondrichthyan remains and among them teeth and dermal denticles of the Symmoriiformes Zangerl, 1981. Two tooth-based taxa were identified: a falcatid Denaea saltsmani Ginter and Hansen, 2010, and a new species of Stethacanthus Newberry, 1889, S. concavus sp. nov. In addition, there occur a few long, monocuspid tooth-like denticles, similar to those observed in Cobelodus Zangerl, 1973, probably represent- ing the head cover or the spine-brush complex. A review of the available information on the fossil record of Symmoriiformes has revealed that the group existed from the Late Devonian (Famennian) till the end of the Middle Permian (Capitanian). Key words: Symmoriiformes; Microfossils; Carboniferous; Indian Cave Sandstone; USA Midcontinent. INTRODUCTION size and shape is concerned [compare the thick me- dian cusp, almost a centimetre long, in Stethacanthus The Symmoriiformes (Symmoriida sensu Zan- neilsoni (Traquair, 1898), and the minute, 0.5 mm gerl 1981) are a group of Palaeozoic cladodont sharks wide, multicuspid, comb-like tooth of Denaea wangi sharing several common characters: relatively short Wang, Jin and Wang, 2004; Ginter et al. 2010, figs skulls, large eyes, terminal mouth, epicercal but ex- 58A–C and 61, respectively].
    [Show full text]
  • Precise Age and Biostratigraphic Significance of the Kinney Brick Quarry Lagerstätte, Pennsylvanian of New Mexico, USA
    Precise age and biostratigraphic significance of the Kinney Brick Quarry Lagerstätte, Pennsylvanian of New Mexico, USA Spencer G. Lucas1, Bruce D. Allen2, Karl Krainer3, James Barrick4, Daniel Vachard5, Joerg W. Schneider6, William A. DiMichele7 and Arden R. Bashforth8 1New Mexico Museum of Natural History, 1801 Mountain Road N.W., Albuquerque, New Mexico, 87104, USA email: [email protected] 2New Mexico Bureau of Geology and Mineral Resources, 801 Leroy Place, Socorro, New Mexico, 87801, USA email: [email protected] 3Institute of Geology and Paleontology, University of Innsbruck, Innsbruck, A-6020, Austria email: [email protected] 4Department of Geosciences, Texas Tech University, Box 41053, Lubbock, Texas, 79409, USA email: [email protected] 5Université des Sciences et Technologies de Lille, UFR des Sciences de la Terre, UPRESA 8014 du CNRS, Laboratoire LP3, Bâtiment SN 5, F-59655 Villeneuve d’Ascq, Cédex, France email: [email protected] 6TU Bergakademie Freiberg, Cottastasse 2, D-09596 Freiberg, Germany email:[email protected] 7Department of Paleobiology, NMNH Smithsonian Institution, Washington, DC 20560 email: [email protected] 8Geological Museum, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark email: [email protected] ABSTRACT: The Kinney Brick Quarry is a world famous Late Pennsylvanian fossil Lagerstätte in central New Mexico, USA. The age assigned to the Kinney Brick Quarry (early-middle Virgilian) has long been based more on its inferred lithostratigraphic position than on biostratigraphic indicators at the quarry. We have developed three datasets —-stratigraphic position, fusulinids and conodonts— that in- dicate the Kinney Brick Quarry is older, of middle Missourian (Kasimovian) age.
    [Show full text]
  • Papers in Press
    Papers in Press “Papers in Press” includes peer-reviewed, accepted manuscripts of research articles, reviews, and short notes to be published in Paleontological Research. They have not yet been copy edited and/or formatted in the publication style of Paleontological Research. As soon as they are printed, they will be removed from this website. Please note they can be cited using the year of online publication and the DOI, as follows: Humblet, M. and Iryu, Y. 2014: Pleistocene coral assemblages on Irabu-jima, South Ryukyu Islands, Japan. Paleontological Research, doi: 10.2517/2014PR020. doi:10.2517/2018PR013 Features and paleoecological significance of the shark fauna from the Upper Cretaceous Hinoshima Formation, Himenoura Group, Southwest Japan Accepted Naoshi Kitamura 4-8-7 Motoyama, Chuo-ku Kumamoto, Kumamoto 860-0821, Japan (e-mail: [email protected]) Abstract. The shark fauna of the Upper Cretaceous Hinoshima Formation (Santonian: 86.3–83.6 Ma) of the manuscriptHimenoura Group (Kamiamakusa, Kumamoto Prefecture, Kyushu, Japan) was investigated based on fossil shark teeth found at five localities: Himedo Park, Kugushima, Wadanohana, Higashiura, and Kotorigoe. A detailed geological survey and taxonomic analysis was undertaken, and the habitat, depositional environment, and associated mollusks of each locality were considered in the context of previous studies. Twenty-one species, 15 genera, 11 families, and 6 orders of fossil sharks are recognized from the localities. This assemblage is more diverse than has previously been reported for Japan, and Lamniformes and Hexanchiformes were abundant. Three categories of shark fauna are recognized: a coastal region (Himedo Park; probably a breeding site), the coast to the open sea (Kugushima and Wadanohana), and bottom-dwelling or near-seafloor fauna (Kugushima, Wadanohana, Higashiura, and Kotorigoe).
    [Show full text]
  • Extinction Risk and Conservation of the World's Sharks and Rays
    RESEARCH ARTICLE elife.elifesciences.org Extinction risk and conservation of the world’s sharks and rays Nicholas K Dulvy1,2*, Sarah L Fowler3, John A Musick4, Rachel D Cavanagh5, Peter M Kyne6, Lucy R Harrison1,2, John K Carlson7, Lindsay NK Davidson1,2, Sonja V Fordham8, Malcolm P Francis9, Caroline M Pollock10, Colin A Simpfendorfer11,12, George H Burgess13, Kent E Carpenter14,15, Leonard JV Compagno16, David A Ebert17, Claudine Gibson3, Michelle R Heupel18, Suzanne R Livingstone19, Jonnell C Sanciangco14,15, John D Stevens20, Sarah Valenti3, William T White20 1IUCN Species Survival Commission Shark Specialist Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 2Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 3IUCN Species Survival Commission Shark Specialist Group, NatureBureau International, Newbury, United Kingdom; 4Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, United States; 5British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom; 6Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia; 7Southeast Fisheries Science Center, NOAA/National Marine Fisheries Service, Panama City, United States; 8Shark Advocates International, The Ocean Foundation, Washington, DC, United States; 9National Institute of Water and Atmospheric Research, Wellington, New Zealand; 10Global Species Programme, International Union for the Conservation
    [Show full text]
  • Lexicon of Geologic Names of Southern Arizona Larry Mayer, 1978, Pp
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/29 Lexicon of geologic names of southern Arizona Larry Mayer, 1978, pp. 143-156 in: Land of Cochise (Southeastern Arizona), Callender, J. F.; Wilt, J.; Clemons, R. E.; James, H. L.; [eds.], New Mexico Geological Society 29th Annual Fall Field Conference Guidebook, 348 p. This is one of many related papers that were included in the 1978 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • A Systematic Revision of the South American Freshwater Stingrays (Chondrichthyes: Potamotrygonidae) (Batoidei, Myliobatiformes, Phylogeny, Biogeography)
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1985 A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography) Ricardo de Souza Rosa College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Fresh Water Studies Commons, Oceanography Commons, and the Zoology Commons Recommended Citation Rosa, Ricardo de Souza, "A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography)" (1985). Dissertations, Theses, and Masters Projects. Paper 1539616831. https://dx.doi.org/doi:10.25773/v5-6ts0-6v68 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Pagefs)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
    [Show full text]
  • OFR21 a Guide to Fossil Sharks, Skates, and Rays from The
    STATE OF DELAWARE UNIVERSITY OF DELAWARE DELAWARE GEOLOGICAL SURVEY OPEN FILE REPORT No. 21 A GUIDE TO FOSSIL SHARKS J SKATES J AND RAYS FROM THE CHESAPEAKE ANU DELAWARE CANAL AREA) DELAWARE BY EDWARD M. LAUGINIGER AND EUGENE F. HARTSTEIN NEWARK) DELAWARE MAY 1983 Reprinted 6-95 FOREWORD The authors of this paper are serious avocational students of paleontology. We are pleased to present their work on vertebrate fossils found in Delaware, a subject that has not before been adequately investigated. Edward M. Lauginiger of Wilmington, Delaware teaches biology at Academy Park High School in Sharon Hill, Pennsyl­ vania. He is especially interested in fossils from the Cretaceous. Eugene F. Hartstein, also of Wilmington, is a chemical engineer with a particular interest in echinoderm and vertebrate fossils. Their combined efforts on this study total 13 years. They have pursued the subject in New Jersey, Maryland, and Texas as well as in Delaware. Both authors are members of the Mid-America Paleontology Society, the Delaware Valley Paleontology Society, and the Delaware Mineralogical Society. We believe that Messrs. Lauginiger and Hartstein have made a significant technical contribution that will be of interest to both professional and amateur paleontologists. Robert R. Jordan State Geologist A GUIDE TO FOSSIL SHARKS, SKATES, AND RAYS FROM THE CHESAPEAKE AND DELAWARE CANAL AREA, DELAWARE Edward M. Lauginiger and Eugene F. Hartstein INTRODUCTION In recent years there has been a renewed interest by both amateur and professional paleontologists in the rich upper Cretaceous exposures along the Chesapeake and Delaware Canal, Delaware (Fig. 1). Large quantities of fossil material, mostly clams, oysters, and snails have been collected as a result of this activity.
    [Show full text]
  • Pilgrim 1985.Pdf (1.219Mb)
    MAURI ORA, 1985, 12: 13-53 13 PARASITIC COPEPODA FROM MARINE COASTAL FISHES IN THE KAIKOURA-BANKS PENINSULA REGION, SOUTH ISLAND, NEW ZEALAND. WITH A KEY FOR THEIR IDENTIFICATION R.L.C. PILGRIM Department of Zoology, University of Canterbury, Christchurch 1, New Zealand. ABSTRACT An introductory account of parasitic Copepoda in New Zealand waters is given, together with suggestions for collecting, examining, preserving and disposal of specimens. A key is presented for identifying all known forms from the fishes which are known to occur in the Kaikoura-Banks Peninsula region. Nine species/ subspecies ( + 2 spp.indet.) have been taken from elasmobranch fishes, 13 ( + 7 spp.indet.) from teleost fishes in the region; a further 6 from elasmobranchs and 27 ( + 1 indet.) from teleosts are known in New Zealand waters but so far not taken from these hosts in the region. A host-parasite list is given of known records'from the region. KEYWORDS: New Zealand, marine, fish, parasitic Copepoda, keys. INTRODUCTION Fishes represent a very significant proportion of the macrofauna of the coastal waters from Kaikoura to Banks Peninsula, and as such are commonly studiecl by staff and students from the Department of Zoology, University of Canterbury. Even a cursory examination of most specimens will reveal the presence of sometimes numerous parasites clinging to the outer surface or, more frequently, to the linings of the several cavities exposed to the outside sea water. The mouth and gill chambers are 14 particularly liable to contain numbers of large or small, but generally macroscopic, animals attached to these surfaces. Many are readily identified as segmented, articulated, chitinised animals and are clearly Arthropoda.
    [Show full text]
  • Have Chondracanthid Copepods Co-Speciated with Their Teleost Hosts?
    Systematic Parasitology 44: 79–85, 1999. 79 © 1999 Kluwer Academic Publishers. Printed in the Netherlands. Have chondracanthid copepods co-speciated with their teleost hosts? Adrian M. Paterson1 & Robert Poulin2 1Ecology and Entomology Group, Lincoln University, PO Box 84, Lincoln, New Zealand 2Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand Accepted for publication 26th October, 1998 Abstract Chondracanthid copepods parasitise many teleost species and have a mobile larval stage. It has been suggested that copepod parasites, with free-living infective stages that infect hosts by attaching to their external surfaces, will have co-evolved with their hosts. We examined copepods from the genus Chondracanthus and their teleost hosts for evidence of a close co-evolutionary association by comparing host and parasite phylogenies using TreeMap analysis. In general, significant co-speciation was observed and instances of host switching were rare. The preva- lence of intra-host speciation events was high relative to other such studies and may relate to the large geographical distances over which hosts are spread. Introduction known from the Pacific, and 17 species from the Atlantic (2 species occur in both oceans; none are About one-third of known copepod species are par- reported from the Indian Ocean). asitic on invertebrates or fish (Humes, 1994). The Parasites with direct life-cycles, as well as para- general biology of copepods parasitic on fish is much sites with free-living infective stages that infect hosts better known than that of copepods parasitic on in- by attaching to their external surfaces, are often said to vertebrates (Kabata, 1981).
    [Show full text]
  • AC30 Doc. 20 A1
    AC30 Doc. 20 Annex 1 (in the original language / dans la langue d’origine / en el idioma original) Responses to Notification to the Parties No 2018/041 Table of Contents Australia 2 China 14 Colombia 16 European Union 18 Indonesia 22 Mexico 52 New Zealand 56 Peru 59 Philippines 65 United States of America 67 Uruguay 116 Florida International University 121 The Pew Charitable Trusts 123 Wildlife Conservation Society 125 Notification 2018/041 Request for new information on shark and ray conservation and management activities, including legislation Australia is pleased to provide the following response to Notification 2018/041 ‘Request for new information on shark and ray conservation and management activities, including legislation’. This document is an update of the information submitted in 2017 in response to Notification 2017/031. The Australian Government is committed to the sustainable use of fisheries resources and the conservation of marine ecosystems and biodiversity. In particular, we are committed to the conservation of shark species in Australian waters and on the high seas. The Australian Government manages some fisheries directly, others are managed by state and territory governments. The Australian Government also regulates the export of commercially harvested marine species. Australia cooperates internationally to protect sharks by implementing our Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) obligations, and by working with regional fisheries management organisations on the management of internationally straddling and highly migratory stocks. For more information on Australia’s fisheries management and international cooperation see the Australian Government Department of the Environment and Energy’s fisheries webpages at http://www.environment.gov.au/marine/fisheries.
    [Show full text]