Table S2 Material
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Winter Edition 2020 - 3 in This Issue: Office Bearers for 2017
1 Australian Plants Society Armidale & District Group PO Box 735 Armidale NSW 2350 web: www.austplants.com.au/Armidale e-mail: [email protected] Crowea exalata ssp magnifolia image by Maria Hitchcock Winter Edition 2020 - 3 In this issue: Office bearers for 2017 ......p1 Editorial …...p2Error! Bookmark not defined. New Website Arrangements .…..p3 Solstice Gathering ......p4 Passion, Boers & Hibiscus ......p5 Wollomombi Falls Lookout ......p7 Hard Yakka ......p8 Torrington & Gibraltar after fires ......p9 Small Eucalypts ......p12 Drought tolerance of plants ......p15 Armidale & District Group PO Box 735, Armidale NSW 2350 President: Vacant Vice President: Colin Wilson Secretary: Penelope Sinclair Ph. 6771 5639 [email protected] Treasurer: Phil Rose Ph. 6775 3767 [email protected] Membership: Phil Rose [email protected] 2 Markets in the Mall, Outings, OHS & Environmental Officer and Arboretum Coordinator: Patrick Laher Ph: 0427327719 [email protected] Newsletter Editor: John Nevin Ph: 6775218 [email protected],net.au Meet and Greet: Lee Horsley Ph: 0421381157 [email protected] Afternoon tea: Deidre Waters Ph: 67753754 [email protected] Web Master: Eric Sinclair Our website: http://www.austplants.com.au From the Editor: We have certainly had a memorable year - the worst drought in living memory followed by the most extensive bushfires seen in Australia, and to top it off, the biggest pandemic the world has seen in 100 years. The pandemic has made essential self distancing and quarantining to arrest the spread of the Corona virus. As a result, most APS activities have been shelved for the time being. Being in isolation at home has been a mixed blessing. -
(Hymenoptera: Eurytomidae) in the Integrated Control of Acacia Species in South Africa
Proceedings of the X International Symposium on Biological Control of Weeds 919 4-14 July 1999, Montana State University, Bozeman, Montana, USA Neal R. Spencer [ed.]. pp. 919-929 (2000) The Potential Role of Bruchophagus acaciae (Cameron) (Hymenoptera: Eurytomidae) in the Integrated Control of Acacia Species in South Africa R. L. HILL1, A. J. GORDON2, and S. NESER3 1Richard Hill & Associates, Private Bag 4704, Christchurch, New Zealand 2Plant Protection Research Institute, Private Bag X5017, Stellenbosch, 7599 South Africa 3Plant Protection Research Institute, Private Bag X134, Pretoria, 0001 South Africa Abstract Australian acacias invade watersheds and riverbeds in South Africa, reducing water flows and threatening environmental and economic values. Acacia mearnsii is the most widespread and important weed but also forms the basis of an important industry. A. dealbata, and to a lesser extent A. decurrens are also problems. All belong to the Section Botrycephalae of the sub-genus Heterophyllum. Short term control is achieved locally by removing plants, and by using herbicides, but seed-feeding control agents may provide an acceptable solution in the long term. Larvae of Bruchophagus acaciae (Cameron) (Hymenoptera: Eurytomidae) develop in the seeds of acacias. It was described from New Zealand, but is an Australian species. We explore whether B. acaciae has a role as a con- trol agent for acacias in South Africa. Seed was collected from 28 Australian species of Acacia growing in New Zealand. Attack was restricted to four of the seven species with- in the Section Botrycephalae, and two cases of attack on Acacia rubida (Section Phyllodineae; n=9). Apart from a wasp reared from one seed, A. -
The-Potential-Use-For-Groundwater
i Professor Peter Cook 84 Richmond Avenue Colonel Light Gardens SA 5041 [email protected] Professor Derek Eamus School of Life Sciences University of Technology Sydney PO Box 123 Sydney NSW 2007 [email protected] Cover Photo: Open woodland vegetation in the Ti Tree Basin. ii Table of Contents Executive Summary .................................................................................................................... v 1. INTRODUCTION ................................................................................................................... 9 2. METHODOLOGIES TO INFER GROUNDWATER USE .......................................................... 11 2.1 Direct Measurements of Rooting Depth 11 2.2 Soil Water Potentials 12 2.3 Leaf and Soil Water Potentials 13 2.4 Stable Isotopes 2H and 18O 14 2.5 Depth of Water Use and Groundwater Access 16 2.6 Green Islands 17 2.7 Transpiration Rates 19 2.8 Tree Rings 20 2.9 Dendrometry 22 2.10 13C of Sapwood 22 3. GROUNDWATER AND VEGETATION IN THE TI TREE BASIN .............................................. 24 3.1 Geography and Climate 24 3.2 Groundwater Resources 27 3.3 Vegetation Across the Ti Tree Basin 29 4. TI TREE BASIN GDE STUDIES ............................................................................................. 32 4.1 Transpiration and Evapotranspiration Rates 32 4.2 Soil Water Potentials 35 4.3 Leaf Water Potentials 38 4.4 Stable Isotopes 43 4.5 Sapwood 13C and Leaf Vein Density 44 5. OTHER ARID ZONE STUDIES ............................................................................................. -
WRA Species Report
Family: Sterculiaceae Taxon: Brachychiton populneus Synonym: Poecilodermis populnea Schott & Endl. (basio Common Name: bottletree Sterculia diversifolia G. Don bottelboom kurrajong whiteflower kurrajong Questionaire : current 20090513 Assessor: Chuck Chimera Designation: EVALUATE Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 6 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see y Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 n 403 Parasitic y=1, n=0 n 404 Unpalatable -
DRAFT 25/10/90; Plant List Updated Oct. 1992; Notes Added June 2021
DRAFT 25/10/90; plant list updated Oct. 1992; notes added June 2021. PRELIMINARY REPORT ON THE CONSERVATION VALUES OF OPEN COUNTRY PADDOCK, BOOLARDY STATION Allan H. Burbidge and J.K. Rolfe INTRODUCTION Boolardy Station is situated about 150 km north of Yalgoo and 140 km west-north-west of Cue, in the Shire of Murchison, Western Australia. Open Country Paddock (about 16 000 ha) is in the south-east corner of the station, at 27o05'S, 116o50'E. The most prominent named feature is Coolamooka Hill, near the eastern boundary of the paddock. There are no conservation reserves in this region, although there are some small reserves set aside for various other purposes. Previous biological data for the station consist of broad scale vegetation mapping and land system mapping. Beard (1976) mapped the entire Murchison region at 1: 1 000 000. The Open Country Paddock area was mapped as supporting mulga woodlands and shrublands. More detailed mapping of land system units for rangeland assessment purposes has been carried out more recently at a scale of 1: 40 000 (Payne and Curry in prep.). Seven land systems were identified in open Country Paddock (Fig. 1). Apart from these studies, no detailed biological survey work appears to have been done in the area. Open Country Paddock has been only lightly grazed by domestic stock because of the presence of Kite-leaf Poison (Gastrolobium laytonii) and a lack of fresh water. Because of this and the generally good condition of the paddock and presence of a wide range of plant species, P.J. -
The Vegetation of the Western Blue Mountains Including the Capertee, Coxs, Jenolan & Gurnang Areas
Department of Environment and Conservation (NSW) The Vegetation of the Western Blue Mountains including the Capertee, Coxs, Jenolan & Gurnang Areas Volume 1: Technical Report Hawkesbury-Nepean CMA CATCHMENT MANAGEMENT AUTHORITY The Vegetation of the Western Blue Mountains (including the Capertee, Cox’s, Jenolan and Gurnang Areas) Volume 1: Technical Report (Final V1.1) Project funded by the Hawkesbury – Nepean Catchment Management Authority Information and Assessment Section Metropolitan Branch Environmental Protection and Regulation Division Department of Environment and Conservation July 2006 ACKNOWLEDGMENTS This project has been completed by the Special thanks to: Information and Assessment Section, Metropolitan Branch. The numerous land owners including State Forests of NSW who allowed access to their Section Head, Information and Assessment properties. Julie Ravallion The Department of Natural Resources, Forests NSW and Hawkesbury – Nepean CMA for Coordinator, Bioregional Data Group comments on early drafts. Daniel Connolly This report should be referenced as follows: Vegetation Project Officer DEC (2006) The Vegetation of the Western Blue Mountains. Unpublished report funded by Greg Steenbeeke the Hawkesbury – Nepean Catchment Management Authority. Department of GIS, Data Management and Database Environment and Conservation, Hurstville. Coordination Peter Ewin Photos Kylie Madden Vegetation community profile photographs by Greg Steenbeeke Greg Steenbeeke unless otherwise noted. Feature cover photo by Greg Steenbeeke. All Logistics -
Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al. -
Vegetation Type 6 - Mulga on Rocky Or Stony Slopes of Quartzite, Sandstone Or Silcrete
Vegetation Type 6 - Mulga on rocky or stony slopes of quartzite, sandstone or silcrete KEY # - Occurrence in vegetation type requires confirmation For more information visit N - Not charateristic in that vegetation community wildlife.lowecol.com.au F - Few plants occur /resources/vegetation-maps/ S - Some plants will occur M - Most likely to occur in the vegetation community Data courtesty of Albrecht, D., Pitts, B. (2004). The Vegetation and Plant Species of the Alice Springs Municipality Northern Territory. Department of Infrastructure, Planning and Environment & Greening Australia NT, Report 0724548580, Alice Springs, NT. Taxon Name Common Name FreqCode Form Comments Abutilon fraseri Dwarf Lantern-bush S Herb Abutilon leucopetalum Desert Lantern-bush F Herb Abutilon macrum Slender Lantern-bush F Herb Acacia aneura s.lat. Mulga, Broad-leaved Mulga M Tree Acacia bivenosa Hill Umbrella Bush N Shrub Acacia estrophiolata Ironwood, Southern Ironwood N Tree Acacia kempeana Witchetty Bush S Shrub Acacia melleodora Waxy Wattle N Shrub Acacia murrayana Colony Wattle, Murrays Wattle N Shrub Acacia paraneura Weeping Mulga F Tree Acacia sessiliceps Curly-pod Wattle N Tree Acacia tetragonophylla Dead Finish, Kurara S Shrub Amaranthus centralis Central Amaranth F # Herb Amaranthus interruptus Native Amaranth F # Herb Amyema hilliana Ironwood Mistletoe N Mistletoe Amyema maidenii subsp. maidenii Pale-leaf Mistletoe S Mistletoe Amyema preissii Wire-leaf Mistletoe N Mistletoe Aristida arida Aristida, Three-awn, Wiregrass N Grass Bunched Kerosene Grass, Mulga Grass, Bunched Windgrass, Wind Aristida contorta S Grass Grass Aristida holathera var. holathera Erect Kerosene Grass, White Grass, Arrow Grass F Grass Curly Wiregrass, Fire Grass, Unequal Three-awn, Feathertop Aristida inaequiglumis F Grass Only on gentle colluvial slopes Threeawn Aristida jerichoensis var. -
Vegetation and Flora Report
March 2009 FERRAUS LIMITED ROBERTSON RANGE (M52/1034) Vegetation and Flora Report Version 1 1025 Wellington Street WEST PERTH WA 6005 phone: 9322 1944 fax: 9322 1599 ACN 088 821 425 ABN 63 088 821 425 www.ecologia.com.au ROBERTSON RANGE VEGETATION AND FLORA SURVEY Document Status Approved for Issue Rev No. Author Reviewer Name Distributed to Date 1 M. Hay C. Cox and Christina 1 C. Winton D. Uttley 4th March 2008 M. Hay Cox © ecologia Environment (2009). Reproduction of this report in whole or in part by electronic, mechanical or chemical means, including photocopying, recording or by any information storage and retrieval system, in any language, is strictly prohibited without the express approval of ecologia Environment and/or FerrAus Limited. Restrictions on Use This report has been prepared specifically for FerrAus Limited. Neither the report nor its contents may be referred to or quoted in any statement, study, report, application, prospectus, loan, or other agreement document, without the express approval of ecologia Environment and/or FerrAus Limited. ecologia Environment 1025 Wellington Street West Perth WA 6005 Ph: 08 9322 1944 Fax: 08 9322 1599 Email: [email protected] FEBRUARY 2009 Page i ROBERTSON RANGE VEGETATION AND FLORA SURVEY Table of Contents 1 INTRODUCTION........................................................................................................1 1.1 PROJECT LOCATION ...............................................................................................1 1.2 LEGISLATIVE FRAMEWORK....................................................................................3 -
Draft Revegetation Strategy for the Townsville City Council Region
Draft Revegetation Strategy for the Townsville City Council Region Draft report produced by Con Lokkers for Townsville City Council 2000 Townsville City Council Draft Revegetation Strategy Contents: 1. Scope of report ....................................................................................................................... 3 2. Site description and natural resources.................................................................................... 4 2.1. Geology ........................................................................................................................... 4 2.2. Landforms ....................................................................................................................... 4 2.3. Soils................................................................................................................................. 5 2.4. Climate ............................................................................................................................ 7 2.5. Flora ................................................................................................................................ 8 2.6. Fauna ............................................................................................................................. 10 2.7. Communities and species with high conservation significance. ................................... 10 2.8. Weeds and feral animals. .............................................................................................. 11 3. Rehabilitation prioritisation -
South West Queensland QLD Page 1 of 89 21-Jan-11 Species List for NRM Region South West Queensland, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
The Prehistory of Aboriginal Landuse on the Upper Flinders River
THE PREHISTORY OF ABORIGINAL LANDUSE ON THE UPPER FLINDWS RIVER, NORTH QUEENSLAND HIGHLANDS H. J. MORWOOD Archaeology b Palaeoan tbropology The Unf versf ty of Mew England INTRODUCTION A general theme in Australian prehistory is the development of the distinctive social, economic and technological systems observed in recent Aboriginal societies. Research has demonstrated significant change in the Australian archaeological sequence and general trends of such are shared by numerous regions. Most that have been investigated indicate low density occupation during the Pleistocene and early Holocene with significant increases in site numbers, increased artefact discard rates and dissemination of new technologies and artefact types in mid-to-late Holocene times (e.g. Lourandos 1985). On the other hand, each region has a unique prehistory, range of material evidence and research potential. Our knowledge of Holocene developments in Aboriginal subsistence systems, for instance, is largely based upon the history of cycad exploitation in the Central Queensland Highlands (Beaton 1982), the appearance of seed grindstones in arid and semi- arid zones (Smith 1986) and evidence for increased emphasis on small- bodied animals in N.E. New South Wales and S.E. Queensland (McBryde 1977:233; Morwood 1987:347). The North Queensland Highlands have their own unique contribution to make concerning of Aboriginal Holocene adaptation. Partly this derives from location; the region is a largely unknown, lying in an intermediate position between S.E. Cape York Peninsula (Rosenfeld et a1 1981), the Central Queensland Highlands (Morwood 1981, 1984a), the Gulf country of N.W. Queensland (Hiscock 1984) and the Townsville area (e.g. Brayshaw 1977; Campbell 1982).