Effective Mysql Replication Techniques in Depth
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Lightning Memory-Mapped Database
The Lightning Memory-Mapped Database Howard Chu CTO, Symas Corp. [email protected] Chief Architect, OpenLDAP [email protected] 2015-09-21 OpenLDAP Project ● Open source code project ● Founded 1998 ● Three core team members ● A dozen or so contributors ● Feature releases every 12-18 months ● Maintenance releases as needed 2 A Word About Symas ● Founded 1999 ● Founders from Enterprise Software world – platinum Technology (Locus Computing) – IBM ● Howard joined OpenLDAP in 1999 – One of the Core Team members – Appointed Chief Architect January 2007 ● No debt, no VC investments: self-funded 3 Intro ● Howard Chu – Founder and CTO Symas Corp. – Developing Free/Open Source software since 1980s ● GNU compiler toolchain, e.g. "gmake -j", etc. ● Many other projects... – Worked for NASA/JPL, wrote software for Space Shuttle, etc. 4 Topics (1) Background (2) Features (3) Design Approach (4) Internals (5) Special Features (6) Results 5 (1) Background ● API inspired by Berkeley DB (BDB) – OpenLDAP has used BDB extensively since 1999 – Deep experience with pros and cons of BDB design and implementation – Omits BDB features that were found to be of no benefit ● e.g. extensible hashing – Avoids BDB characteristics that were problematic ● e.g. cache tuning, complex locking, transaction logs, recovery 6 (2) Features LMDB At A Glance ● Key/Value store using B+trees ● Fully transactional, ACID compliant ● MVCC, readers never block ● Uses memory-mapped files, needs no tuning ● Crash-proof, no recovery needed after restart ● Highly optimized, extremely compact – under 40KB object code, fits in CPU L1 I$ ● Runs on most modern OSs – Linux, Android, *BSD, MacOSX, iOS, Solaris, Windows, etc.. -
Oracle & Innodb
MySQL for the SQL Server DBA Mike Frank, Product Manager - Oracle/MySQL Agenda • MySQL Overview • Use Cases • Comparing Feature Sets • Tools Overview • Next Steps © 2010 Oracle Corporation 2 About MySQL • 15 years of development • 1412 Years million of active Development installations • 750+70,000+ Partners downloads each day • 70K+#3 most Downloads deployed database Per Day • Up to 90% lower TCO than proprietary database offerings Customers across every major operating system, hardware Customersvendor, across geography, every industry,major operating and application system, hardwaretype vendor, geography, industry, and application type High Performance. Reliable. Easy to Use. © 2010 Oracle Corporation 3 Industry Leading Customers Web / Web 2.0 OEM / ISV's SaaS, Hosting, Cloud Computing Telecommunications Enterprise 2.0 © 2010 Oracle Corporation 4 Why MySQL? © 2010 Oracle Corporation 5 Why MySQL? • Lower TCO • Performance – “Up to 90% Faster Query Response Times” • Scalability – “Up to 16-way x86 Servers” – “Up to 64-way CMT Servers” • Reliability – Up to five 9s with MySQL Cluster • Ease of Use – Up and running in 15 minutes – MySQL Enterprise Monitor – MySQL Workbench • Open Source http://www.mysql.com/why-mysql/benchmarks/ © 2010 Oracle Corporation 6 Popular on Windows • 45,000 downloads per day for Windows packages • Server • Tools • Connectors • MySQL Survey 2009 • 66% percent used Windows for development • 48% deployed on Windows for production © 2010 Oracle Corporation 7 Lower Total Cost of Ownership • Compared to SQL Server Enterprise Edition • Per Server vs Per CPU • No Upfront Licensing • Example: – 6 Servers – 2 CPUs per Server – 88% Savings! • MySQL Enterprise – 24x7 Production Support – Enterprise Monitor – Enterprise Binaries • MySQL Enterprise Unlimited – Unlimited Servers at a Low Fixed Cost © 2010 Oracle Corporation 8 Use Cases/Application Scenarios © 2010 Oracle Corporation 9 Why MySQL? - Web Infrastructure 1. -
Mysql Essentials
<Insert Picture Here> MySQL Essentials Bill Papp Principal Sales Consultant Oracle MySQL What is MySQL? 2 My Experience with MySQL Is……? • I‟ve never seen / used MySQL – I‟m only here because my boss told me to come…… • Downloaded and played around with it in college „cause I didn‟t have money for a „real‟ database…… • Have developed some websites / applications…they seem to work well most of the time…… • I periodically help Facebook tune their servers and am presenting in a MySQL Track at Oracle Open World next month! 3 MySQL Overview • MySQL AB, founded in 1995 • Acquired by Sun in 2008; Sun/MySQL acquired by Oracle in 2009 • 12+ million product installations • ~65,000 downloads each day • Part of the rapidly growing open source LAMP stack • MySQL GPL & Commercial Editions Available 4 LAMP Operating System L Application Server A Database M Scripting P 5 MySQL is Everywhere Multiple Platforms Multiple Languages C C++ C# 6 MySQL: #3 Most Deployed Database Oracle 70% 8% 9% 14% SQL Server 68% 11% 6% 15% MySQL 50% 13% 10% 28% DB2 39% 12% 11% 38% Informix 18% 13% 14% 55% Sybase ASE 15% 14% 14% 57% Sybase IQ 14% 14% 13% 59% Teradata 11% 15% 13% 61% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Currently Deployed Plan to Deploy Next Year Plan to Deploy but Not in the Next Year No Plans to Deploy 63% Are Deploying MySQL or Are Planning To Deploy 7 Oracle’s Investment in MySQL • Make MySQL a Better MySQL • #1 Open Source Database for Web Applications • MySQL Focus Areas • Web, Embedded & Telecom • LAMP • Windows • Develop, Promote and Support MySQL -
Oracle Glassfish Server Application Development Guide Release 3.1.2 E24930-01
Oracle GlassFish Server Application Development Guide Release 3.1.2 E24930-01 February 2012 This Application Development Guide describes how to create and run Java Platform, Enterprise Edition (Java EE platform) applications that follow the open Java standards model for Java EE components and APIs in the Oracle GlassFish Server environment. Topics include developer tools, security, and debugging. This book is intended for use by software developers who create, assemble, and deploy Java EE applications using Oracle servers and software. Oracle GlassFish Server Application Development Guide, Release 3.1.2 E24930-01 Copyright © 2012, Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. -
Innodb 1.1 for Mysql 5.5 User's Guide Innodb 1.1 for Mysql 5.5 User's Guide
InnoDB 1.1 for MySQL 5.5 User's Guide InnoDB 1.1 for MySQL 5.5 User's Guide Abstract This is the User's Guide for the InnoDB storage engine 1.1 for MySQL 5.5. Beginning with MySQL version 5.1, it is possible to swap out one version of the InnoDB storage engine and use another (the “plugin”). This manual documents the latest InnoDB plugin, version 1.1, which works with MySQL 5.5 and features cutting-edge improvements in performance and scalability. This User's Guide documents the procedures and features that are specific to the InnoDB storage engine 1.1 for MySQL 5.5. It supplements the general InnoDB information in the MySQL Reference Manual. Because InnoDB 1.1 is integrated with MySQL 5.5, it is generally available (GA) and production-ready. WARNING: Because the InnoDB storage engine 1.0 and above introduces a new file format, restrictions apply to the use of a database created with the InnoDB storage engine 1.0 and above, with earlier versions of InnoDB, when using mysqldump or MySQL replication and if you use the older InnoDB Hot Backup product rather than the newer MySQL Enterprise Backup product. See Section 1.4, “Compatibility Considerations for Downgrade and Backup”. For legal information, see the Legal Notices. Document generated on: 2014-01-30 (revision: 37565) Table of Contents Preface and Legal Notices .................................................................................................................. v 1 Introduction to InnoDB 1.1 ............................................................................................................... 1 1.1 Features of the InnoDB Storage Engine ................................................................................ 1 1.2 Obtaining and Installing the InnoDB Storage Engine ............................................................... 3 1.3 Viewing the InnoDB Storage Engine Version Number ............................................................ -
Distributed, Concurrent, and Independent Access to Encrypted Cloud Databases
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014 437 Distributed, Concurrent, and Independent Access to Encrypted Cloud Databases Luca Ferretti, Michele Colajanni, and Mirco Marchetti Abstract—Placing critical data in the hands of a cloud provider should come with the guarantee of security and availability for data at rest, in motion, and in use. Several alternatives exist for storage services, while data confidentiality solutions for the database as a service paradigm are still immature. We propose a novel architecture that integrates cloud database services with data confidentiality and the possibility of executing concurrent operations on encrypted data. This is the first solution supporting geographically distributed clients to connect directly to an encrypted cloud database, and to execute concurrent and independent operations including those modifying the database structure. The proposed architecture has the further advantage of eliminating intermediate proxies that limit the elasticity, availability, and scalability properties that are intrinsic in cloud-based solutions. The efficacy of the proposed architecture is evaluated through theoretical analyses and extensive experimental results based on a prototype implementation subject to the TPC-C standard benchmark for different numbers of clients and network latencies. Index Terms—Cloud, security, confidentiality, SecureDBaaS, database Ç 1INTRODUCTION N a cloud context, where critical information is placed in SecureDBaaS that supports the execution -
Database Security in the Cloud
Database security in the cloud I M A L S A K H I Examensarbete inom Datateknik Grundnivå, 15 hp 1 Stockholm 2012 Detta examensarbete har utförts i samarbete med Försvarsmakten Handledare på Försvarsmakten: Ingvar Ståhl Databassäkerhet i molnet Database security in the cloud I m a l S a k h i Examensarbete inom Datorteknik Grundnivå, 15 hp Handledare på KTH: Magnus Brenning Examinator: Thomas Lindh Skolan för teknik och hälsa TRITA-STH 2012:51 Kungliga Tekniska Högskolan Skolan för teknik och hälsa 136 40 Handen, Sweden http://www.kth.se/sth ii Abstract The aim of the thesis is to get an overview of the database services available in cloud computing environment, investigate the security risks associated with it and propose the possible countermeasures to minimize the risks. The thesis also analyzes two cloud database service providers namely; Amazon RDS and Xeround. The reason behind choosing these two providers is because they are currently amongst the leading cloud database providers and both provide relational cloud databases which makes the comparison useful. The focus of the analysis has been to provide an overview of their database services as well as the available security measurements. A guide has been appended at the end of the report to help with technical configurations of database migration and connecting applications to the databases for the two mentioned cloud database providers. The thesis has been conducted on behalf of the Swedish Armed Forces and after reviewing the security risks associated with cloud databases, it is recommended that the Armed Forces should refrain from public cloud database services. -
A Study of the Innodb Storage Engine in the Mysql 5.6
SERVICE COMPUTATION 2017 : The Ninth International Conferences on Advanced Service Computing A Study of the InnoDB Storage Engine in the MySQL 5.6 Hong-Jin, Park School of Computer, Information and Communications Sangji University 83 Sangjidae-gil, Wonju, Gangwondo, Korea [email protected] Abstract—MySQL is the most widely used open source models used as a performance benchmark for databases relational database management system. The logical structure through Online Transaction Processing (OLTP) work. of MySQL is largely divided into three layers and the storage Ubuntu 14.04 LTS (Long Term Support) was used as an engine belongs to the last layer. The purpose of this paper is to operating system and HammerDB was installed to evaluate evaluate the performance of InnoDB engine, the engine that performance with TPC-C. supports transaction of several storage engines used in MySQL 5.6. TPC-C (Transaction Processing performance Council – C), II. MYSQL LOGICAL STRUCTURE : INNODB an international standard model of benchmarking, is used for performance evaluation and performance evaluation was MySQL is an open source relational database carried out by installing HammerDB for this purpose. It was management system currently distributed by Oracle. The found that, if the number of user requests increases and the logical structure of MySQL is largely divided into three number of transaction processing requests increases, then the layers. There is a Handing layer in the highest layer and number of transactions processed in InnoDB also increases. processes DB connection, authentication and security. Parsing of query, analysis, review, optimization and caching Keywords- InnoDB, Storage Engine, TPC-C, MySQL 5.6 are performed in the middle layer of the logical structure in MySQL. -
6-Th INTERNATIONAL SCIENTIFIC CONFERENCE
International Conference on Applied Information and Communication Technologies (AICT2013), 25.-26. April, 2013, Jelgava, Latvia Different solutions of MySQL in the cloud – security and possibilities Zigmunds Bulins, Vjaceslavs Sitikovs Institute of Applied Software, Riga Technical University, Meza 1/3, Riga, LV-1048, Latvia [email protected], [email protected] Abstract: Cloud computing is a good way to raise productivity of offered service without investments into new infrastructure, training of the personnel or software acquisition. This technology expands potential possibilities of existing information systems. In recent years cloud computing grew from good business concept to one of the most demanded industry in information technologies. The paper contains a short review of different cloud database providers which uses MySQL as a basis. Technical nuances, potential problems and risks related to migration of the existing MySQL databases to the new environment are reviewed. In the paper we try to review the actual possibilities of the new platform and compare the cloud DBaaS (database as a service) solutions which are implemented with MySQL database management system widely used in the web. Keywords: MySQL, DBaaS, Heroku, Google Cloud SQL, ClearDB. Introduction Cloud computing is a dynamic method of increasing productivity of service or possibilities without investments in new infrastructure, training of the personnel or software licensing. This expands possibilities of existing information systems. In recent years cloud computing grew from good concept business to one of the most quickly developing industries of information technologies (Chandra, Mondal, 2011). In the last two years there was quite a lot of activity around the cloud databases on the stage – Google, Amazon and Xeround (Xeround, 2012a) companies announced their DBaaS based on the MySQL database. -
Deploying Web 2.0 Applications on Oracle Servers and the Opensolaris Operating System
An Oracle White Paper April 2010 Deploying Web 2.0 Applications on Oracle® Servers and the OpenSolaris Operating System Oracle White Paper—Deploying Web 2.0 Applications on Oracle Servers and the OpenSolaris Operating System Introduction ......................................................................................... 1 Typical Web 2.0 Architecture .............................................................. 2 Solution Overview ............................................................................... 3 Solution Configuration......................................................................... 4 Hardware Configuration .................................................................. 4 Software Configuration ................................................................... 6 Olio Configuration ........................................................................... 6 Configuration and Tuning.................................................................... 7 Apache HTTP Server...................................................................... 8 PHP................................................................................................. 8 Memcached .................................................................................... 9 Database Server ............................................................................. 9 Test Results ...................................................................................... 10 Throughput and Response Time ................................................. -
Innodb Plugin 1.0 for Mysql 5.1 User's Guide Innodb Plugin 1.0 for Mysql 5.1 User's Guide
InnoDB Plugin 1.0 for MySQL 5.1 User's Guide InnoDB Plugin 1.0 for MySQL 5.1 User's Guide Abstract This is the User's Guide for InnoDB Plugin 1.0.8 for MySQL 5.1. Starting with version 5.1, MySQL AB has promoted the idea of a “pluggable” storage engine architecture , which permits multiple storage engines to be added to MySQL. Beginning with MySQL version 5.1, it is possible for users to swap out one version of InnoDB and use another. The pluggable storage engine architecture also permits Innobase Oy to release new versions of InnoDB containing bug fixes and new features independently of the release cycle for MySQL. This User's Guide documents the installation and removal procedures and the additional features of the InnoDB Plugin 1.0.8 for MySQL 5.1. WARNING: Because the InnoDB Plugin introduces a new file format, restrictions apply to the use of a database created with the InnoDB Plugin with earlier versions of InnoDB, when using mysqldump or MySQL replication and if you use the InnoDB Hot Backup utility. See Section 1.5, “Operational Restrictions”. For legal information, see the Legal Notices. Document generated on: 2014-01-30 (revision: 37573) Table of Contents Preface and Legal Notices ........................................................................................................... vii 1 Introduction to the InnoDB Plugin ............................................................................................... 1 1.1 Overview ....................................................................................................................... -
OVERVIEW of DATABASES AS SERVICE PROVIDING SYSTEMS on the BASE of XEROUND, AMAZON RDS and SQL AZURE Yeleu Y.A
Section VII: Informatics and Control in Engineering Systems CLOUD TECHNOLOGY: OVERVIEW OF DATABASES AS SERVICE PROVIDING SYSTEMS ON THE BASE OF XEROUND, AMAZON RDS AND SQL AZURE Yeleu Y.A. Scientific supervisor: Botygin I.A., associate professor Language supervisor: Pichugova I.L., senior teacher Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, 634050, Russia E-mail: [email protected] Cloud computing is the delivery provisioning often appear to be unlimited and can of computing as a service rather than a product, be appropriated in any quantity at any time. whereby shared resources, software, and 3. On-demand self-service. A consumer can information are provided to computers and other unilaterally get computing capabilities, such as devices as a metered service over server time and network storage, as needed a network (typically the Internet). [1] Cloud automatically without requiring human interaction computing is a model for delivering information with each service provider. technology services where resources are retrieved 4. Broad network access. Capabilities are available from the Internet through web-based tools and over the network and accessed through standard applications, rather than a direct connection to a mechanisms that promote use by heterogeneous server. Data and software packages are stored in thin or thick client platforms (e.g., mobile phones, servers. However, cloud computing structure tablets, laptops, and workstations). allows access to information as long as an 5. Economy of the process.Measured service is electronic device has access to the web. This type used in cloud technology. Cloud systems of system allows employees to work remotely. [2] automatically control and optimize resource use by There is a more common definition.