Metabolic Bone Disease in Preterm Infants

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Bone Disease in Preterm Infants Arch Dis Child: first published as 10.1136/adc.60.7.682 on 1 July 1985. Downloaded from Archives of Disease in Childhood, 1985, 60, 682-685 Current topic Metabolic bone disease in preterm infants 0 G BROOKE AND A LUCAS Department of Child Health, St George's Hospital, London and MRC Dunn Nutrition Unit, Milton Road, Cambridge 'Osteopenia' or 'rickets of prematurity' is a condi- common the problem is and it may well be under tion or group of conditions resulting in reduced bone reported. It is found most often and in its severest mineralisation in preterm infants, and leading, in form in infants of less than 1000 g birthweight, in severe cases, to frank radiological rickets and whom frank radiological rickets has been described spontaneous fractures. A recent one day workshop in up to 57% of cases.4 Reduced bone mineralisa- in Cambridge, sponsored by the British Paediatric tion is almost universal in infants of less than 1500 g, Association's Nutrition Group, was devoted to this since they have poor calcium retention for several disorder. The proceedings are summarised in this weeks after birth.7-9 The problem is deciding when article. what may be regarded as an inevitable event becomes pathological, and there are no clear guide- Nomenclature lines on this. copyright. Metabolic bone disease in extremely preterm infants Diagnosis is now a well recognised problem.l" It has been called 'rickets of prematurity' and 'osteopenia'. Several methods have been used to attempt to Rickets implies radiological disease at the growing quantify demineralisation. Radiological densi- ends of the long bones, while osteopenia implies tometry is imprecise, since minor radiological under mineralisation. Neither term is ideal for a osteopenia represents major loss of bone mineral. http://adc.bmj.com/ condition that encompasses a variety of disturbances, More severe degrees of radiological osteopenia are ranging from mild under mineralisation to severe easy to recognise but still hard to quantify using bone disease with fractures, and for which the routine diagnostic radiographs. The best research aetiology is in dispute. The term rickets has an technique is probably photon absorptiometryl' but additional disadvantage in that it is often associated the equipment is expensive and not generally with vitamin D deficiency, of which there is little available, and the technique gives a measure of bone evidence in most cases of bone disease in preterm mineral density only, not of total bone mineral infants.4 5 Osteopenia, though not an ideal name, mass. Despite its limitations, radiography of the on September 26, 2021 by guest. Protected seems to have been adopted as a general descriptive limbs is reliable for the diagnosis of the marked term for the problem in the published reports. We generalised under mineralisation and bone end feel, however, that the term 'metabolic bone disease changes that are characteristic of the various grades of prematurity' is better-at least until it has become of metabolic bone disease of prematurity. The clear whether or not we are dealing with more than following classification has been suggested," and one pathological entity. The use of the word rickets proves satisfactory in practice: should be reserved for cases in which there are Grade 0-normal bones; definite radiological features of rickets at the ends of Grade I-rarefaction only; the long bones. Grade 1I-bone end changes (fraying and cupping of the metaphysis, subperiosteal new bone forma- Incidence tion); Grade III-the above changes, with fractures. The reported incidence varies widely from centre to Metabolic bone disease of prematurity is associ- centre. -4 6 Since there is no general agreement on ated with raised plasma alkaline phosphatase diagnostic criteria, it is impossible to be certain how activity. 12 The spread of values in subjects with 682 Arch Dis Child: first published as 10.1136/adc.60.7.682 on 1 July 1985. Downloaded from Metabolic bone disease in preterm infants 683 radiological evidence of bone disease, however, even high concentrations of plasma calcium23 24 and overlaps that of infants with radiologically normal raised urinary calcium excretion.16 These findings bones by such a large amount that its diagnostic may be explained if one takes into account the value is limited.'3 Although measurement of alka- overriding need for phosphorus for soft tissue line phosphatase activities has been useful in growth and metabolism in the body. When phos- epidemiological studies, the most one can say in phorus intake is inadequate, plasma reserves fall individual patients is that the majority of infants and phosphorus is withdrawn from the skeleton. with grade II or III changes have activities greater Calcium cannot be used for bone growth in the than 1000 IU/l. Thus, alkaline phosphatase values absence of phosphorus and so is lost in the urine. provide confirmatory evidence in severe cases, but When sufficient phosphorus is given to meet soft metabolic bone disease of prematurity remains a tissue needs, hydroxyapatite can again be formed in radiological diagnosis in clinical practice. bone and calcium absorbed from the diet is avidly retained, with consequent noticeable reduction in its Pathogenesis excretion in the urine.24 Other evidence for a central role of phosphorus deficiency is provided by the findings that in infants (1) Role of vitamin D deficiency. Severe bone disease with grade II and III bone changes, phosphorus is not prevented by vitamin D intakes as high as 2000 intake was significantly lower than in infants without IU/day,4 and occurs in the presence of normal or serious bone disease,25 and that the incidence and raised Dlasma concentrations of 25-OH vitamin severity of osteopenia in infants of birthweight less D.14 5 Although vitamin D intakes of 800 to 1000 than 1000 g fed expressed breast milk declined when IU/day may be required to ensure adequate hepatic the milk was supplemented with phosphate alone. In 25-hydroxylation and optimum calcium absorption,16 a multicentre study, the plasma phosphate concen- indicating some immaturity of hepatic vitamin D tration was found to be lower and alkaline phospha- metabolism, there is little evidence that vitamin D tase activity higher in infants fed breast milk than in deficiency is the primary problem. It is possible that those fed formula. It is not possible at present to there may be the occasional very immature infant define an independent role of calcium deficiency in copyright. who has deficient renal la hydroxylase and hence bone disease of prematurity, though some studies inadequate conversion of 24-OH vitamin D to suggest that breast fed, preterm infants may benefit 1,24(OH)2 vitamin D.17 There is a problem of from both calcium and phosphorus supple- specificity in the assays that have been used for mentation. 1,25(OH)2 vitamin D, but the few studies in which The incidence of bone disease in formula fed this metabolite has been measured have shown it to infants of extremely low birthweight (less than http://adc.bmj.com/ be within the normal adult range or high, rather 1000 g) requires further investigation. In the mul- 15 18-20 than low. ticentre study cited above, however, infants with birthweights under 1200 g, fed solely on a preterm (2) Substrate deficiency. Probably the main cause of formula with twice the phosphorus and calcium metabolic bone disease of prematurity is substrate concentration of human milk, and receiving a high deficiency. The increasing recognition of the disease intake of vitamin D (more than 1500 IU/day), still in the last few years coincides with rapidly improv- developed alkaline phosphatase activities greater ing survival figures for infants weighing less than than 1000 IU/I in 30% of cases compared with 66% on September 26, 2021 by guest. Protected 1000 g whose requirements for calcium and phos- in infants fed banked breast milk. It seems unlikely phorus are large, and with the common tendency to therefore that bone disease in preterm infants will feed such very small infants on breast milk. It is be eradicated by these formulas, though its fre- evident that unsupplemented breast milk can supply quency and severity is likely to be reduced substan- only a fraction of the quantity of calcium and tially. phosphorus retained by the fetus during the last trimester of pregnancy,2' and there are well Other factors documented reports of rickets in preterm infants on calcium or phosphorus deficient diets. 18 22 Although net calcium absorption by preterm infants is usually Information is lacking on the influence of prenatal poor, while phosphate is well absorbed, evidence is nutrition on the risk of developing bone disease, but accumulating that phosphorus deficiency is an im- it is possible that poor placental transfer of calcium portant factor in bone disease of prematurity. and phosphorus is a contributing factor, since Infants fed breast milk may have extremely low osteopenia has been found to occur more commonly concentrations of plasma phosphate, but normal or after deliveries complicated by pre-eclampsia.26 Arch Dis Child: first published as 10.1136/adc.60.7.682 on 1 July 1985. Downloaded from 684 Brooke and Lucas Prophylaxis and treatment a lack of information on the clinical outcome of infants with asymptomatic osteopenia. Severe metabolic bone disease of prematurity with frank rickets and fractures may well be a prevent- We thank Professor J Senterre, Dr D R Fraser, and Dr J C L Shaw able disease. Infants of less than 1000 g birthweight for their helpful criticism during the preparation of the manuscript. are most at risk, and these babies should receive phosphorus supplements if fed on breast milk alone. It may be sensible to give phosphorus supplements References to larger infants as well, perhaps up to 1200 g 'Kulkarni PB, Hall RT, Rodes PG, et al.
Recommended publications
  • Osteomalacia and Osteoporosis D
    Postgrad. med.J. (August 1968) 44, 621-625. Postgrad Med J: first published as 10.1136/pgmj.44.514.621 on 1 August 1968. Downloaded from Osteomalacia and osteoporosis D. B. MORGAN Department of Clinical Investigation, University ofLeeds OSTEOMALACIA and osteoporosis are still some- in osteomalacia is an increase in the alkaline times confused because both diseases lead to a phosphatase activity in the blood (SAP); there deficiency of calcium which can be detected on may also be a low serum phosphorus or a low radiographs of the skeleton. serum calcium. This lack of calcium is the only feature Our experience with the biopsy of bone is that common to the two diseases which are in all a large excess of uncalcified bone tissue (osteoid), other ways easily distinguishable. which is the classic histological feature of osteo- malacia, is only found in patients with the other Osteomalacia typical features of the disease, in particular the Osteomalacia will be discussed first, because it clinical ones (Morgan et al., 1967a). Whether or is a clearly defined disease which can be cured. not more subtle histological techniques will detect Osteomalacia is the result of an imbalance be- earlier stages of the disease remains to be seen. tween the supply of and the demand for vitamin Bone pains, muscle weakness, Looser's zones, D. The the following description of disease is raised SAP and low serum phosphate are the Protected by copyright. based on our experience of twenty-two patients most reliable aids to the diagnosis of osteomalacia, with osteomalacia after gastrectomy; there is no and approximately in that order.
    [Show full text]
  • Metabolic Bone Disease 5
    g Metabolic Bone Disease 5 Introduction, 272 History and examination, 275 Osteoporosis, 283 STRUCTURE AND FUNCTION, 272 Investigation, 276 Paget’s disease of bone, 288 Structure of bone, 272 Management, 279 Hyperparathyroidism, 290 Function of bone, 272 DISEASES AND THEIR MANAGEMENT, 280 Hypercalcaemia of malignancy, 293 APPROACH TO THE PATIENT, 275 Rickets and osteomalacia, 280 Hypocalcaemia, 295 Introduction Calcium- and phosphate-containing crystals: set in a structure• similar to hydroxyapatite and deposited in holes Metabolic bone diseases are a heterogeneous group of between adjacent collagen fibrils, which provide rigidity. disorders characterized by abnormalities in calcium At least 11 non-collagenous matrix proteins (e.g. osteo- metabolism and/or bone cell physiology. They lead to an calcin,• osteonectin): these form the ground substance altered serum calcium concentration and/or skeletal fail- and include glycoproteins and proteoglycans. Their exact ure. The most common type of metabolic bone disease in function is not yet defined, but they are thought to be developed countries is osteoporosis. Because osteoporosis involved in calcification. is essentially a disease of the elderly, the prevalence of this condition is increasing as the average age of people Cellular constituents in developed countries rises. Osteoporotic fractures may lead to loss of independence in the elderly and is imposing Mesenchymal-derived osteoblast lineage: consist of an ever-increasing social and economic burden on society. osteoblasts,• osteocytes and bone-lining cells. Osteoblasts Other pathological processes that affect the skeleton, some synthesize organic matrix in the production of new bone. of which are also relatively common, are summarized in Osteoclasts: derived from haemopoietic precursors, Table 3.20 (see Chapter 4).
    [Show full text]
  • Rheumatology Certification Exam Blueprint
    Rheumatology Certification Examination Blueprint Purpose of the exam The exam is designed to evaluate the knowledge, diagnostic reasoning, and clinical judgment skills expected of the certified rheumatologist in the broad domain of the discipline. The ability to make appropriate diagnostic and management decisions that have important consequences for patients will be assessed. The exam may require recognition of common as well as rare clinical problems for which patients may consult a certified rheumatologist. Exam content Exam content is determined by a pre-established blueprint, or table of specifications. The blueprint is developed by ABIM and is reviewed annually and updated as needed for currency. Trainees, training program directors, and certified practitioners in the discipline are surveyed periodically to provide feedback and inform the blueprinting process. The primary medical content categories of the blueprint are shown below, with the percentage assigned to each for a typical exam: Medical Content Category % of Exam Basic and Clinical Sciences 7% Crystal-induced Arthropathies 5% Infections and Related Arthritides 6% Metabolic Bone Disease 5.5% Osteoarthritis and Related Disorders 5% Rheumatoid Arthritis 13% Seronegative Spondyloarthropathies 6.5% Other Rheumatic and Connective Tissue Disorders (ORCT) 16.5 % Lupus Erythematosus 9% Nonarticular and Regional Musculoskeletal Disorders 7% Nonrheumatic Systemic Disorders 9% Vasculitides 8.5% Miscellaneous Topics 2% 100% Exam questions in the content areas above may also address clinical topics in geriatrics, pediatrics, pharmacology and topics in general internal medicine that are important to the practice of rheumatology. Exam format The exam is composed of multiple-choice questions with a single best answer, predominantly describing clinical scenarios.
    [Show full text]
  • Part II: Metabolic Bone Disease
    SAOJ Autumn 2009.qxd 2/27/09 11:11 AM Page 38 Page 38 / SA ORTHOPAEDIC JOURNAL Autumn 2009 BASIC RESEARCH ARTICLE B ASIC R ESEARCH A RTICLE Part II: Metabolic bone disease: Recent developments in the pathogenesis of rickets, osteomalacia and age-related osteoporosis EJ Raubenheimer MChD, PhD, DSc Chief Specialist: Metabolic Bone Disease Clinic, Faculty of Health Sciences, Medunsa Campus, University of Limpopo Reprint requests: Prof EJ Raubenheimer Room FDN324 MEDUNSA Campus: University of Limpopo 0204 South Africa Tel: (012) 521-4838 Email: [email protected] Part I of this article was published in SA Orthopaedic Journal 2008, Vol. 7, No. 4. Abstract The term ‘metabolic bone disease’ encompasses an unrelated group of systemic conditions that impact on skeletal collagen and mineral metabolism. Their asymptomatic progression leads to advanced skeletal debilitation and late clinical manifestation. This article provides a brief overview of advances in the understanding of the pathogenesis of rickets, osteomalacia and age-related osteoporosis. Introduction The advent of bone histomorphometry established Metabolic bone disease is an unrelated group of systemic microscopy as the gold standard in the early identifica- conditions that impact on skeletal collagen and mineral tion of bone changes and monitoring of metabolic bone 2,3 metabolism. In affluent societies the most common caus- disease at a cellular level. The basic principles of bone es are old age, drug use, malignant disease and immobil- metabolism, bone histomorphometry, normal reference ity whereas in poor communities nutritional deficiencies values for osteoid, bone and osteoclast content and are more commonly implicated. Bone changes generally ancillary tests recommended for the early diagnosis of 4 progress asymptomatically and present at a late stage with metabolic bone disease are discussed in Part I.
    [Show full text]
  • Metabolic Bone Disease of Prematurity: a Review of Minerals
    eona f N tal l o B a io n l r o u g y o J Manfredini et al., J Neonatal Biol 2015, 4:3 Journal of Neonatal Biology DOI: 10.4172/2167-0897.1000187 ISSN: 2167-0897 Mini Review Open access Metabolic Bone Disease of Prematurity: A Review of Minerals Supplementation and Disease Monitoring Valeria Anna Manfredini1*, Chiara Cerini2 , Chiara Giovanettoni1, Emanuela Alice Brazzoduro1 and Rossano Massimo Rezzonico1 1Neonatal intensive care Unit, “G. Salvini” Hospital, RHO, Milan, Italy 2Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, USA *Corresponding author: Valeria Anna Manfredini, MD, Corso Europa 250, 20017, RHO (Milano), Italy, Tel: +39-02-994303261; Fax +39-02-994303019; E-mail: [email protected] Rec date: July 13, 2015; Acc date: August 5, 2015; Pub date: August 10, 2015 Copyright: © 2015Manfredini VA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Metabolic bone disease is a frequent condition in very low birth weight (VLBW) infants. In order to prevent the disease, the provision of high amount of calcium and phosphate in parenteral nutrition solutions and during transition to the full enteral feedings is crucial. Current practice supports early aggressive mineral supplementation. In this review, we will discuss data from the recent literature regarding the recommendation for supplementation of calcium, phosphate and vitamin D in VLBW infants and the interpretation of indirect markers of bone metabolism for screening, diagnosis and monitoring high risk infants, as well as to guide treatment.
    [Show full text]
  • SPECT/CT and PET/CT of Bone Disease
    Sarajevo, Bosnia-Hercegovina Thursday, June 19,2014 14:00-14:40 SPECT/CT and PET/CT of Bone disease Helle Westergren Hendel MD PhD, assistant professor Department of Nuclear Medicine PET & Cyclotrone Member of PhD Coordinator Committee Faculty of Health Institute of Clinical Medicine Herlev Hospital University of Copenhagen, Denmark Methods for evaluation of the skeleton XR : bone destruction (30-60% mineral bone loss) CT : structural bone changes (non RECIST), lytic:50-75% destroyed trabecular bone WB-MRI, DW-MRI : involvement of bone marrow, functional DXA: bone mineral density US: blood flow , soft tissue SPECT 99mTc HDP/MDP (BS) White blood cell scintigraphy (WBC) Bone marrow scintigraphy PET : NaF FDG Choline/acetate etc Radiopharmaceuticals Bone remodelling – NaF – Biphosphonates PET Infection/inflammation – FDG – WBC – Ga-citrate SPECT – Nannocolloids – IgG/albumin Specific tumor markers 123I ,123I mIBG, 111In SST, 64 Cu DOTA Clinical application of PET/SPECT • Bone pain – Metastatic tumour – Benign bone tumour – Trauma – Avascular necrosis – Infection – Osteomalacia, Paget’s disease • Malignancy – Initial staging and recurrence – Discordant scan/X-ray findings – Assessment of extent of disease – Assessment of response to therapy – Hypertrophic pulmonary osteoathropathy – Primary bone tumours • Benigne bone disease – Othopedic disorders – Sports/excercise relatied injuries – Metabolic bone disease – Paget’s disease, hyperparathyroidism – Infection – Benign bone tumors – Degenerative disease • Miscellaneous – Vascular abnormalities
    [Show full text]
  • Osteopetrosis Associated with Familial Paraplegia: Report of a Family
    Paraplegia (1975), 13, 143-152 OSTEOPETROSIS ASSOCIATED WITH FAMILIAL PARAPLEGIA: REPORT OF A FAMILY By SKIP JACQUES*, M.D., JOHN T. GARNER, M. D., DAVID JOHNSON, M.D. and C. HUNTER SHELDEN, M. D. Departments of Neurosurgery and Radiology, Huntington Memorial Hospital, Pasadena, Ca., and the Huntington Institute of Applied Medical Research, Pasadena, Ca., U.S.A. Abstract. A clinical analysis of three members of a family with documented osteopetrosis and familial paraplegia is presented. All patients had a long history of increased bone density and slowly progressing paraparesis of both legs. A thorough review of the literature has revealed no other cases which presented with paraplegia without spinal cord com­ pression. Although the etiologic factor or factors remain unknown, our review supports the contention that this is a distinct clinical entity. IN 1904, a German radiologist, Heinrich Albers-Schonberg, described a 26-year­ old man with multiple fractures and generalised sclerosis of the skeleton. The disease has henceforth commonly been known as Albers-Schonberg disease or marble osteopetrosis, a term first introduced by Karshner in 1922. Other eponyms are bone disease, osteosclerosis fragilis generalisata, and osteopetrosis generalisata. Approximately 300 cases had been reported in the literature by 1968. It has been generally accepted that the disease presents in two distinct forms, an infantile progressive disease and a milder form in childhood and adolescence. The two forms differ clinically and genetically. A dominant pattern of inheritance is usually seen in the benign type whereas the severe infantile form is usually inherited as a Mendelian recessive. This important distinction has not been well emphasised.
    [Show full text]
  • Qp Code: 1071 - Section B - ORTHOPAEDICS [50 Marks] Use Separate Answer Book .,ONG T:Ssa.'F J
    r------ ~ Qp Code: 1071 - Section B - ORTHOPAEDICS [50 marks] Use separate answer book .,ONG t:ssA.'f j. - Desc:rib 2 X 10 = 20 Marks 'J.- Disc: e the clinical features, types and treatment of instability of the gleno humeral joint s lJs the clinical features, radiological appearance and management of Septic Arthritis ~tlORl" t:SS A.'f 3 X 5 15 Marks ~- Monte = A- EWin 99ia fracture 9s s ~- Ehlers _ arcoma danlos syndrome ~rtORl" A.NS~ 6- Gan91- t:RS 5 X 3 = 15 Marks 101) 1- De QlJ 6- GOlfe :IVain's tenosynovitis rs elb 9- Radial h ow j.O- Sur9i ead fractures cal OPtions in rheumatoid arthritis ***** $wlLt~ 8f'2ode: 1017 - Section B - ORTHOPAEDICS (Max. Marks: 45) Use separate answer book ® LONG ESSAY 1 X 10 = 10 Marks 1. Discuss etiology, pathogenesis, pathology, diagnosis and treatment of acute osteomyelitis SHORT ESSAY SXS = 25 Marks 2. Complications of supracondylar fracture of humerus 3. Fracture of clavicle 4. Physiology of fracture union 5. Osteoclastoma 6. Scoliosis SHORT ANSWERS 5 X 2 = 10 Marks 7. Gibbus 8. Luxatio erecta 9. Cancellous graft 10. Dynamic compression plate 11. Compound palmaf ganglion ** * * * J1J,l;+- J~()l) QP Code: 1017 - Section B-ORTHOPAEDICS (Max. Marks: 45) Use separate answer book (3) LONG ESSAY 1 X 10 = 10 Marks 1. Classify fracture neck of femur. Discuss clinical features, diagnosis and management of fracture of c , neck of femur -.f·'" SHORT ESSAY 5 X 5 = 25 Marks 2. Giant cell tumour 3. Chronic osteomyelitis Paravertebral abscess Injuries due to fall on outstretched hand De Quervain's synovitis '.
    [Show full text]
  • Metabolic Bone Disease in Chronic Kidney Disease
    Disease of the Month Metabolic Bone Disease in Chronic Kidney Disease Kevin J. Martin and Esther A. Gonza´lez Division of Nephrology, Saint Louis University, St. Louis, MO Metabolic bone disease is a common complication of chronic kidney disease (CKD) and is part of a broad spectrum of disorders of mineral metabolism that occur in this clinical setting and result in both skeletal and extraskeletal consequences. Detailed research in that past 4 decades has uncovered many of the mechanisms that are involved in the initiation and maintenance of the disturbances of bone and mineral metabolism and has been translated successfully from “bench to bedside” so that efficient therapeutic strategies now are available to control the complications of disturbed mineral metab- olism. Recent emphasis is on the need to begin therapy early in the course of CKD. Central to the assessment of disturbances in bone and mineral metabolism is the ability to make an accurate assessment of the bone disease by noninvasive means. This remains somewhat problematic, and although measurements of parathyroid hormone are essential, recently recognized difficulties with these assays make it difficult to provide precise clinical practice guidelines for the various stages of CKD at the present time. Further research and progress in this area continue to evaluate the appropriate interventions to integrate therapies for both the skeletal and extraskeletal consequences with a view toward improving patient outcomes. J Am Soc Nephrol 18: 875–885, 2007. doi: 10.1681/ASN.2006070771 etabolic bone disease is a common complication of tion defects and show frank osteomalacia. This wide spectrum chronic kidney disease (CKD) and is part of a broad of skeletal abnormality can give rise to a variety of mixed M spectrum of disorders of mineral metabolism that patterns, with elements of the effects of hyperparathyroidism occur in this clinical setting.
    [Show full text]
  • Metabolic Bone Disease Wayne Cheng, Md
    METABOLIC BONE DISEASE WAYNE CHENG, MD BONES AND SPINE OSTEOPENIA • OSTEOPOROSIS • OSTEOMALACIA VITAMINE D PRODUCTION • VIT D2 • VIT D3 • 25-OH-VIT D3 • 1,25-OH VIT D3 VS. 24,25-OH VIT D3 OSTEOMALACIA- CLINICAL PRESENTATION • Diffuse pain (away from joints) • Muscle weakness (waddling gait) • Hx of prior fx (rib/spine/long bone) OSTEOMALACIA X-RAY IN ADULTS • Code fish vertebrae • Looser Zone OSTEOMALACIA- LAB. • Ca, P, Akp, PTH, 25-vit D, 1,25-Vit D OSTEOMALACIA – LAB. DISEASE CA P Akp PTH Vit.D Dep. Ricket L L H H VDRR (hypophosphotemic Nl L H N Ricket) * x link dominant Renal osteodystrophy H H H H Hypophosphatasia *AR nl nl L nl hyperparathyroid H L H H Idiopathic Juvenil osteop. nl nl nl nl OSTEOMALACIA-TREATMENT • Find the cause and treat it. OSTEOPOROSIS type I II Cause postmenopause age age 51-70 >70 F : M 6:1 2:1 Bone loss trabeculae Trabeculae+corticle Fx sites Crushed vert. Wedge vert. IT fx, wrist Femoral neck. OSTEOPOROSIS - HISTORY • Menopause • Periods of amenorrhea • Nutrition • Inacitivity • Smoking • alcohol OSTEOPOROSIS-LAB • CBC,ESR,CHEM20, SPEP,TSH,PTH OSTEOPOROSIS - IMAGING • DXA(Dual-energy x-ray absorptiometry) • Classification I to IV levels (compare to peak bone mass of young same gender) • Two fold increase of Fx. Rate with each standard deviation. OSTEOPOROSIS-TREATMENT • CALCIUM • Young adult = 1200 Mg/day • Premenopause = 1000 Mg/day • Postmenopause = 1500 Mg/day OSTEOPOROSIS-TREATMENT • VIT D • 400 IU/DAY • 800 IU/DAY MAX. OSTEOPOROSIS-TREATMENT • ESTROGEN • 0.625 MG/DAY • Contraindication: • Breast Cancer • Uterine Cancer • Thromboembolic disorders • Raloxifene(selective estrogen-receptor modulator) 60mg/day OSTEOPOROSIS - TREATMENT • Bisphosphonates • 1st generation: Etidronate • 2nd generation: Alendronate • 5mg/day prevention • 10mg/day treatment • Instruction and side effects.
    [Show full text]
  • Clinical and Laboratory Considerations in Metabolic Bone Disease
    ANNALS OF CLINICAL AND LABORATORY SCIENCE, Vol. 5, No. 4 Copyright ® 1975, Institute for Clinical Science Clinical and Laboratory Considerations in Metabolic Bone Disease LYNWOOD H. SMITH, M.D. AND B. LAWRENCE RIGGS, M.D. Mayo Clinic and Mfiyo Foundation Rochester, MN 55901 ABSTRACT An overview of the common types of metabolic bone disease is described. When the disease is present in pure form, diagnosis is not difficult. When mixed disease is present, as may be the case, the pathophysiology involved must be clearly under­ stood for accurate diagnosis and treatment. Introduction opausal or senile osteoporosis, a disorder of unknown etiology, is the commonest form of There are many metabolic disorders that bone disease in the Western hemisphere. affect human bones; but, fortunately, the This disorder may simply represent an exag­ ways in which bones can respond are limited geration of the normal loss of bone that oc­ so that certain generalizations are valid for a curs with aging. It is estimated that the total group of diseases causing a characteristic bone loss between youth and old age is metabolic abnormality in the bone. The about 35 percent in women and somewhat common pathologic responses to metabolic less in men. The loss of bone that has oc­ bone disease include osteoporosis, os­ curred in some patients with osteoporosis is teomalacia, Paget’s disease, osteitis fibrosa not significantly different from that in age- cystica and renal osteodystrophy. These are matched normals without osteoporosis. not mutually exclusive, and it is not uncom­ In osteoporosis there is a greater propor­ mon to find more than one abnormality in tional loss of trabecular than of cortical the same patient.
    [Show full text]
  • Blueprint Genetics Osteopetrosis and Dense Bone Dysplasia Panel
    Osteopetrosis and Dense Bone Dysplasia Panel Test code: MA2001 Is a 25 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of osteopetrosis. The genes on this panel are included in the Comprehensive Growth Disorders / Skeletal Dysplasias and Disorders Panel. About Osteopetrosis and Dense Bone Dysplasia Autosomal dominant osteopetrosis (ADO, also known as Albers-Schönberg disease) is typically an adult-onset, more benign form whereas autosomal recessive osteopetrosis (ARO), also termed malignant infantile osteopetrosis, presents soon after birth, is often severe and leads to death if left untreated. Autosomal recessive osteopetrosis (ARO) is a genetically and phenotypically heterogeneous disease; most forms result from late endosomal trafficking defects that prevent osteoclast ruffled‐border formation. Hematopoietic stem cell transplantation (HSCT) can cure ARO if given in early life to patients with osteoclast‐intrinsic disease without neurodegenerative complications. New treatments that target RANKL/RANK signaling offer promise in ARO subtypes that currently cannot be cured by HSCT and to prevent hypercalcemia after HSCT. Paget’s disease is a common metabolic bone disease characterized by focal abnormalities of increased bone turnover affecting one or more sites throughout the skeleton, primarily the axial skeleton. Bone lesions in this disorder show evidence of increased osteoclastic bone resorption and disorganized bone structure. Genetic factors play an important role in the disease. In some cases, Paget’s disease is inherited in an autosomal dominant manner and the most common cause for this is a mutation in the SQSTM1 gene. Mutations in TNFRSF11A, TNFRSF11B and VCP have been identified in rare syndromes with Paget’s disease- like features.
    [Show full text]