Laughlin Tour 1 Las Vegas to Laughlin
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Anthropogenic Disturbance and Mojave Desert Tortoise (Gopherus Agassizii) Genetic Connectivity
University of Nevada, Reno Connecting the Plots: Anthropogenic Disturbance and Mojave Desert Tortoise (Gopherus agassizii) Genetic Connectivity A dissertation submitted in partial fulfillment of the requirements for the degree Doctor of Philosophy in Geography By Kirsten Erika Dutcher Dr. Jill S. Heaton, Dissertation Advisor May 2020 THE GRADUATE SCHOOL We recommend that the dissertation prepared under our supervision by KIRSTEN ERIKA DUTCHER entitled Connecting the Plots: Anthropogenic Disturbance and Mojave Desert Tortoise (Gopherus agassizii) Genetic Connectivity be accepted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Jill S. Heaton, Ph.D. Advisor Kenneth E. Nussear, Ph.D. Committee Member Scott D. Bassett, Ph.D. Committee Member Amy G. Vandergast, Ph.D. Committee Member Marjorie D. Matocq, Ph.D. Graduate School Representative David W. Zeh, Ph.D., Dean Graduate School May, 2020 i ABSTRACT Habitat disturbance impedes connectivity for native populations by altering natural movement patterns, significantly increasing the risk of population decline. The Mojave Desert historically exhibited high ecological connectivity, but human presence has increased recently, as has habitat disturbance. Human land use primarily occurs in Mojave desert tortoise (Gopherus agassizii) habitat posing risks to the federally threatened species, which has declined as a result. As threats intensify, so does the need to protect tortoise habitat and connectivity. Functional corridors require appropriate habitat amounts and population densities, as individuals may need time to achieve connectivity and find mates. Developments in tortoise habitat have not been well studied, and understanding the relationship between barriers, corridors, population density, and gene flow is an important step towards species recovery. -
HUNTER INFORMATION SHEET DESERT BIGHORN Unit 266
HUNTER INFORMATION SHEET DESERT BIGHORN Unit 266 LOCATION: Unit 266 is situated in southern Clark County and comprises the northern portion of the Eldorado Mountains. ELEVATION: Elevations range from 656' at lake level (Lake Mohave) to 3,773' above Oak Creek Canyon. TERRAIN: Topographic features vary from rolling hills on the western margin of bighorn sheep habitat to the sheer, vertical cliffs characteristic of Black Canyon. VEGETATION: Vegetation is typical of the Mojave Desert=s creosote bush scrub community. Prominent vegetative types within this community include creosote and white bursage. LAND STATUS: The majority of the area that offers opportunities to hunt bighorn sheep lies within the Lake Mead National Recreation Area, and is administered by the National Park Service. A minor portion of bighorn sheep habitat is within the jurisdiction of the Bureau of Land Management, Las Vegas District. HUNTER ACCESS: Hunter access is considered good given the network of National Park Service approved roads. Some hunters opt to use boats to learn their area, and to access points which would otherwise be more difficult to reach on foot. Note: Please be aware that sections of this unit are in a wilderness area. Motorized equipment, mechanized transport, including wheeled game carriers and chainsaws, are prohibited in wilderness areas. Contact the Federal Management Agency responsible for this area for more information. MAP REFERENCE: Maps are available for purchase from BLM, or through private vendors such as Mercury Blueprint & Supply Co. (Las Vegas), Desert Outfitters (Las Vegas) or Oakman=s (Reno). At a minimum, hunters should possess the United States Geologic Survey, Boulder City 1:100,000-scale topographic map (30 x 60 minute quadrangle). -
Understanding Solar Lease Revenues
LIVE WORK PLAY RETIRE TURNING LAND INTO REVENUES: UNDERSTANDING SOLAR LEASE REVENUES Reprint Date: August 25, 2020 Mayor Kiernan McManus Council Member Council Member Council Member Council Member Mayor pro tem Claudia Bridges Tracy Folda Judith A. Hoskins James Howard Adams City Manager Finance Director Alfonso Noyola, ICMA-CM Diane Pelletier, CPA Boulder City Revenue Overview Table of Contents Unlike most other municipalities and counties in Nevada, the revenue stream for Boulder City does not include the lucrative Some History . gaming tax. Prior to the recession of 2007 - 2009, the City’s • 4 • revenue stream did not have a sizable amount of monies from land leases. With the recent focus by California and more Charter/Ordinance Requirements recently at the national level on renewable energy development, • 4 • the City was in a key position to take advantage of its unique Land Lease Process position for solar development by leasing city-owned land for • 6 • energy production. Because of those prudent actions, today the Energy Lease Revenue History solar lease revenues equate to roughly 28% to 34% of the City’s • 7 • overall revenue stream to support vital governmental functions. Energy Lease Revenue Projections • • But is Land Lease Revenue Stable? 9 A common question posed to our City Council surrounds the Energy Lease Revenue Potential stability of land lease revenues. Traditional commercial or • 9 • residential land leases have many risks, as the tenants are Overall Energy Lease Revenue subject to market conditions or changes in employment. And History and Projections with recessions, these types of leases are common casualties • 10 • of a downturn in the economy. -
Utah Geological Association Publication 30.Pub
Utah Geological Association Publication 30 - Pacific Section American Association of Petroleum Geologists Publication GB78 239 CENOZOIC EVOLUTION OF THE NORTHERN COLORADO RIVER EXTEN- SIONAL CORRIDOR, SOUTHERN NEVADA AND NORTHWEST ARIZONA JAMES E. FAULDS1, DANIEL L. FEUERBACH2*, CALVIN F. MILLER3, 4 AND EUGENE I. SMITH 1Nevada Bureau of Mines and Geology, University of Nevada, Mail Stop 178, Reno, NV 89557 2Department of Geology, University of Iowa, Iowa City, IA 52242 *Now at Exxon Mobil Development Company, 16825 Northchase Drive, Houston, TX 77060 3Department of Geology, Vanderbilt University, Nashville, TN 37235 4Department of Geoscience, University of Nevada, Las Vegas, NV 89154 ABSTRACT The northern Colorado River extensional corridor is a 70- to 100-km-wide region of moderately to highly extended crust along the eastern margin of the Basin and Range province in southern Nevada and northwestern Arizona. It has occupied a criti- cal structural position in the western Cordillera since Mesozoic time. In the Cretaceous through early Tertiary, it stood just east and north of major fold and thrust belts and also marked the northern end of a broad, gently (~15o) north-plunging uplift (Kingman arch) that extended southeastward through much of central Arizona. Mesozoic and Paleozoic strata were stripped from the arch by northeast-flowing streams. Peraluminous 65 to 73 Ma granites were emplaced at depths of at least 10 km and exposed in the core of the arch by earliest Miocene time. Calc-alkaline magmatism swept northward through the northern Colorado River extensional corridor during early to middle Miocene time, beginning at ~22 Ma in the south and ~12 Ma in the north. -
Lanfair Valley Groundwater Basin Bulletin 118
Hydrologic Region Colorado River California’s Groundwater Lanfair Valley Groundwater Basin Bulletin 118 Lanfair Valley Groundwater Basin • Groundwater Basin Number: 7-1 • County: San Bernardino • Surface Area: 157,000 acres (245 square miles) Basin Boundaries and Hydrology This basin underlies Lanfair Valley in eastern San Bernardino County. The valley slopes southeasterly with valley floor elevations ranging from 3,500 to 5,000 feet above sea level. The basin is bounded by impermeable rocks of the New York and Castle Mountains on the north, of the Piute Range on the east, of the Hackberry Mountain on the south, and of the Providence Mountains and Mid Hills on the west. Caruthers Creek flows intermittently southeastward during periods of heavy precipitation. Piute Spring discharges groundwater from Lanfair Valley to an adjacent valley and other smaller springs are found throughout the valley. Average annual precipitation ranges from 7 to 10 inches. Hydrogeologic Description Water Bearing Formations The primary water-bearing formations are Quaternary and Tertiary age unconsolidated deposits that include highly indurated sand, silt, clay and gravel. The maximum thickness of these deposits is not known; however, a boring log indicates a thickness of at least 550 feet locally. Wells in these deposits yield about 3 to 70 gpm (Friewald 1984). Restrictive Structures The Cedar Canyon fault crosses the northwest portion of the basin; however, it is unknown whether or not this fault is a barrier to groundwater. Recharge Areas The principal sources of recharge are likely percolation of runoff from surrounding mountains, percolation of precipitation to the valley floor, and subsurface inflow from adjacent basins. -
Preliminary Geologic Map of the Little Piute Mountains, San Bernardino County, California
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Preliminary Geologic Map of the Little Piute Mountains, San Bernardino County, California by Keith A. Howard1, Michael L. Dennis2, Karl E. Karlstrom3, and Geoffrey A. Phelps1 Open-File Report 95-598 1995 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American stratigraphic code. Any use of trade, product, or firm names is for descriptive purpose only and does not imply endorsement by the U.S. Government. 1 Menlo Park, California 94025 2 Northern Arizona University, Flagstaff, Arizona 86002 3 University of New Mexico, Albuquerque, New Mexico 87131 Mapped 1978-1993 by K. Howard, P. Stone, K. Karlstrom, G. Phelps, M. Dennis, and students from Northern Arizona University. GEOLOGIC SUMMARY Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). -
C:\A Projects\AAA IBLA Decs\066IBLA\L265-268.Wpd
THOMAS CONNELLY ET AL. IBLA 81-344 Decided August 17, 1982 Appeal from decision of the Nevada State Office, Bureau of Land Management, rejecting in part oil and gas lease offer N-30806. Affirmed. 1. Oil and Gas Leases: Discretion to Lease The Secretary of the Interior may, in his discretion, reject any offer to lease public lands for oil and gas upon a determination, supported by facts of record, that the leasing would not be in the public interest because it is incompatible with uses of the lands which are worthy of preservation. APPEARANCES: C. M. Peterson, Esq., Denver, Colorado, for appellants. OPINION BY ADMINISTRATIVE JUDGE BURSKI Thomas H. Connelly and Robert W. David appeal from a January 15, 1981, decision of the Nevada State Office, Bureau of Land Management (BLM), rejecting in part their oil and gas lease offer N-30806. BLM rejected the offer insofar as it concerned land in sec. 6: lots 8 and 9, S 1/2 NE 1/4, SE 1/4; sec. 7: E 1/2; sec. 18: E 1/2; and accepted the offer only as to sec. 28, all in T. 27 S., R. 63 E., Mount Diablo meridian, Clark County, Nevada. 1/ BLM listed the following reason for partial rejection: According to Stateline EAR of the Las Vegas District Office, these lands have been designated as part of the 'Highland Range Crucial Bighorn Habitat Area' (CFR 2071-1). Because these lands have been identified as crucial to the survival of a bighorn herd, they have been closed to oil, gas and geothermal exploration and leasing. -
3. Affected Environment
3. Affected Environment 3.1 Introduction This chapter provides a description of the existing social, economic, and environmental settings for the area affected by the three build alternatives and the No Build Alternative. The affected environment is described for each resource of concern in the Boulder City/ U.S. 93 Corridor Study project area. The discussion contains study methodologies, background information, descriptive data, issues, and values that have a bearing on possible impacts and mitigation measures (described in detail in Chapter 4) and on the selection of the preferred alternative. This EIS was prepared consistent with National Environmental Policy Act of 1969 (NEPA) Council on Environmental Quality (CEQ) regulations (40 CFR 1500. et seq) and the FHWA Guidance for Preparing and Processing Environmental and Section 4(f) Documents (FHWA Technical Advisory T 6640.8A, October 30, 1987). This guidance lists potentially adverse impacts most commonly encountered by highway projects and directs that these factors should be discussed for each reasonable alternative where a potential for impact exists. Environmental and socioeconomic factors potentially impacted by the proposed project are analyzed in detail in this chapter. Factors that were found to have no potential for project-related impacts and are not discussed in this chapter are as follows: x Joint Development x Farmland x Wild and Scenic Rivers x Coastal Barriers x Coastal Zone Impacts The following additional technical studies were prepared for the Boulder City/U.S. 93 Corridor Study DEIS, and they are available through NDOT (contact Daryl James at 775/888-7013 for additional information): x Air Quality x Noise x Biological Resources x Water Quality x Wetlands x Floodplains x Archaeological Resources x Historic Resources x Land Use x Visual Resources x Economics x Social Impacts x Hazardous Waste T012004001SCO/ DRD1333.DOC/ 050740004 3-1 3. -
South Clark County Land Use Plan
South Clark County Land Use Plan Henderson Mt. Potosi Boulder Spring Mtns City NRA Sloan Red Rock NCA Sloan Canyon Eldorado National Valley Conservation Area Sandy Goodsprings Valley 161 Jean 165 Colorado River Nelson Ivanpah McCullough Range Valley Lake Mead Primm 95 National Recreation Area California Arizona Cottonwood Cove 164 Searchlight Lake Mojave Goodsprings & Sandy Valley Cal-Nev-Ari Citizens Advisory Councils Palm & Searchlight Gardens 163 Town Advisory Board Laughlin Adopted - December 5, 2012 Effective - January 9, 2013 ACKNOWLEDGEMENTS Clark County Board of Commissioners: Mark Silverstein, Department of Aviation Susan Brager, Chair Margie Yatson, Clark County Fire Steve Sisolak, Vice-Chair Department Larry Brown Linda Perri, Clark County School District Tom Collins Lebene Aidam-Ohene, High Impact Projects Chris Giunchigliani Manager Mary Beth Scow Denis Cedarburg, Public Works Lawrence Weekly Kevin Eubanks, Regional Flood Control Julie Chadburn, Water Reclamation District Planning Commission: Kathleen Blakely, Park Planning Vivian Kilarski, Chair Justin Williams, Park Planning Edward Frasier, III, Vice-Chair J. Christopher Dapper Office of County Manager: Greg Esposito Don Burnette, Manager Randy Miller Randall J. Tarr, Assistant Manager Dan Shaw Ed Finger, Assistant Manager Donna Tagliaferri Jeff Wells, Assistant Manager Goodsprings Citizens Advisory Council: Department of Comprehensive Planning: Elizabeth Warren, Chair Nancy Lipski, Director Monica Beisecker, Vice-Chair Jon Wardlaw, Planning Manager Theodore Louis Compton -
Biological Goals and Objectives
Appendix C Biological Goals and Objectives Draft DRECP and EIR/EIS APPENDIX C. BIOLOGICAL GOALS AND OBJECTIVES C BIOLOGICAL GOALS AND OBJECTIVES C.1 Process for Developing the Biological Goals and Objectives This section outlines the process for drafting the Biological Goals and Objectives (BGOs) and describes how they inform the conservation strategy for the Desert Renewable Energy Conservation Plan (DRECP or Plan). The conceptual model shown in Exhibit C-1 illustrates the structure of the BGOs used during the planning process. This conceptual model articulates how Plan-wide BGOs and other information (e.g., stressors) contribute to the development of Conservation and Management Actions (CMAs) associated with Covered Activities, which are monitored for effectiveness and adapted as necessary to meet the DRECP Step-Down Biological Objectives. Terms used in Exhibit C-1 are defined in Section C.1.1. Exhibit C-1 Conceptual Model for BGOs Development Appendix C C-1 August 2014 Draft DRECP and EIR/EIS APPENDIX C. BIOLOGICAL GOALS AND OBJECTIVES The BGOs follow the three-tiered approach based on the concepts of scale: landscape, natural community, and species. The following broad biological goals established in the DRECP Planning Agreement guided the development of the BGOs: Provide for the long-term conservation and management of Covered Species within the Plan Area. Preserve, restore, and enhance natural communities and ecosystems that support Covered Species within the Plan Area. The following provides the approach to developing the BGOs. Section C.2 provides the landscape, natural community, and Covered Species BGOs. Specific mapping information used to develop the BGOs is provided in Section C.3. -
DESERT TORTOISE COUNCIL 4654 East Avenue S #257B Palmdale, California 93552 [email protected]
DESERT TORTOISE COUNCIL 4654 East Avenue S #257B Palmdale, California 93552 www.deserttortoise.org [email protected] 12 March 2014 Mark Slaughter, Assistant Field Manager Bureau of Land Management, Southern Nevada District Office 4701 North Torrey Pines Drive Las Vegas, NV 89130, [email protected] RE: Proposed release of captive desert tortoises into the Piute-Eldorado Critical Habitat Unit, Clark County, Nevada Dear Mr. Slaughter: The Desert Tortoise Council (Council) is a private, non-profit organization comprised of hundreds of professionals and laypersons who share a common concern for wild desert tortoises and a commitment to advancing the public’s understanding of this species. Established in 1976 to promote conservation of tortoises in the deserts of the southwestern United States and Mexico, the Council regularly provides information to individuals, organizations and regulatory agencies on matters potentially affecting the desert tortoise within its historical range. The Council formally asked the U.S. Bureau of Land Management (BLM) to consider us as an Interested Party in the translocation and population augmentation of tortoises into southern Nevada on 14 September 2012 (letter available upon request). What is the status of our request? Are we currently considered an Interested Party for this and other tortoise-related issues on public lands managed by the BLM in Nevada? In September 2012 there was no indication that the U.S. Fish and Wildlife Service (USFWS) intended to release up to 600 captive tortoises onto BLM lands in the Piute-Eldorado Critical Habitat Unit. The Council only incidentally heard about this intended release at the recent Council Symposium held in Ontario, California on 21-23 February 2014. -
Castle Mountain Project San Bernardino County, California, USA NI 43-101 Technical Report
Castle Mountain Project San Bernardino County, California, USA NI 43-101 Technical Report Report Effective Date: Report Authors 23 August 2017 Todd Wakefield SME-RM Don Tschabrun SME-RM Report Filing Date: 25 October 2017 MTS Project Number: 16106 CERTIFICATE OF QUALIFIED PERSON I, Todd Wakefield, SME-RM, am employed as a Principal Geologist with Mine Technical Services Ltd. in Reno, Nevada. This certificate applies to the technical report titled “Castle Mountain Project, San Bernardino County, California, USA, NI 43-101 Technical Report” dated 25 October 2017 (the “technical report”). I am a Registered Member of the Society of Mining, Metallurgy, and Exploration (SME), 4028798RM. I graduated from the University of Redlands with a Bachelors of Science degree in Geology in 1986 and the Colorado School of Mines with a Master of Science degree in Geology in 1989. I have practiced my profession for continuously since 1987. I have been directly involved in gold exploration and mining projects in the United States, and I have been involved in evaluating data quality for scoping, pre-feasibility, and feasibility level studies for properties in the United States. As a result of my experience and qualifications, I am a Qualified Person as defined in National Instrument 43–101 Standards of Disclosure for Mineral Projects (NI 43–101). I visited the Castle Mountain Project on 13 to 16 December 2016. I am responsible for Sections 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27 of the technical report.