2009 New Scientist Poster Produced with the Support of The
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Thermonuclear AB-Reactors for Aerospace
1 Article Micro Thermonuclear Reactor after Ct 9 18 06 AIAA-2006-8104 Micro -Thermonuclear AB-Reactors for Aerospace* Alexander Bolonkin C&R, 1310 Avenue R, #F-6, Brooklyn, NY 11229, USA T/F 718-339-4563, [email protected], [email protected], http://Bolonkin.narod.ru Abstract About fifty years ago, scientists conducted R&D of a thermonuclear reactor that promises a true revolution in the energy industry and, especially, in aerospace. Using such a reactor, aircraft could undertake flights of very long distance and for extended periods and that, of course, decreases a significant cost of aerial transportation, allowing the saving of ever-more expensive imported oil-based fuels. (As of mid-2006, the USA’s DoD has a program to make aircraft fuel from domestic natural gas sources.) The temperature and pressure required for any particular fuel to fuse is known as the Lawson criterion L. Lawson criterion relates to plasma production temperature, plasma density and time. The thermonuclear reaction is realised when L > 1014. There are two main methods of nuclear fusion: inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). Existing thermonuclear reactors are very complex, expensive, large, and heavy. They cannot achieve the Lawson criterion. The author offers several innovations that he first suggested publicly early in 1983 for the AB multi- reflex engine, space propulsion, getting energy from plasma, etc. (see: A. Bolonkin, Non-Rocket Space Launch and Flight, Elsevier, London, 2006, Chapters 12, 3A). It is the micro-thermonuclear AB- Reactors. That is new micro-thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi-reflection of laser beam or its own magnetic field. -
Novel Concept for Disruption Mitigation in the ADITYA
28th IAEA Fusion Energy Conference (FEC 2020) Contribution ID: 1290 Type: Regular Poster Novel Concept for Disruption Mitigation in the ADITYA - U tokamak by Fast Time Response Electromagnetic Driven Pellet Impurity Injector Wednesday, 12 May 2021 17:00 (20 minutes) Implementation of suitable disruption mitigation technique remains the topmost priority for larger tokamaks including the ITER. The spontaneous disruption in ITER may probably be an unavoidable part, while operated with high performance D-T fuel [1]. Disruptions in ITER could produce very large heat loads on divertor tar- gets and other Plasma Facing Components (PFC), and large electromagnetic forces on the Vacuum Vessel (VV) can lead to structural damages [2]. In order to avoid these detrimental consequences, disruption mitigation is an essential part of tokamak research. The disruption mitigation system (DMS) in ITER is based on massive gas injection (MGI) of impurities, in order to radiate the plasma stored energy and mitigate the potentially damaging effects of disruptions [3]. Although, MGI based technique is suitable for most disruption mitiga- tion, there will be issues in case of having warning time less than 10 ms as may be the case for the onset of some disruptions in ITER [4]. This is due to the slow thermal velocity of the heavier impurity gas molecules, which limits the time needed to travel the distances before it reaches the plasma edge. At present, none of the currently planned disruption mitigations systems for ITER can respond on this time scale. The radiative dissipation of the plasma stored energy during major disruption in ITER by fast injection of massive pellets of low Z impurities, such as Li and Be pellet injection has been numerically modelled by Lukash et al. -
Overview of Recent Experimental Results from ADITYA Tokamak R
Tanna DOI:10.1088/1741-4326/aa6452 OV/4-3Rb Overview of Recent Experimental Results from ADITYA Tokamak R. Tanna1, J. Ghosh1, P. K. Chattopadhyay1, H. Raj1, S. Patel1, C. Gupta1, P. Dhyani2, K. A. Jadeja1, K. M. Patel1, S. B. Bhatt1, V. K. Panchal1, N. C. Patel1, C. Chavda1, E. V. Praveenlal1, K. S. Shah1, M. N. Makwana1, S. K. Jha1, M. V. Gopalakrishna1, K. Tahiliani1, D. Sangwan1, D. Raju1, U. C. Nagora1, S. K. Pathak1, P. K. Atrey1, S. Purohit1, Y. S. Joisa1, J. V. Raval1, C. V. S. Rao1, M. B. Chowdhuri1, S. Banerjee1, J. Thomas1, N. K. Ramaiya1, R. Manchanda1, A. Kumar1, P. K. Sharma1, S. V. Kulkarni1, K. Sathyanarayana1, B. K. Shukla1, A. Das1, R. Jha1, Y. C. Saxena1, A. Sen1, P. K. Kaw1, and D. Bora1 Rapporteured by: S. Pradhan 1Institute for Plasma Research (IPR), Bhat, Gandhinagar, India 2Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea Corresponding Author: R. Tanna, [email protected] Several experiments, related to controlled thermonuclear fusion research and highly relevant for large size tokamaks including ITER, have been carried out in ADITYA, an ohmically heated circular limiter tokamak. Repeatable plasma discharges of maximum plasma current of „160 kA and discharge duration beyond „250 ms with plasma current flattop duration of „140 ms has been obtained for the first time in ADITYA. The discharge reproducibility has been improved considerably with Lithium wall conditioning and improved plasma discharges are obtained by precisely controlling the plasma position. In these discharges, chord-averaged electron density „3:0–4:0 ˆ 1019{m3 using multiple hydrogen gas puffs, electron temperature of the order of „500– 700 eV have been achieved. -
Draft Terms of Reference for the 9Th Annual Assessment of Fusion for Energy
F4E_D_2ND3AL v1.1 Governing Board 47th Governing Board Meeting, 9-10 July 2020 Video Conference Draft Terms of Reference for the 9th Annual Assessment of Fusion for Energy The Governing Board is invited to adopt the Terms of Reference for the 9th Annual Assessment of Fusion for Energy. Approval Process Name Action Affiliation Author Bemelmans R. 29 June 2020:signed DIR Co-Authors Reviewers Approver RO: Bemelmans Romina (F4E) Read Access LG: GB Representatives, LG: GB Experts, LG: Project Office, LG: Assistants, LG: Office of Director, LG: WP, LG: GB Alternate, LG: IAS, LG: GB Secretariat, AD: IDM_F4E, project administrator, RO Original Document MD5#: 46921266FAB5CDD9BE59B29C4A2534DC ## Draft-restricted F4E_D_2ND3AL v1.1 FUSION FOR ENERGY The European Joint Undertaking for ITER and the Development of Fusion Energy The Governing Board TERMS OF REFERENCE FOR THE 9th ANNUAL ASSESSMENT OF FUSION FOR ENERGY I. BACKGROUND In its July 2010 conclusions concerning ITER1, the Council of the European Union ruled that a yearly assessment of Fusion for Energy (F4E) shall be made and presented to the Council, as follows: F4E will report to the Council at least once a year on the progress achieved in implementing the cost containment and savings plan as well as on the performance and management of the Agency and the ITER project. It will also report once a year on the fulfillment of the scheduled activities within its annual budget […] The F4E Governing Board will appoint an independent expert who will assess the project progress on the basis of existing reports and will submit this opinion to the Governing Board and to the Competitiveness Council once a year Furthermore, the April 2018 Council Conclusions on the Reformed ITER Project confirmed the need to have an annual assessment and defined the areas where the assessment should focus: The Council CALLS on all stakeholders to pay utmost attention to both risk management and improved cost control, including appropriate provisioning for risks and contingencies so as to avoid any further delays in the future. -
Report of Contributions
SOFT 2018 Report of Contributions https://agenda.enea.it/e/soft2018 SOFT 2018 / Report of Contributions Path planning and space occupatio … Contribution ID: 1 Type: not specified Path planning and space occupation for remote maintenance operations of transportation in DEMO Monday, 17 September 2018 11:00 (2 hours) The ex-vessel Remote Maintenance Systems in the DEMOnstration Power Station (DEMO)are responsible for the replacement and transportation of the plasma facing components. The ex-vessel operations of transportation are performed by overhead systems or ground vehicles. The time duration of the transportation operations has to be taken into account for the reactor shutdown. The space required to perform these operations has also an impact in the economics ofthepower plant. A total of 87 trajectories of transportation were evaluated, with a total length of approximately 3 km. The total occupancy volume is, comparatively, between 21 and 45 Olympic swimming pools, depending mainly to the type of transportation adopted in the upper level of the reactor building. Taking into account the recovery and rescue operations in case of failure, the volume may increase up to, between 43 and 64 Olympic swimming pools. The estimation of the total time duration of all expected transportation missions in the reactor building are between 166 hours (7 days) and 388 hours (16 days). This time estimation does not include docking, accelerations or other opera- tions that are not transportation. The travel speed is assumed constant with a maximum value of 20cm/s (the same value assumed for Cask and Plug Remote handling System in the International Thermonuclear Experimental Reactor - ITER). -
Article Thermonuclear Bomb 5 7 12
1 Inexpensive Mini Thermonuclear Reactor By Alexander Bolonkin [email protected] New York, April 2012 2 Article Thermonuclear Reactor 1 26 13 Inexpensive Mini Thermonuclear Reactor By Alexander Bolonkin C&R Co., [email protected] Abstract This proposed design for a mini thermonuclear reactor uses a method based upon a series of important innovations. A cumulative explosion presses a capsule with nuclear fuel up to 100 thousands of atmospheres, the explosive electric generator heats the capsule/pellet up to 100 million degrees and a special capsule and a special cover which keeps these pressure and temperature in capsule up to 0.001 sec. which is sufficient for Lawson criteria for ignition of thermonuclear fuel. Major advantages of these reactors/bombs is its very low cost, dimension, weight and easy production, which does not require a complex industry. The mini thermonuclear bomb can be delivered as a shell by conventional gun (from 155 mm), small civil aircraft, boat or even by an individual. The same method may be used for thermonuclear engine for electric energy plants, ships, aircrafts, tracks and rockets. ----------------------------------------------------------------------- Key words: Thermonuclear mini bomb, thermonuclear reactor, nuclear energy, nuclear engine, nuclear space propulsion. Introduction It is common knowledge that thermonuclear bombs are extremely powerful but very expensive and difficult to produce as it requires a conventional nuclear bomb for ignition. In stark contrast, the Mini Thermonuclear Bomb is very inexpensive. Moreover, in contrast to conventional dangerous radioactive or neutron bombs which generates enormous power, the Mini Thermonuclear Bomb does not have gamma or neutron radiation which, in effect, makes it a ―clean‖ bomb having only the flash and shock wave of a conventional explosive but much more powerful (from 1 ton of TNT and more, for example 100 tons). -
Cavitation-Induced Fusion: Proof of Concept Vol
1 Fomitchev-Zamilov: Cavitation-Induced Fusion: Proof of Concept Vol. 9 Cavitation-Induced Fusion: Proof of Concept Max I. Fomitchev-Zamilov Quantum Potential Corporation, 200 Innovation Blvd, Suite 254, State College, PA 16803 e-mail: [email protected] Cavitation-induced fusion (also known as bubble fusion or sonofusion) has been a topic of much debate and controversy and is generally (albeit incorrectly) perceived as unworkable. In this paper we present the theoretical foundations of cavitation-induced fusion and summarize the experimental results of the research conducted in the past 20 years. Based on the systematic study of all available data we conclude that the cavitation-induced fusion is feasible, doable, and can be used for commercial power generation. We present the results of our own research and disclose a commercial reactor prototype. threatened), to tenure and promotion issues and academic 1. Introduction misconduct (Krivit, 2011). As a result of the ensuing Nuclear fusion (which powers the sun) is the energy of the “bubblegate” scandal Taleyarkhan’s career was destroyed future: 10 microgram of deuterium is equivalent to a barrel of (Reich, 2009) and CIF research became a taboo. oil. Deuterium is cheap, plentiful and easily extracted from What was forgotten amid the outburst of emotions is that water. Unlike uranium fission in modern nuclear power plants cavitation-induced fusion is a fruitful area of research that must be deuterium fusion does not produce radioactive waste. Yet continued: no less than 7 independent peer-reviewed reports despite 40 years of research and over $20B in government exist demonstrating neutron emissions from collapsing spending (Chu, 2008) on inertial/magnetic confinement cavitation bubbles; even heavily criticized experiments by projects (ICF/MCF) the fusion power remains out of reach: to Taleyarkhan’s group have been successfully repeated (Xu & this date there are no fusion reactors capable of sustained Butt, 2005), (Forringer, Robbins, & Martin, 2006), (Bugg, 2006). -
ITER Aims and Technical Challenges
I and I I - ITER Aims and Technical Challenges Jo Lister CRPP-EPFL Centre de Recherches en Physique des Plasmas Ecole Polytechnique Fédérale de Lausanne Switzerland Outline of the first 2 talks q A previous lecture series was given by Prof. Ambrogio Fasoli q These introduced fusion and ITER but concentrated on the physics q Today and tomorrow we revisit the basic aims and design of ITER, but try to extract the technical challenges, and more importantly, where these challenges come from Jo Lister, CRPP-EPFL, "ITER Technical Challenges" CERN, May/June 2005 2 Remember why we are doing this ! q Finite oil resource thinking was launched by Hubbert in 1956 when he predicted US oil production would peak around 1970 - no-one listened q It did - he was right - US production was allowed at 100% capacity q Now domestic production is decreasing q Idem for world oil, idem for gas Provide a long term energy supply Jo Lister, CRPP-EPFL, "ITER Technical Challenges" CERN, May/June 2005 3 We don’t have a solution for demand exceeding production ! q Swenson’s Law says: “ To avoid deprivation resulting from the exhaustion of non-renewable resources, humanity must employ conservation and renewable resource substitutes sufficient to match depletion.” q One reason no-one important wants to know is that oil depletion might (?) lead to war, famine, plague…. Match supply and demand Jo Lister, CRPP-EPFL, "ITER Technical Challenges" CERN, May/June 2005 4 Fusion physics basics - Nuclear ?? q Where does fusion energy come from ? • The nucleus, B/A is the energy “stored” -
Cold Fusion Again 1 Introduction
Prespacetime Journal j February 2016 j Volume 7 j Issue 2 j pp. 379-396 379 Pitk¨anen,M., Cold Fusion Again Exploration Cold Fusion Again Matti Pitk¨anen 1 Abstract During years I have developed two models of cold fusion and in this article these models are combined together. The basic idea of TGD based model of cold is that cold fusion occurs in two steps. First dark nuclei (large heff = n × h) with much lower binding energy than ordinary nuclei are formed at magnetic flux tubes possibly carrying monopole flux. These nuclei can leak out the system along magnetic flux tubes. Under some circumstances these dark nuclei can transform to ordinary nuclei and give rise to detectable fusion products. An essential additional condition is that the dark protons can decay to neutrons rapidly enough by exchanges of dark weak bosons effectively massless below atomic length scale. Also beta decays in which dark W boson decays to dark electron and neutrino can be considered. This allows to overcome the Coulomb wall and explains why final state nuclei are stable and the decay to ordinary nuclei does not yield only protons. Thus it seems that this model combined with the TGD variant of Widom-Larsen model could explain nicely the existing data. In this chapter I will describe the steps leading to the TGD inspired model for cold fusion combining the earlier TGD variant of Widom-Larsen modelwith the model inspired by the TGD inspired model of Pollack's fourth phase of water using as input data findings from laser pulse induced cold fusion discovered by Leif Holmlid and collaborators. -
Disputed Inquiry Clears Bubble-Fusion Engineer
NEWS NATURE|Vol 445|15 February 2007 Disputed inquiry clears bubble-fusion engineer An inquiry has exonerated nuclear engineer several researchers worried that Taleyarkhan’s Rusi Taleyarkhan of misconduct with respect work may be fraudulent, and he wrote to Purdue to allegations made internally at Purdue Uni- about his concerns in June 2006. These include versity in West Lafayette, Indiana, officials the apparent duplication of data between announced last week. But the announcement reports of supposedly independent experi- may raise more questions than it answers: ments4 (first raised by Nature), and a report5 researchers in the field have criticized the uni- that the spectrum of neutrons that Taleyarkhan versity for failing to say whether the inquiry claims to have detected from bubble fusion considered their concerns that the work may exactly matches that of a standard radioactive be fraudulent. source called californium. Taleyarkhan has Taleyarkhan claims to be able to produce since replied that when he measures neutrons fusion by collapsing bubbles in deuterated emitted by californium in his lab, he finds some- liquids. His work promised to improve pros- thing quite unlike what he sees from his fusion pects for developing a clean source of energy, experiments6. But a recent preprint points out but independent scientists have not been able that Taleyarkhan omitted some of the original to replicate the result. The work had been sub- spectral data in his reply, and that the full data ject to several internal allegations of miscon- set still looks like californium7. duct, including the fact that Taleyarkhan cited The university never responded to Suslick’s a paper by his student and postdoc as “inde- concerns. -
Modeling of the Hα Emission from ADITYA Tokamak Plasmas
atoms Article Modeling of the Hα Emission from ADITYA Tokamak Plasmas Ritu Dey 1,*, Malay B. Chowdhuri 1 , Joydeep Ghosh 1,2, Ranjana Manchanda 1, Nandini Yadava 3 , Umeshkumar C. Nagora 1,2, Parveen K. Atrey 1, Jayesh V. Raval 1, Y. Shankara Joisa 1, Rakesh L. Tanna 1 and ADITYA Team 1 1 Institute for Plasma Research, Bhat, Gandhinagar 382 428, India; [email protected] (M.B.C.); [email protected] (J.G.); [email protected] (R.M.); [email protected] (U.C.N.); [email protected] (P.K.A.); [email protected] (J.V.R.); [email protected] (Y.S.J.); [email protected] (R.L.T.) 2 Homi Bhaba National Institute, Anushakti Nagar, Mumbai 400 094, India 3 The National Institute of Engineering, Mysuru 570 008, Karnataka, India; [email protected] * Correspondence: [email protected] Received: 30 June 2019; Accepted: 3 October 2019; Published: 5 October 2019 Abstract: The spatial profile of Hα spectrum is regularly measured using a high-resolution multi-track spectrometer in ADITYA tokamak to study the neutral particle behavior. The Monte Carlo neutral particle transport code DEGAS2 is used to model the experimental Hα spectral emissions. Through the modeling of the spectral line profile of Hα, it is found that the neutral hydrogen, which is produced from molecular hydrogen and molecular hydrogen ion dissociation processes contributes 56% to the total Hα emission, and the atoms which are produced from charge-exchange process have 30% contribution. Furthermore, the experimentally measured spatial profile of chord integrated brightness was modeled for the two plasma discharges having relatively high and low density to understand the neutral particle penetration. -
1 Looking Back at Half a Century of Fusion Research Association Euratom-CEA, Centre De
Looking Back at Half a Century of Fusion Research P. STOTT Association Euratom-CEA, Centre de Cadarache, 13108 Saint Paul lez Durance, France. This article gives a short overview of the origins of nuclear fusion and of its development as a potential source of terrestrial energy. 1 Introduction A hundred years ago, at the dawn of the twentieth century, physicists did not understand the source of the Sun‘s energy. Although classical physics had made major advances during the nineteenth century and many people thought that there was little of the physical sciences left to be discovered, they could not explain how the Sun could continue to radiate energy, apparently indefinitely. The law of energy conservation required that there must be an internal energy source equal to that radiated from the Sun‘s surface but the only substantial sources of energy known at that time were wood or coal. The mass of the Sun and the rate at which it radiated energy were known and it was easy to show that if the Sun had started off as a solid lump of coal it would have burnt out in a few thousand years. It was clear that this was much too shortœœthe Sun had to be older than the Earth and, although there was much controversy about the age of the Earth, it was clear that it had to be older than a few thousand years. The realization that the source of energy in the Sun and stars is due to nuclear fusion followed three main steps in the development of science.