What Is Number Theory? 1. Historical Background Number Theory Is One of the Oldest Branches of Mathematics, Dating Back to Pre-S

Total Page:16

File Type:pdf, Size:1020Kb

What Is Number Theory? 1. Historical Background Number Theory Is One of the Oldest Branches of Mathematics, Dating Back to Pre-S What is Number Theory? 1. Historical Background Number theory is one of the oldest branches of mathematics, dating back to pre-Socratic Greek thinkers such as Pythagoras and his school (ca. 550 B.C.) who knew how to solve the famous “Pythagorean” equation �" + �" = �", for integers �, �, �. Moreover, recent cuneiform evidence suggests that mathematicians from ancient Babylonia knew about this equation as far back as 1600 BC. In fact, it appears the Babylonians were capable of computing all integral triples (�, �, �) that would satisfy this equation and used this knowledge to construct crude trigonometric tables. Subsequent to Pythagoras, famous Greek mathematicians such as Euclid (ca. 300 BC) and Diophantos from Alexandria (ca. 3rd century AD) were enormously influential in the development of number theory. Their work was continued by mathematicians in medieval Arabia and Italy, such as Al-Karkhi (ca. 1030) and Leonardo Pisano (ca. 1200). In the modern era, influential figures in number theory include Pierre de Fermat (French, 17th century), Leonhard Euler (Swiss, 18th century), Carl Friedrich Gauss (German, early 19th century), Jean de la Vallée-Poussin (Belgian, late 19th century), G. H. Hardy (British, early 20th century), Paul Erdös (Hungarian, mid 20th century) and Andrew Wiles (British, late 20th century). This is by no means an exhaustive list, but simply a few of the most famous names associated with the development of number theory. At this moment, some of the most important open questions in mathematics come from number theory, in particular the Riemann Hypothesis which is related to the distribution of the prime numbers (the Clay Institute in Cambridge, MA has pledged to give $1 million to anyone who can solve this fundamental question). Other famous number-theoretical questions include Goldbach’s Conjecture, the Twin-Prime Conjecture and Fermat’s Last Theorem. 2. The Queen of Mathematics Carl Friedrich Gauss, who pioneered virtually every field of mathematics in the early 19th century (he is sometimes called the “Mozart of math” given the incredible range and brilliance of his work), described number theory as the “queen of mathematics.” His position is similar to that of most mathematicians who have always regarded number theory as the purest form of mathematics. One of the reasons for such high praise is that very simple questions in number theory can lead to extraordinarily difficult answers (or, sometimes, to no answers at all!) A striking example of this is Fermat’s Last Theorem, which states that the equation �+ + �+ = �+ has no integral solution (�, �, �) for any natural number � greater than 2. This is actually a generalized version of the famous Pythagorean Theorem, but with a negative answer! In 1647, Fermat claimed that he had a marvelous simple proof of this important result. Unfortunately for him, no one has ever found a trace of it. It eventually took more than 350 years – and countless failed individual efforts by some of the finest minds – before Andrew Wiles, working at Princeton University, could prove it and put the matter to rest. Wiles first read the problem as a 10-year-old boy in a math book. Later, as an adult, he became fascinated by it and spend years in complete seclusion trying to solve this devilishly difficult problem. He became an instant worldwide sensation in 1993 when he finally emerged with a proof*. ______________________________________________________________________ *Wiles’ original proof turned out to have a major flaw in it. This took months to detect due to the difficulty that referees had in going over such a technically- advanced proof. Despite this setback, Wiles went back to work on his proof and found a way to get around this flaw. He resubmitted a proof in 1994, which was eventually validated by his peers in 1995. 3. A Higher Arithmetic So we are back to our initial question, “What is number theory?” A simple answer is that number theory is primarily concerned with the properties of the natural numbers, also called the counting numbers (1, 2, 3, 4, 5, …). By extension, number theorists also study the properties of other number sets, in particular the whole numbers (0, 1, 2, 3, 4, …), the integers (…, -3, -2, -1, 0, 1, 2, 3, …), and the rational numbers (i.e. fractions). You might think at this point that we are taking a step back to basic arithmetic, but that is actually not the case at all! In fact, number theory is commonly referred to as “a higher arithmetic.” To understand this further, think about what you really know about a natural number like, say, 31. Unless you use this number in a sum, a product, a ratio, or any other arithmetical computation (for example, totaling a grocery bill where one of the item you bought cost $31), you might not think twice about the natural 31. Yet, this number is interesting in its own right. For one thing, it is prime because its only factors are 1 and itself. Furthermore, it also has a twin prime: 29. The number 31 is also deficient since its only proper factor, 1, is less than itself. And so on. The point here is that number theory is ultimately concerned with finding all the interesting properties that apply to the natural numbers. This is quite different from elementary arithmetic, which merely uses these naturals for the purposes of computing sums, differences, products, ratios, etc. So what actually constitutes an “interesting” property? The following famous anecdote will illustrate what could be considered “interesting” to a number theorist. In the early 20th century, the British number theorist G. H. Hardy went to visit his young protégé, an Indian named Srinivasa Ramanujan, who was sick in the hospital. Ramanujan was uneducated mathematically (he came from a very poor background), but possessed a remarkable insight into hidden arithmetical relationships. For that reason, Hardy had asked him to come to England and work with him. When he arrived to see him at the hospital, Hardy remarked that the taxi in which he had ridden had the license number 1729, which, he said, seemed a rather uninteresting natural. Quickly Ramanujan replied that, on the contrary, 1729 was singularly interesting. In fact, he said, 1729 is the smallest natural that can be expressed as a sum of two cubes in two different ways: 1729 = 103 + 93 and 1729 = 123 + 13 What should be inferred from this anecdote is not that one should be capable of doing lightning fast computations like Ramanujan to be a successful number theorist; or that one needs to know obscure facts about random numbers (such as 1729) to understand number theory. Instead, the pertinent point here is that Ramanujan’s remark can lead to all sorts of interesting questions whose answers are by no means simple matters of calculation. For example, here’s an interesting question that could be posed based on Ramanujan’s observation: “If � is a natural greater than 2, how large is the smallest natural that can be represented as a sum of cubes in � different ways?” Or another simpler question could be: “Are there any cubes that can be expressed as the sum of two cubes?” The first question we asked is very hard to answer. The last question, however, is a special case of Fermat’s Last theorem since we are asked to find an integral solution (�, �, �) of the equation �. + �. = �.. We now know – thanks to Wiles – that the answer here is a resounding “No.” 4. Number Theory in the 21st Century Nowadays, number theory plays a major role in our way of life, as illustrated by the three examples below. • The encryption systems that are used by banks, e-tail giants such as ebay and amazon, health- care providers, local government offices, and countless others to secure transactions on their sites operate solely on number-theoretical principles. • ISBN, UPC and credit card numbers are all established based on certain congruences – a major topic in number theory. This is done in order to minimize errors in transcription. • The National Security Agency, a critical American agency in charge of national security, uses sophisticated tools in cryptography (i.e. the practice and study of mathematical techniques used for the encryption and decryption of data transfers) to secure the U.S. and its allies from external threats such as cyber-terrorism. This is all done, in large part, thanks to the work of hundreds of number theorists within the intelligence community. .
Recommended publications
  • Scalar Curvature and Geometrization Conjectures for 3-Manifolds
    Comparison Geometry MSRI Publications Volume 30, 1997 Scalar Curvature and Geometrization Conjectures for 3-Manifolds MICHAEL T. ANDERSON Abstract. We first summarize very briefly the topology of 3-manifolds and the approach of Thurston towards their geometrization. After dis- cussing some general properties of curvature functionals on the space of metrics, we formulate and discuss three conjectures that imply Thurston’s Geometrization Conjecture for closed oriented 3-manifolds. The final two sections present evidence for the validity of these conjectures and outline an approach toward their proof. Introduction In the late seventies and early eighties Thurston proved a number of very re- markable results on the existence of geometric structures on 3-manifolds. These results provide strong support for the profound conjecture, formulated by Thur- ston, that every compact 3-manifold admits a canonical decomposition into do- mains, each of which has a canonical geometric structure. For simplicity, we state the conjecture only for closed, oriented 3-manifolds. Geometrization Conjecture [Thurston 1982]. Let M be a closed , oriented, 2 prime 3-manifold. Then there is a finite collection of disjoint, embedded tori Ti 2 in M, such that each component of the complement M r Ti admits a geometric structure, i.e., a complete, locally homogeneous RiemannianS metric. A more detailed description of the conjecture and the terminology will be given in Section 1. A complete Riemannian manifold N is locally homogeneous if the universal cover N˜ is a complete homogenous manifold, that is, if the isometry group Isom N˜ acts transitively on N˜. It follows that N is isometric to N=˜ Γ, where Γ is a discrete subgroup of Isom N˜, which acts freely and properly discontinuously on N˜.
    [Show full text]
  • 500 Natural Sciences and Mathematics
    500 500 Natural sciences and mathematics Natural sciences: sciences that deal with matter and energy, or with objects and processes observable in nature Class here interdisciplinary works on natural and applied sciences Class natural history in 508. Class scientific principles of a subject with the subject, plus notation 01 from Table 1, e.g., scientific principles of photography 770.1 For government policy on science, see 338.9; for applied sciences, see 600 See Manual at 231.7 vs. 213, 500, 576.8; also at 338.9 vs. 352.7, 500; also at 500 vs. 001 SUMMARY 500.2–.8 [Physical sciences, space sciences, groups of people] 501–509 Standard subdivisions and natural history 510 Mathematics 520 Astronomy and allied sciences 530 Physics 540 Chemistry and allied sciences 550 Earth sciences 560 Paleontology 570 Biology 580 Plants 590 Animals .2 Physical sciences For astronomy and allied sciences, see 520; for physics, see 530; for chemistry and allied sciences, see 540; for earth sciences, see 550 .5 Space sciences For astronomy, see 520; for earth sciences in other worlds, see 550. For space sciences aspects of a specific subject, see the subject, plus notation 091 from Table 1, e.g., chemical reactions in space 541.390919 See Manual at 520 vs. 500.5, 523.1, 530.1, 919.9 .8 Groups of people Add to base number 500.8 the numbers following —08 in notation 081–089 from Table 1, e.g., women in science 500.82 501 Philosophy and theory Class scientific method as a general research technique in 001.4; class scientific method applied in the natural sciences in 507.2 502 Miscellany 577 502 Dewey Decimal Classification 502 .8 Auxiliary techniques and procedures; apparatus, equipment, materials Including microscopy; microscopes; interdisciplinary works on microscopy Class stereology with compound microscopes, stereology with electron microscopes in 502; class interdisciplinary works on photomicrography in 778.3 For manufacture of microscopes, see 681.
    [Show full text]
  • 81684-1B SP.Pdf
    INTERMEDIATE ALGEBRA The Why and the How First Edition Mathew Baxter Florida Gulf Coast University Bassim Hamadeh, CEO and Publisher Jess Estrella, Senior Graphic Designer Jennifer McCarthy, Acquisitions Editor Gem Rabanera, Project Editor Abbey Hastings, Associate Production Editor Chris Snipes, Interior Designer Natalie Piccotti, Senior Marketing Manager Kassie Graves, Director of Acquisitions Jamie Giganti, Senior Managing Editor Copyright © 2018 by Cognella, Inc. All rights reserved. No part of this publication may be reprinted, reproduced, transmitted, or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information retrieval system without the written permission of Cognella, Inc. For inquiries regarding permissions, translations, foreign rights, audio rights, and any other forms of reproduction, please contact the Cognella Licensing Department at [email protected]. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Cover image copyright © Depositphotos/agsandrew. Printed in the United States of America ISBN: 978-1-5165-0303-2 (pbk) / 978-1-5165-0304-9 (br) iii |  CONTENTS 1 The Real Number System 1 RealNumbersandTheirProperties 2:1.1 RealNumbers 2 PropertiesofRealNumbers 6 Section1.1Exercises 9 TheFourBasicOperations 11:1.2 AdditionandSubtraction 11 MultiplicationandDivision
    [Show full text]
  • Generalized Riemann Hypothesis Léo Agélas
    Generalized Riemann Hypothesis Léo Agélas To cite this version: Léo Agélas. Generalized Riemann Hypothesis. 2019. hal-00747680v3 HAL Id: hal-00747680 https://hal.archives-ouvertes.fr/hal-00747680v3 Preprint submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Generalized Riemann Hypothesis L´eoAg´elas Department of Mathematics, IFP Energies nouvelles, 1-4, avenue de Bois-Pr´eau,F-92852 Rueil-Malmaison, France Abstract (Generalized) Riemann Hypothesis (that all non-trivial zeros of the (Dirichlet L-function) zeta function have real part one-half) is arguably the most impor- tant unsolved problem in contemporary mathematics due to its deep relation to the fundamental building blocks of the integers, the primes. The proof of the Riemann hypothesis will immediately verify a slew of dependent theorems (Borwien et al.(2008), Sabbagh(2002)). In this paper, we give a proof of Gen- eralized Riemann Hypothesis which implies the proof of Riemann Hypothesis and Goldbach's weak conjecture (also known as the odd Goldbach conjecture) one of the oldest and best-known unsolved problems in number theory. 1. Introduction The Riemann hypothesis is one of the most important conjectures in math- ematics.
    [Show full text]
  • The Unique Natural Number Set and Distributed Prime Numbers
    mp Co uta & tio d n e a li Jabur and Kushnaw, J Appl Computat Math 2017, 6:4 l p M p a Journal of A t h DOI: 10.4172/2168-9679.1000368 f e o m l a a n t r ISSN: 2168-9679i c u s o J Applied & Computational Mathematics Research Article Open Access The Unique Natural Number Set and Distributed Prime Numbers Alabed TH1* and Bashir MB2 1Computer Science, Shendi University, Shendi, Sudan 2Shendi University, Shendi, Sudan Abstract The Natural number set has a new number set behind three main subset: odd, even and prime which are unique number set. It comes from a mathematical relationship between the two main types even and odd number set. It consists of prime and T-semi-prime numbers set. However, finding ways to understand how prime number was distributed was ambiguity and it is impossible, this new natural set show how the prime number was distributed and highlight focusing on T-semi-prime number as a new sub natural set. Keywords: Prime number; T-semi-prime number; Unique number purely mathematical sciences and it has been used prime number set within theoretical physics to try and produce a theory that ties together prime numbers with quantum chaos theory [3]. However, researchers Introduction were made a big effort to find algorithm which can describe how prime The Unique natural number set is sub natural number set which number are distributed, still distribution of prime numbers throughout consist of prime and T-semi-prime numbers. T-semi-prime is natural a list of integers leads to the emergence of many unanswered and number divided by one or more prime numbers.
    [Show full text]
  • Theory of Change and Organizational Development Strategy INTRODUCTION Dear Reader
    Theory of Change and Organizational Development Strategy INTRODUCTION Dear Reader: The Fetzer Institute was founded in 1986 by John E. Fetzer with a vision of a transformed world, powered by love, in which all people can flourish. Our current mission, adopted in 2016, is to help build the spiritual foundation for a loving world. Over the past several years, we have been identifying and exploring new ways to make our vision of a loving world a reality. One aspect of this work has been the development of a new conceptual frame resulting in a comprehensive Theory of Change. This document aspires to ground our work for the next 25 years. Further, this in-depth articulation of our vision allows us to invite thought leaders across disciplines to help sharpen our thinking. This document represents a moment when many strands of work and planning by the Institute board and staff came together in a very powerful way that enabled us to articulate our Theory of Change. However, this is a dynamic, living document, and we encourage you to read it as such. For example, we are actively developing detailed goals and action plans, and we continue to examine our conceptual frame, even as we make common cause with all who are working toward a shared and transformative sacred story for humanity in the 21st century. We continue to use our Theory of Change to focus our work, inspire and grow our partnerships, and identify the most pressing needs in our world. I look forward to your feedback and invite you to learn about how our work is coming alive in the world through our program strategies, initiatives, and stories at Fetzer.org.
    [Show full text]
  • Math 788M: Computational Number Theory (Instructor’S Notes)
    Math 788M: Computational Number Theory (Instructor’s Notes) The Very Beginning: • A positive integer n can be written in n steps. • The role of numerals (now O(log n) steps) • Can we do better? (Example: The largest known prime contains 258716 digits and doesn’t take long to write down. It’s 2859433 − 1.) Running Time of Algorithms: • A positive integer n in base b contains [logb n] + 1 digits. • Big-Oh & Little-Oh Notation (as well as , , ∼, ) Examples 1: log (1 + (1/n)) = O(1/n) Examples 2: [logb n] + 1 log n Examples 3: 1 + 2 + ··· + n n2 These notes are for a course taught by Michael Filaseta in the Spring of 1996 and being updated for Fall of 2007. Computational Number Theory Notes 2 Examples 4: f a polynomial of degree k =⇒ f(n) = O(nk) Examples 5: (r + 1)π ∼ rπ • We will want algorithms to run quickly (in a small number of steps) in comparison to the length of the input. For example, we may ask, “How quickly can we factor a positive integer n?” One considers the length of the input n to be of order log n (corresponding to the number of binary digits n has). An algorithm runs in polynomial time if the number of steps it takes is bounded above by a polynomial in the length of the input. An algorithm to factor n in polynomial time would require that it take O (log n)k steps (and that it factor n). Addition and Subtraction (of n and m): • We are taught how to do binary addition and subtraction in O(log n + log m) steps.
    [Show full text]
  • Number Theory
    “mcs-ftl” — 2010/9/8 — 0:40 — page 81 — #87 4 Number Theory Number theory is the study of the integers. Why anyone would want to study the integers is not immediately obvious. First of all, what’s to know? There’s 0, there’s 1, 2, 3, and so on, and, oh yeah, -1, -2, . Which one don’t you understand? Sec- ond, what practical value is there in it? The mathematician G. H. Hardy expressed pleasure in its impracticality when he wrote: [Number theorists] may be justified in rejoicing that there is one sci- ence, at any rate, and that their own, whose very remoteness from or- dinary human activities should keep it gentle and clean. Hardy was specially concerned that number theory not be used in warfare; he was a pacifist. You may applaud his sentiments, but he got it wrong: Number Theory underlies modern cryptography, which is what makes secure online communication possible. Secure communication is of course crucial in war—which may leave poor Hardy spinning in his grave. It’s also central to online commerce. Every time you buy a book from Amazon, check your grades on WebSIS, or use a PayPal account, you are relying on number theoretic algorithms. Number theory also provides an excellent environment for us to practice and apply the proof techniques that we developed in Chapters 2 and 3. Since we’ll be focusing on properties of the integers, we’ll adopt the default convention in this chapter that variables range over the set of integers, Z. 4.1 Divisibility The nature of number theory emerges as soon as we consider the divides relation a divides b iff ak b for some k: D The notation, a b, is an abbreviation for “a divides b.” If a b, then we also j j say that b is a multiple of a.
    [Show full text]
  • Towards the Poincaré Conjecture and the Classification of 3-Manifolds John Milnor
    Towards the Poincaré Conjecture and the Classification of 3-Manifolds John Milnor he Poincaré Conjecture was posed ninety- space SO(3)/I60 . Here SO(3) is the group of rota- nine years ago and may possibly have tions of Euclidean 3-space, and I60 is the subgroup been proved in the last few months. This consisting of those rotations which carry a regu- note will be an account of some of the lar icosahedron or dodecahedron onto itself (the Tmajor results over the past hundred unique simple group of order 60). This manifold years which have paved the way towards a proof has the homology of the 3-sphere, but its funda- and towards the even more ambitious project of mental group π1(SO(3)/I60) is a perfect group of classifying all compact 3-dimensional manifolds. order 120. He concluded the discussion by asking, The final paragraph provides a brief description of again translated into modern language: the latest developments, due to Grigory Perelman. A more serious discussion of Perelman’s work If a closed 3-dimensional manifold has will be provided in a subsequent note by Michael trivial fundamental group, must it be Anderson. homeomorphic to the 3-sphere? The conjecture that this is indeed the case has Poincaré’s Question come to be known as the Poincaré Conjecture. It At the very beginning of the twentieth century, has turned out to be an extraordinarily difficult Henri Poincaré (1854–1912) made an unwise claim, question, much harder than the corresponding which can be stated in modern language as follows: question in dimension five or more,2 and is a If a closed 3-dimensional manifold has key stumbling block in the effort to classify the homology of the sphere S3 , then it 3-dimensional manifolds.
    [Show full text]
  • New Formulas for Semi-Primes. Testing, Counting and Identification
    New Formulas for Semi-Primes. Testing, Counting and Identification of the nth and next Semi-Primes Issam Kaddouraa, Samih Abdul-Nabib, Khadija Al-Akhrassa aDepartment of Mathematics, school of arts and sciences bDepartment of computers and communications engineering, Lebanese International University, Beirut, Lebanon Abstract In this paper we give a new semiprimality test and we construct a new formula for π(2)(N), the function that counts the number of semiprimes not exceeding a given number N. We also present new formulas to identify the nth semiprime and the next semiprime to a given number. The new formulas are based on the knowledge of the primes less than or equal to the cube roots 3 of N : P , P ....P 3 √N. 1 2 π( √N) ≤ Keywords: prime, semiprime, nth semiprime, next semiprime 1. Introduction Securing data remains a concern for every individual and every organiza- tion on the globe. In telecommunication, cryptography is one of the studies that permits the secure transfer of information [1] over the Internet. Prime numbers have special properties that make them of fundamental importance in cryptography. The core of the Internet security is based on protocols, such arXiv:1608.05405v1 [math.NT] 17 Aug 2016 as SSL and TSL [2] released in 1994 and persist as the basis for securing dif- ferent aspects of today’s Internet [3]. The Rivest-Shamir-Adleman encryption method [4], released in 1978, uses asymmetric keys for exchanging data. A secret key Sk and a public key Pk are generated by the recipient with the following property: A message enciphered Email addresses: [email protected] (Issam Kaddoura), [email protected] (Samih Abdul-Nabi) 1 by Pk can only be deciphered by Sk and vice versa.
    [Show full text]
  • FROM HARMONIC ANALYSIS to ARITHMETIC COMBINATORICS: a BRIEF SURVEY the Purpose of This Note Is to Showcase a Certain Line Of
    FROM HARMONIC ANALYSIS TO ARITHMETIC COMBINATORICS: A BRIEF SURVEY IZABELLA ÃLABA The purpose of this note is to showcase a certain line of research that connects harmonic analysis, speci¯cally restriction theory, to other areas of mathematics such as PDE, geometric measure theory, combinatorics, and number theory. There are many excellent in-depth presentations of the vari- ous areas of research that we will discuss; see e.g., the references below. The emphasis here will be on highlighting the connections between these areas. Our starting point will be restriction theory in harmonic analysis on Eu- clidean spaces. The main theme of restriction theory, in this context, is the connection between the decay at in¯nity of the Fourier transforms of singu- lar measures and the geometric properties of their support, including (but not necessarily limited to) curvature and dimensionality. For example, the Fourier transform of a measure supported on a hypersurface in Rd need not, in general, belong to any Lp with p < 1, but there are positive results if the hypersurface in question is curved. A classic example is the restriction theory for the sphere, where a conjecture due to E. M. Stein asserts that the Fourier transform maps L1(Sd¡1) to Lq(Rd) for all q > 2d=(d¡1). This has been proved in dimension 2 (Fe®erman-Stein, 1970), but remains open oth- erwise, despite the impressive and often groundbreaking work of Bourgain, Wol®, Tao, Christ, and others. We recommend [8] for a thorough survey of restriction theory for the sphere and other curved hypersurfaces. Restriction-type estimates have been immensely useful in PDE theory; in fact, much of the interest in the subject stems from PDE applications.
    [Show full text]
  • Video Lessons for Illustrative Mathematics: Grades 6-8 and Algebra I
    Video Lessons for Illustrative Mathematics: Grades 6-8 and Algebra I The Department, in partnership with Louisiana Public Broadcasting (LPB), Illustrative Math (IM), and SchoolKit selected 20 of the critical lessons in each grade level to broadcast on LPB in July of 2020. These lessons along with a few others are still available on demand on the SchoolKit website. To ensure accessibility for students with disabilities, all recorded on-demand videos are available with closed captioning and audio description. Updated on August 6, 2020 Video Lessons for Illustrative Math Grades 6-8 and Algebra I Background Information: Lessons were identified using the following criteria: 1. the most critical content of the grade level 2. content that many students missed due to school closures in the 2019-20 school year These lessons constitute only a portion of the critical lessons in each grade level. These lessons are available at the links below: • Grade 6: http://schoolkitgroup.com/video-grade-6/ • Grade 7: http://schoolkitgroup.com/video-grade-7/ • Grade 8: http://schoolkitgroup.com/video-grade-8/ • Algebra I: http://schoolkitgroup.com/video-algebra/ The tables below contain information on each of the lessons available for on-demand viewing with links to individual lessons embedded for each grade level. • Grade 6 Video Lesson List • Grade 7 Video Lesson List • Grade 8 Video Lesson List • Algebra I Video Lesson List Video Lessons for Illustrative Math Grades 6-8 and Algebra I Grade 6 Video Lesson List 6th Grade Illustrative Mathematics Units 2, 3,
    [Show full text]