Agile, Efficient Virtualization Power Management with Low-Latency

Total Page:16

File Type:pdf, Size:1020Kb

Agile, Efficient Virtualization Power Management with Low-Latency Agile, Efficient Virtualization Power Management with Low-latency Server Power States Canturk Isci⋆ Suzanne McIntosh⋆ Jeffrey Kephart⋆ Rajarshi Das⋆ James Hanson⋆ Scott Piper† Robert Wolford† Thomas Brey† Robert Kantner† Allen Ng† James Norris⋆ Abdoulaye Traore⋆ Michael Frissora⋆ ⋆ IBM T.J. Watson Research Center †IBM Systems & Technology Group Yorktown Heights, NY Raleigh, NC & Kirkland, WA ABSTRACT tecture levels up through the firmware, operating system, One of the main driving forces of the growing adoption and the middleware. of virtualization is its dramatic simplification of the pro- Among these techniques, those which employ virtualiza- visioning and dynamic management of IT resources. By tion have been shown to yield significant energy efficiency decoupling running entities from the underlying physical re- improvements. By consolidating multiple workloads onto a sources, and by providing easy-to-use controls to allocate, single physical server, virtualization drives up system uti- deallocate and migrate virtual machines (VMs) across phys- lization and enables a given amount of computational work ical boundaries, virtualization opens up new opportunities to be performed on a smaller set of servers. While a more for improving overall system resource use and power effi- heavily utilized server uses more power than a lightly uti- ciency. While a range of techniques for dynamic, distributed lized one, the total power consumed by running a workload resource management of virtualized systems have been pro- on a smaller number of more heavily-utilized server can be posed and have seen their widespread adoption in enterprise substantially less than that for a large number of lightly- systems, similar techniques for dynamic power management utilized servers. have seen limited acceptance. The main barrier to dynamic, One important class of virtualization-based energy effi- power-aware virtualization management stems not from the ciency methods is static consolidation. The fundamental limitations of virtualization, but rather from the underlying idea, which arose from the observation that a large fraction physical systems; and in particular, the high latency and of dedicated physical servers are severely underutilized [3], energy cost of power state change actions suited for virtual- is based upon capacity planning. Long-term statistics on ization power management. resource consumption for a given set of workloads are used In this work, we first explore the feasibility of low-latency to estimate how many virtualized physical servers would be power states for enterprise server systems and demonstrate, needed to support that computational load [8, 36]. This with real prototypes, their quantitative energy-performance approach is commonly used for migrating workloads from trade offs compared to traditional server power states. Then, dedicated physical servers to virtualized environments [30, we demonstrate an end-to-end power-aware virtualization 43, 44], although the original environment could also be vir- management solution leveraging these states, and evaluate tual. VM migration may be employed from time to time the dramatically-favorable power-performance characteris- to even out the workload across the physical servers, but tics achievable with such systems. We present, via both real no further changes are made to the power state of the ser- system implementations and scale-out simulations, that vir- vers. Thus, while static consolidation eliminates substantial tualization power management with low-latency server po- amounts of overprovisioning, it does not take advantage of wer states can achieve comparable overheads as base distri- dynamic fluctuations in workload intensity [31, 39]. buted resource management in virtualized systems, and thus A second important class, dynamic consolidation, attempts can benefit from the same level of adoption, while delivering to extract further efficiency by migrating VMs to vacate close to energy-proportional power efficiency. some physical servers during lulls in workload intensity, turn- ing them off to save energy until the workload increases [16, 25, 42, 46, 40]. Dynamic consolidation techniques promise 1. INTRODUCTION to yield substantial energy efficiency improvements on top of Over the last decade, reducing the energy consumption what is achievable by static methods. However, while they of computing devices in data centers has become a topic have gained some traction in certain desktop virtualization of great practical and academic interest [24, 41]. Myriad frameworks [10, 5], in practice they do not make good on techniques for reducing energy consumption have been in- that promise at the enterprise level. This is because mecha- troduced at all levels of the stack, from circuits and archi- nisms for turning servers on and off entail latencies that can extend to minutes. The longer the latency, the greater the risk that the workload will increase and the performance will Permission to make digital or hard copies of all or part of this work for suffer for the period during which the increase is detected personal or classroom use is granted without fee provided that copies are and addressed by turning on enough servers. not made or distributed for profit or commercial advantage and that copies Previously-explored methods for mitigating the risk caused bear this notice and the full citation on the first page. To copy otherwise, to by the latency of coarse-grained power management include republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. workload scheduling, workload forecasting, and keeping ex- ISCA’13 Tel-Aviv, Israel tra servers on as a buffer to protect against unanticipated Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00. Power workload surges. All of these approaches have drawbacks. Power down/up Workload scheduling is feasible only when one has substan- Lost power overhead tial control over the workload (for example in a compute saving Demand opportunity grid scenario). Workload forecasting is difficult to apply be- t cause no workload is completely predictable, and the penalty Wait to be sure Power Power up for suffering an unanticipated surge—even if such errors are demand is low down (Perf. Degradation!) rare—can be substantial. Therefore, even when one uses (a) DPM Overview. Power workload forecasting, some amount of buffering is necessary, Power and this can largely wipe out the potential energy savings. down/up Lost power overhead In this paper, we demonstrate a radically different ap- saving Demand proach that overcomes the traditional barriers to achiev- opportunity ing substantial energy savings via dynamic consolidation. t Power down Power up Rather than merely treating the symptoms, we attack the (b) Power management with low-latency power states. underlying root cause or the problem: the latency itself. Our method exploits low-power, low-latency power states in en- Figure 1: The effect of power state change overheads terprise servers; specifically, the S3 state. We first present an on energy-aware virtualization management. across-the-stack implementation of S3 capability for enter- prise servers with two actual prototypes. Then, we build areas) during which power is wasted and/or performance is an end-to-end virtualization management solution, lever- degraded: aging this technology. Our experimental results with our • Power-on latency. In the rightmost region, the PM real-system prototypes and scale-out simulation framework algorithm detects that the cluster demand has risen, show substantial energy efficiency improvements over stan- so it initiates a power-on action. As the server pow- dard techniques. These further underline two key aspects ers on, power consumption is high—potentially even of our approach with low-latency server power states: the higher than when the server is processing the work- ability to react to fine-grained load fluctuations that most load. Worse, the performance of the cluster as a whole existing solutions cannot handle with standard power sta- suffers until the boot-up is complete and work has mi- tes; and reduced impact from incorrect power management grated back to the server. decisions with substantially faster reaction times. While the • Power-off latency. In the central region, the power basic principle of our solution is simple, realizing this prin- consumed as the server is being turned off is used to ciple in practice entails substantial work all along the stack place the server in a stable state rather than being used from the hardware level up through the firmware, the OS to process the workload. and the middleware used to control the VM migration and • Decision period. A PM algorithm must be judicious manage the power states of the physical servers. in its response to lower demand. If it is too hasty, and The remainder of this paper is organized as follows. Sec- the reduction in demand proves short-lived, the perfor- tion 2 provides more background on the fundamental idea mance cost during power-on latency will outweigh any underlying our solution and highlights its energy saving po- energy savings that may have accrued during the tran- tential. Section 3 presents a power state characterization sient. To reduce the risk of regret, it is reasonable for study, establishing that the S3 state offers an excellent trade- the PM to adopt a more conservative strategy, accord- off between latency and power consumption. Section 4 de- ing to which it waits for a specified time period before tails how we modified a commercial server to support S3 at turning the server off. Yet this wait time (which may the hardware, firmware and OS levels, while Section 5 de- reasonably be set to the better part of an hour) can scribes middleware that we developed for power-aware vir- result in significant lost opportunity for power savings, tualization management. Sections 6 and 7 describe our ex- and makes it impossible to save any power if the du- perimental results. We describe related work in Section 8, ration of the low demand is less than the wait time. and summarize our results in Section 9.
Recommended publications
  • Metrics for Performance Advertisement
    Metrics for Performance Advertisement Vojtěch Horký Peter Libič Petr Tůma 2010 – 2021 This work is licensed under a “CC BY-NC-SA 3.0” license. Created to support the Charles University Performance Evaluation lecture. See http://d3s.mff.cuni.cz/teaching/performance-evaluation for details. Contents 1 Overview 1 2 Operation Frequency Related Metrics 2 3 Operation Duration Related Metrics 3 4 Benchmark Workloads 4 1 Overview Performance Advertisement Measuring for the purpose of publishing performance information. Requirements: – Well defined meaning. – Simple to understand. – Difficult to game. Pitfalls: – Publication makes results subject to pressure. – Often too simple to convey meaningful information. – Performance in contemporary computer systems is never simple. Speed Related Metrics Responsiveness Metrics – Time (Task Response Time) – How long does it take to finish the task ? Productivity Metrics – Rate (Task Throughput) – How many tasks can the system complete per time unit ? Utilization Metrics – Resource Use (Utilization) – How much is the system loaded when working on a task ? – Share of time a resource is busy or over given load level. – Helps identify bottlenecks (most utilized resources in the system). 1 Metric for Webmail Performance What metric would you choose to characterize performance of a web mail site ? – User oriented metric would be end-to-end operation time. – Server oriented metric would be request processing time. – How about metrics in between ? – And would you include mail delivery time ? How is throughput related to latency ? How is utilization defined for various resources ? 2 Operation Frequency Related Metrics Clock Rate Clock rate (frequency) of the component (CPU, bus, memory) in MHz. Most often we talk about CPU frequency.
    [Show full text]
  • The Nutanix Design Guide
    The FIRST EDITION Nutanix Design Guide Edited by AngeloLuciani,VCP By Nutanix, RenévandenBedem, incollaborationwith NPX,VCDX4,DECM-EA RoundTowerTechnologies Table of Contents 1 Foreword 3 2 Contributors 5 3 Acknowledgements 7 4 Using This Book 7 5 Introduction To Nutanix 9 6 Why Nutanix? 17 7 The Nutanix Eco-System 37 8 Certification & Training 43 9 Design Methodology 49 & The NPX Program 10 Channel Charter 53 11 Mission-Critical Applications 57 12 SAP On Nutanix 69 13 Hardware Platforms 81 14 Sizer & Collector 93 15 IBM Power Systems 97 16 Remote Office, Branch Office 103 17 Xi Frame & EUC 113 Table of Contents 18 Xi IoT 121 19 Xi Leap, Data Protection, 133 DR & Metro Availability 20 Cloud Management 145 & Automation: Calm, Xi Beam & Xi Epoch 21 Era 161 22 Karbon 165 23 Acropolis Security & Flow 169 24 Files 193 25 Volumes 199 26 Buckets 203 27 Prism 209 28 Life Cycle Manager 213 29 AHV 217 30 Move 225 31 X-Ray 229 32 Foundation 241 33 Data Center Facilities 245 34 People & Process 251 35 Risk Management 255 The Nutanix Design Guide 1 Foreword Iamhonoredtowritethisforewordfor‘TheNutanixDesignGuide’. Wehavealwaysbelievedthatcloudwillbemorethanjustarented modelforenterprises.Computingwithintheenterpriseisnuanced, asittriestobalancethefreedomandfriction-freeaccessofthe publiccloudwiththesecurityandcontroloftheprivatecloud.The privateclouditselfisspreadbetweencoredatacenters,remoteand branchoffices,andedgeoperations.Thetrifectaofthe3laws–(a) LawsoftheLand(dataandapplicationsovereignty),(b)Lawsof Physics(dataandmachinegravity),and(c)LawsofEconomics
    [Show full text]
  • “Freedom” Koan-Sin Tan [email protected] OSDC.Tw, Taipei Apr 11Th, 2014
    Understanding Android Benchmarks “freedom” koan-sin tan [email protected] OSDC.tw, Taipei Apr 11th, 2014 1 disclaimers • many of the materials used in this slide deck are from the Internet and textbooks, e.g., many of the following materials are from “Computer Architecture: A Quantitative Approach,” 1st ~ 5th ed • opinions expressed here are my personal one, don’t reflect my employer’s view 2 who am i • did some networking and security research before • working for a SoC company, recently on • big.LITTLE scheduling and related stuff • parallel construct evaluation • run benchmarking from time to time • for improving performance of our products, and • know what our colleagues' progress 3 • Focusing on CPU and memory parts of benchmarks • let’s ignore graphics (2d, 3d), storage I/O, etc. 4 Blackbox ! • google image search “benchmark”, you can find many of them are Android-related benchmarks • Similar to recently Cross-Strait Trade in Services Agreement (TiSA), most benchmarks on Android platform are kinda blackbox 5 Is Apple A7 good? • When Apple released the new iPhone 5s, you saw many technical blog showed some benchmarks for reviews they came up • commonly used ones: • GeekBench • JavaScript benchmarks • Some graphics benchmarks • Why? Are they right ones? etc. e.g., http://www.anandtech.com/show/7335/the-iphone-5s-review 6 open blackbox 7 Android Benchmarks 8 http:// www.anandtech.com /show/7384/state-of- cheating-in-android- benchmarks No, not improvement in this way 9 Assuming there is not cheating, what we we can do? Outline • Performance benchmark review • Some Android benchmarks • What we did and what still can be done • Future 11 To quote what Prof.
    [Show full text]
  • Red Hat Enterprise Virtualization Performance: Specvirt™ Benchmark
    RED HAT ENTERPRISE VIRTUALIZATION PERFORMANCE: SPECVIRT™ BENCHMARK DATASHEET AT A GLANCE OVERVIEW ® • The performance of Red Hat Red Hat Enterprise Virtualization (RHEV) is the strategic virtualization alternative for organizations Enterprise Virtualization can looking for better total cost of ownership, faster return on investment, accelerated break-even, and be compared to other freedom from vendor lock-in. virtualization platforms RHEV consists of both a hypervisor technology and an enterprise virtualization manager. The RHEV using the SPECvirt_sc2010 hypervisor, based on the Red Hat Enterprise Linux® kernel and the Kernel-based Virtual Machine benchmark. (KVM) hypervisor technology, offers the high performance and scalability that Red Hat is known for. • SPECvirt_sc2010 measures Hypervisor performance is a key factor in deciding which virtualization platform to implement, and hypervisor performance using Red Hat Enterprise Virtualization performance, as measured by the SPECvirt_sc2010® benchmark, realistic workloads. leads the industry both in terms of highest overall performance and highest number of performant As of March 1, 2013, RHEV virtual machines on a single server. leads VMware in performance on comparable WHAT IS SPECVIRT_SC2010®? servers defined by CPU count. SPECvirt_sc2010 is the first vendor-neutral benchmark designed to measure the performance of • The RHEV subscription model datacenter servers that are used for server virtualization. The benchmark was developed by the provides high performance non-profit Standard Performance Evaluation Corporation (SPEC) virtualization subcommittee, at a lower cost-per-SPECvirt_ whose members and contributors include AMD, Dell, Fujitsu, HP, IBM, Intel, Oracle, Red Hat, Unisys sc2010 than VMware. and VMware. SPECvirt_sc2010 uses realistic workloads and SPEC’s proven performance measurement method- ologies to enable vendors, users and researchers to compare system performance across multiple hardware, virtualization platforms, and applications.
    [Show full text]
  • On Benchmarking Intrusion Detection Systems in Virtualized Environments
    Technical Report: SPEC-RG-2013-002 Version: 1.0 On Benchmarking Intrusion Detection Systems in Virtualized Environments SPEC RG IDS Benchmarking Working Group Aleksandar Milenkoski Samuel Kounev Alberto Avritzer Institute for Program Structures and Data Institute for Program Structures and Data Siemens Corporate Research Organization Organization Princeton, NJ USA Karlsruhe Institute of Technology Karlsruhe Institute of Technology [email protected] Karlsruhe, Germany Karlsruhe, Germany [email protected] [email protected] Nuno Antunes Marco Vieira CISUC, Department of Informatics CISUC, Department of Informatics Engineering Engineering University of Coimbra University of Coimbra Coimbra, Portugal Coimbra, Portugal [email protected] [email protected] arXiv:1410.1160v1 [cs.CR] 5 Oct 2014 ® Research ℠ June 26, 2013 research.spec.org www.spec.org Contents 1 Introduction.......................................1 2 Intrusion Detection in Virtualized Environments . .2 2.1 VMM-Based Intrusion Detection Systems . .2 2.2 Intrusion Detection Techniques . .4 Misuse-based Intrusion Detection . .4 Anomaly-based Intrusion Detection . .5 3 Requirements and Challenges for Benchmarking VMM-based IDSes . .7 3.1 Workloads . .7 Benign Workloads . .7 Malicious Workloads . 10 3.2 Metrics ..................................... 14 4 Conclusion . 17 References . 18 i Executive Summary Modern intrusion detection systems (IDSes) for virtualized environments are deployed in the virtualization layer with components inside the virtual machine monitor (VMM) and the trusted host virtual machine (VM). Such IDSes can monitor at the same time the network and host activities of all guest VMs running on top of a VMM being isolated from malicious users of these VMs. We refer to IDSes for virtualized environments as VMM-based IDSes. In this work, we analyze state-of-the-art intrusion detection techniques applied in virtualized environments and architectures of VMM-based IDSes.
    [Show full text]
  • IADIS Conference Template
    BENCHMARKING OF BARE METAL VIRTUALIZATION PLATFORMS ON COMMODITY HARDWARE Duarte Pousa*, José Rufino*† *Polytechnic Institute of Bragança, 5300-253 Bragança, Portugal †Laboratory of Instrumentation and Experimental Particle Physics, University of Minho, 4710-057 Braga, Portugal ([email protected], [email protected]) ABSTRACT In recent years, System Virtualization became a fundamental IT tool, whether it is type-2/hosted virtualization, mostly exploited by end-users in their personal computers, or type-1/bare metal, well established in IT departments and thoroughly used in modern datacenters as the very foundation of cloud computing. Though bare metal virtualization is meant to be deployed on server-grade hardware (for performance, stability and reliability reasons), properly configured desktop-class systems are often used as virtualization “servers”, due to their attractive performance/cost ratio. This paper presents the results of a study conducted on such systems, about the performance of Windows 10 and Ubuntu Server 16.04 guests, when deployed in what we believe are the type-1 platforms most in use today: VMware ESXi, Citrix XenServer, Microsoft Hyper-V, and KVM-based (represented by oVirt and Proxmox). Performance is measured using three synthetic benchmarks: PassMark for Windows, UnixBench for Ubuntu Server, and the cross-platform Flexible I/O Tester. The benchmarks results may be used to choose the most adequate type-1 platform (performance-wise), depending on guest OS, its performance requisites (CPU-bound, IO-bound, or balanced) and its storage type (local/remote) used. KEYWORDS Bare Metal Virtualization, Synthetic Benchmarking, Performance Assessment, Commodity Hardware 1. INTRODUCTION System Virtualization allows a physical host to run (simultaneously) many guest operating systems in self- contained software-defined virtual machines, sharing the host hardware, under control of a hypervisor.
    [Show full text]
  • TPC-V: a Benchmark for Evaluating the Performance of Database Applications in Virtual Environments Priya Sethuraman and H
    TPC-V: A Benchmark for Evaluating the Performance of Database Applications in Virtual Environments Priya Sethuraman and H. Reza Taheri, VMWare, Inc. {psethuraman, rtaheri}@vmware.com TPCTC 2010 Singapore © 2010 VMware Inc. All rights reserved Agenda/Topics Introduction to virtualization Existing benchmarks Genesis of TPC-V But what is TPC-E??? TPC-V design considerations Set architectures, variability, and elasticity Benchmark development status Answers to some common questions 2 TPC TC 2010 What is a Virtual Machine? A (VM) is a software computer that, like a physical computer, runs an operating system and applications. An operating system installed on a virtual machine is called a guest operating system. Virtual machines run on host servers. The same server can run many virtual machines. Every VM runs in an isolated environment. Started out with IBM VM in the 60s Also on Sun Solaris, HP Itanium, IBM Power/AIX, others A new wave started in the late 90s on X86 • Initially, enthusiasts ran Windows and Linux VMs on their PCs Traditional Architecture Virtual Architecture 3 TPC TC 2010 Why virtualize a server ? Server consolidation • The vast majority of server are grossly underutilized • Reduces both CapEx and OpEx Migration of VMs (both storage and CPU/memory) • Enables live load balancing • Facilitates maintenance High availability • Allows a small number of generic servers to back up all servers Fault tolerance • Lock-step execution of two VMs Cloud computing! Utility computing was finally enabled by • Ability to consolidate
    [Show full text]
  • KVM Virtualization Roadmap and Technology Update
    KVM Virtualization Roadmap and Technology Update Karen Noel Bhavna Sarathy Senior Eng Manager Senior Product Manager Red Hat, Inc. Red Hat, Inc. June 13, 2013 Why we believe KVM is the best virtualization platform Performance Lower Cost Cross Platform KVM holds the Top 6/11 customers report up to Support and certification for virtual machine consolidation 70% savings by using leading x86_64 operating systems scores on SPECvirt (1) KVM (2) including RHEL and Microsoft Windows (4) Security Cloud & Virtualization Management Certification (3) EAL4+ Red Hat Open Stack for Cloud plus SE Linux enabling Virtualization and Red Hat Mandatory Access Control Enterprise Virtualization for data- between virtual machines center Virtualization (1) Source: SpecVirt_sc2010 results: http://www.spec.org/virt_sc2010/results/specvirt_sc2010_perf.html (2) Source: Case study on Canary Islands Government migration from VMware to RHEV: http://www.redhat.com/resourcelibrary/case-studies/canary-islands-government-migrates-telecommunications-platform-from- vmware-to-red-hat (3) Source: http://www.redhat.com/solutions/industry/government/certifications.html (4) Source: http://www.redhat.com/resourcelibrary/articles/enterprise-linux-virtualization-support KVM hypervisor in multiple Red Hat products KVM is the foundation Virtualization technology in multiple Red Hat products Red Hat Enterprise Virtualization – Hypervisor Derived from Red Hat Enterprise Linux SMALL FORM FACTOR, SCALABLE, ● RHEV Hypervisor HIGH PERFORMANCE ● Prebuilt binary (ISO) with 300+ packages derived
    [Show full text]
  • Report on Cloud Computing to the OSG Steering Committee
    SPEC OPEN SYSTEMS GROUP CLOUD COMPUTING WORKING GROUP Report on Cloud Computing to the OSG Steering Committee Table of Contents Introduction and Objectives ...................................................... 3 1 Cloud Computing ............................................................ 5 1.1 Definition of the Cloud .......................................................... 5 1.1.1 Characteristics .............................................................................. 5 1.1.2 Service Models ............................................................................. 6 1.1.3 Deployment Models ...................................................................... 6 1.2 Interested parties of a Cloud Benchmark ............................. 6 1.2.1 Participants ................................................................................... 7 1.2.2 Cloud Benchmark Audience Types .............................................. 7 1.3 Cloud Computing Use Cases ............................................... 8 1.3.1 Computing Use Cases .................................................................. 8 1.3.2 Use Case to Customer Map ......................................................... 9 1.3.3 Use Case to Processing Type Map ............................................ 10 1.4 Existing Cloud Frameworks ................................................ 11 2 Benchmark Considerations ........................................... 12 2.1 What is a Cloud SUT? ........................................................ 12 2.2 SUT Components
    [Show full text]
  • Review & Background
    Spring 2018 :: CSE 502 Review & Background Nima Honarmand Spring 2018 :: CSE 502 Measuring & Reporting Performance Spring 2018 :: CSE 502 Performance Metrics • Latency (execution/response time): time to finish one task • Throughput (bandwidth): number of tasks finished per unit of time – Throughput can exploit parallelism, latency can’t – Sometimes complimentary, often contradictory • Example: move people from A to B, 10 miles – Car: capacity = 5, speed = 60 miles/hour – Bus: capacity = 60, speed = 20 miles/hour – Latency: car = 10 min, bus = 30 min – Throughput: car = 15 PPH (w/ return trip), bus = 60 PPH Pick the right metric for your goals Spring 2018 :: CSE 502 Performance Comparison • “Processor A is X times faster than processor B” if – Latency(P, A) = Latency(P, B) / X – Throughput(P, A) = Throughput(P, B) * X • “Processor A is X% faster than processor B” if – Latency(P, A) = Latency(P, B) / (1+X/100) – Throughput(P, A) = Throughput(P, B) * (1+X/100) • Car/bus example – Latency? Car is 3 times (200%) faster than bus – Throughput? Bus is 4 times (300%) faster than car Spring 2018 :: CSE 502 Latency/throughput of What Program? • Very difficult question! • Best case: you always run the same set of programs – Just measure the execution time of those programs – Too idealistic • Use benchmarks – Representative programs chosen to measure performance – (Hopefully) predict performance of actual workload – Prone to Benchmarketing: “The misleading use of unrepresentative benchmark software results in marketing a computer system” -- wikitionary.com Spring 2018 :: CSE 502 Types of Benchmarks • Real programs – Example: CAD, text processing, business apps, scientific apps – Need to know program inputs and options (not just code) – May not know what programs users will run – Require a lot of effort to port • Kernels – Small key pieces (inner loops) of scientific programs where program spends most of its time – Example: Livermore loops, LINPACK • Toy Benchmarks – e.g.
    [Show full text]
  • Autonomic Performance-Aware Resource Management in Dynamic IT Service Infrastructures
    escartes Autonomic Performance-Aware Resource Management in Dynamic IT Service Infrastructures Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften/ Doktors der Naturwissenschaften der Fakultät für Informatik des Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation von Nikolaus Matthias Huber aus Zell am Harmersbach Tag der mündlichen Prüfung: 16.07.2014 Erster Gutachter: Prof. Dr. Samuel Kounev Zweiter Gutachter: Prof. Dr. Ralf Reussner KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Ich versichere wahrheitsgem¨aß, die Dissertation bis auf die dort angegebenen Hilfen selb- st¨andig angefertigt, alle benutzten Hilfsmittel vollst¨andig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer und eigenen Ver¨offentlichungen unver¨andert oder mit Anderungen¨ entnommen wurde. Karlsruhe, 30. September 2014 Nikolaus Huber Contents Abstract xiii Zusammenfassung xv 1. Introduction 1 1.1. Motivation . .1 1.2. Problem Statement . .2 1.3. Shortcomings of Existing Approaches . .4 1.4. Contributions of this Thesis . .6 1.5. Outline . .8 I. Foundations and Related Work 11 2. Autonomic System Adaptation and Performance Modeling 13 2.1. Autonomic and Self-Adaptive Systems . 14 2.1.1. Self-* Properties . 14 2.1.2. Design Principles of Autonomic Systems . 16 2.1.3. Model-Driven Autonomic and Self-Adaptive Systems . 18 2.1.4. The Descartes Research Project and Self-Aware Computing Systems 20 2.2. Software Performance Engineering . 21 2.2.1. Performance Models: Classification and Terminology . 21 2.2.2. Model-Driven Software Performance Engineering . 22 2.2.3. The Palladio Component Model (PCM) . 22 2.2.4.
    [Show full text]
  • Chauffeur: a Framework for Measuring Energy Efficiency of Servers
    Chauffeur: A framework for measuring Energy Efficiency of Servers Masters Project Jeremy Arnold University of Minnesota [email protected] December 16, 2013 Abstract Energy efficiency is an important consideration for servers, bringing about a need for benchmarks to fairly measure energy efficiency. These benchmarks must be relevant, reproducible, fair, verifiable, and easy to use. This paper describes these characteristics in detail and provides an assessment of existing energy efficiency benchmarks based on these cri- teria. Next it describes Chauffeur, a new framework developed to help benchmarks achieve these goals with relatively little effort. SPEC's Server Efficiency Rating Tool (SERT) builds upon the Chauffeur framework to deliver more meaningful energy efficiency data than is provided by the cur- rent generation of benchmarks and workloads. Experimental SERT data is used to highlight some of the features of Chauffeur and characteristics of SERT. 1 Introduction Energy consumption of data centers has become an important issue for many companies, resulting in increased focus on the energy efficiency of servers [1]. 1 There are many challenges in evaluating the energy efficiency of computer servers. Some traditional performance-oriented benchmarks have been updated to include energy efficiency metrics; while these have some value, the results of these measurements are not indicative of energy consumption under real- world conditions. Early benchmarks like SPECpower ssj2008 that were designed specifically for measuring energy efficiency have their own limitations. I have made the following contributions in the context of energy efficiency measurements for servers: 1) a detailed set of criteria that can be used to assess the quality of computer benchmarks, and energy efficiency benchmarks in particular, 2) development of the Chauffeur framework for creating high-quality energy efficiency benchmarks.
    [Show full text]