TUBERCULOUS MENINGITIS Tuberculous Meningitis

Total Page:16

File Type:pdf, Size:1020Kb

TUBERCULOUS MENINGITIS Tuberculous Meningitis TUBERCULOUS MENINGITIS TUBERCULOUS MENINGITIS The rising incidence of HIV has seen a concomitant rise in the incidence of tuberculous meningitis. P BILL Pierre Bill’s interests are neuromuscular MB ChB, FCP (SA), FRCP(Lond) disorders, tropical neurology and under- graduate and postgraduate teaching. Emeritus Professor and Consultant He is currently President of the College Department of Neurology of Neurologists within the Colleges of Inkosi Albert Luthuli Central Hospital and Medicine of South Africa. University of KwaZulu-Natal Durban Recently there has been a resurgence of tuberculosis (TB) an aerobic Gram-positive rod that stains poorly owing in developed and developing countries. This is due to the to its thick cell wall that contains lipids, peptoglycans, increasing prevalence of HIV, overcrowding in the urban and arabinomannans. The Ziehl-Neelsen stain uses the population and in abnormal communities (prisons, refugee properties of the cell wall to form a complex that prevents colonies, and concentration camps), poor nutritional status, decolourisation by acid or alcohol. appearance of drug-resistant strains of TB, ineffective TB control programmes, and increase in migration to the The development of TBM is a two-step process. M. developed world from countries where TB is prevalent. tuberculosis bacilli enter the body by droplet inhalation, the Compared with pulmonary TB, which has been the subject initial point of infection being the alveolar macrophage. of many clinical trials, the pathogenesis, diagnosis and During the localised infection within the lung (primary treatment of tuberculous meningitis (TBM) have received complex) there is a short but significant bacteraemia that little attention. How the disease kills or disables those can seed bacilli to other organs in the body. In about 10% it infects is poorly understood; the best diagnostic tests of cases the primary complex does not heal but progresses are controversial, and the optimum treatment with and tuberculous pneumonia develops, with heavier and antituberculosis drugs is not known. The only certainties more prolonged bacteraemia. Dissemination to the CNS lie in the fatal consequences of missed diagnoses and is more likely, particularly if miliary TB develops. In those management. It has been estimated that about 10% of who develop TBM, bacilli seed to the meninges or brain patients with extrapulmonary TB have CNS involvement. parenchyma, forming small subpial or subependymal foci, Involvement of the CNS in TB is five times more frequent in called Rich foci, after the original studies of Rich and HIV-positive than in HIV-negative patients. McCordick. These foci may remain dormant for many years. The second step in the development of TBM is rupture of EPIDEMIOLOGY the Rich focus into the subarachnoid space. This heralds the onset of TBM. Before HIV, the most important determinant for the development of TBM was age. In populations with a high The release of M. tuberculosis bacilli into the subarachnoid TB prevalence, the peak age for TBM is 0 - 4 years. In space results in a local T lymphocyte-dependent response, populations with a lower TB prevalence, most TBM cases characterised macroscopically as caseating granulomatous occur in adults, risk factors being alcoholism, diabetes inflammation. The numbers and types of white cells in the mellitus, malignancy, and recent corticosteroid use. Co- CSF help differentiate TBM from other forms of meningitis, infection with HIV now dwarfs these risk factors, and but little is known of their role in disease pathogenesis. increases the lifetime risk of developing clinical TB. HIV also increases the risk of developing extrapulmonary TB and in In 75% of children the onset of TBM is less than 12 months particular TBM – a risk which increases as the CD4 cell after the primary infection. count diminishes. Three general processes produce the subsequent AETIOLOGY, PATHOGENESIS AND PATHOLOGY neurological pathology: adhesion formation, an obliterative vasculitis, and an encephalitis or a myelitis. Adhesions TBM was first described as a pathological entity in 1836, result from the thick, gelatinous basal meningeal exudate and Robert Koch demonstrated that TB was caused by that develops after the inoculation of bacilli into the Mycobacterium tuberculosis in 1882. M. tuberculosis is subarachnoid space. The exudate is particularly marked September 2006 Vol.24 No.9 CME 505 pg505-511.indd 505 9/12/06 8:44:58 AM TUBERCULOUS MENINGITIS Compared with pulmonary 1-β and tumour necrosis factor, fontanelles develop in infants. Nausea, which promote granuloma formation. vomiting and altered sensorium may TB, which has been the Tubercles consist of mononuclear develop. A continuous low-grade fever subject of many clinical cells surrounding a necrotic (caseous) is present in about 80% of patients. trials, the pathogenesis, centre. The complex cellular immune diagnosis and treatment response in TB determines whether Cranial nerve abnormalities occur of tuberculous meningitis the host develops active disease. in one-quarter of patients, most (TBM) have received little Progression and expansion of the commonly a 6th nerve palsy. Choroidal caseous lesion may result in different tubercles are present in less than attention. types of CNS involvement. Tubercles 10% of patients, but are diagnostic that rupture into the subarachnoid of TB. Visual loss may develop owing BCG vaccination pro- space cause meningitis. Those deeper to optochiasmatic arachnoiditis, 3rd vides the best prophylaxis in the parenchyma of the brain or ventricular compression of optic chiasm spinal cord cause tuberculoma or from hydrocephalus, optic nerve against severe forms of TB, abscess. granuloma, and ethambutol toxicity. mainly meningitic and mil- Funduscopic examination may reveal iary. Most CNS TB is caused by papilloedema. Hemiplegia may occur M. tuberculosis. Non-tuberculous at the onset of the disease or at a later mycobacteria (NTM) are ubiquitous stage. Quadriplegia secondary to around the sylvian fissures, basal in the environment. They usually bilateral infarction or severe cerebral cisterns, brainstem and cerebellum, cause infection in persons with oedema is less common. Occasionally and contains lymphocytes, plasma immunosuppression, especially patients abnormal movements may be present, cells, macrophages and fibrin. with AIDS and very low CD4 counts including chorea hemiballismus, Blockage of the basal subarachnoid (< 10 cells/µl). Atypical bacteria athetosis, generalised tremors, cisterns, 4th ventricular outlet or infrequently produce meningitis or myoclonic jerks and ataxia. Seizures, aqueduct can result in obstruction of meningoencephalitis. Mycobacterium either focal or generalised, may occur the CSF and hydrocephalus. Adhesions avium is the most common aetiological during the illness. As the disease around the interpeduncular fossa and agent of this group. Mycobacterium progresses, increasing evidence of related structures can compromise fortuitum meningitis is a complication cerebral dysfunction sets in, with cranial nerves, particularly 2, 4 and of CNS surgery and trauma and apathy and irritability progressing to 6, and the internal carotid artery. is usually associated with abscess increasing lethargy, confusion, stupor An obliterative vasculitis may result and foreign bodies. Less frequently and coma. Spinal meningitis may in infarction and stroke syndromes. NTM infections are manifested result in root pain, spastic or flaccid These commonly occur in the territory as intracranial mass lesions, or paralysis and loss of sphincter control. of the internal carotid artery (ICA), rhombencephalitis. Diagnosis is made proximal middle cerebral artery (MCA) by culture of tissue, sputum, blood Although HIV-infected patients with TB and perforating vessels to the basal or CSF. Because NTM are ubiquitous are at increased risk of developing ganglia. Infarcts occur in about 30% bacteria, their isolation from a sample TBM, the clinical features and of cases, causing a range of disorders may represent contamination. However, outcome do not seem to be altered. ranging from hemiparesis to movement isolation from a sterile fluid such as These patients commonly have disorders. Haemorrhagic transformation CSF usually represents infection of the extrameningeal TB on admission. of infarcted tissue is not unusual. nervous system. In elderly patients with TBM, the The basal inflammatory process may presentation may be atypical. Signs extend into the parenchyma, resulting CLINICAL FEATURES of meningism may be absent, seizures in encephalitis. Brain tissue underlying occur more commonly, and CSF the exudate shows oedema, which can TBM is usually preceded by a findings may be atypical, and the CSF be marked throughout the hemispheres, prodromal period of 2 - 4 weeks of may even be acellular. perivascular infiltration, and a nonspecific symptoms such as fever, microglial reaction (known as border malaise, myalgia, and headache. A rare complication of TBM is zone reaction). Fifty per cent of patients have chest tuberculous encephalopathy, radiographic abnormalities, a history usually occurring in a young child The pathogenesis of TBM at a cellular of contact with a TB patient, and a with progressive primary TB. level is poorly understood. During the positive tuberculin skin test. In children The presentation is of reducing first 2 - 4 weeks of infection there is prodromal symptoms include irritability, consciousness level with few focal no immune response to the organism. poor
Recommended publications
  • Intracranial Actinomycosis of Odontogenic Origin Masquerading As Auto-Immune Orbital Myositis: a Fatal Case and Review of the Literature G
    Hötte et al. BMC Infectious Diseases (2019) 19:763 https://doi.org/10.1186/s12879-019-4408-2 CASE REPORT Open Access Intracranial actinomycosis of odontogenic origin masquerading as auto-immune orbital myositis: a fatal case and review of the literature G. J. Hötte1,2*, M. J. Koudstaal3, R. M. Verdijk4, M. J. Titulaer5, J. F. H. M. Claes6, E. M. Strabbing3, A. van der Lugt7 and D. Paridaens1,2 Abstract Background: Actinomycetes can rarely cause intracranial infection and may cause a variety of complications. We describe a fatal case of intracranial and intra-orbital actinomycosis of odontogenic origin with a unique presentation and route of dissemination. Also, we provide a review of the current literature. Case presentation: A 58-year-old man presented with diplopia and progressive pain behind his left eye. Six weeks earlier he had undergone a dental extraction, followed by clindamycin treatment for a presumed maxillary infection. The diplopia responded to steroids but recurred after cessation. The diplopia was thought to result from myositis of the left medial rectus muscle, possibly related to a defect in the lamina papyracea. During exploration there was no abnormal tissue for biopsy. The medial wall was reconstructed and the myositis responded again to steroids. Within weeks a myositis on the right side occurred, with CT evidence of muscle swelling. Several months later he presented with right hemiparesis and dysarthria. Despite treatment the patient deteriorated, developed extensive intracranial hemorrhage, and died. Autopsy showed bacterial aggregates suggestive of actinomycotic meningoencephalitis with septic thromboembolism. Retrospectively, imaging studies showed abnormalities in the left infratemporal fossa and skull base and bilateral cavernous sinus.
    [Show full text]
  • Evaluation of the Various Clinical Presentations Of
    EVALUATION OF THE VARIOUS CLINICAL PRESENTATIONS OF ADULT CNS TUBERCULOSIS JOY KMNI1, KUNDU NC2, AKHTER M3, HOSSAIN MZ4, RAHMAN AHMW5, RAHMAN MM6, SAIFULLAH M7, ROUF MA8, HAQUE MM9 Abstract: Background: Central nervous system (CNS) involvement is one of the most important extra- pulmonary manifestations of tuberculosis (TB) causing considerable mortality and morbidity. Presentations of CNS TB are extremely variable. Treatments are generally more effective if the disease can be detected early. This study is to find out the various clinical patterns and investigation findings that might help in early detection of CNS TB. Objective: This study was conducted to detect various clinical manifestations of adult CNS TB at an earlier stage of evaluation. Methods: This was a hospital based observational study (cross sectional type) conducted on 30 patients of CNS TB who were admitted in Sir Salimullah Medical College Mitford Hospital, Dhaka during a period of 6 months from October 2013 to April 2014 . Results: Among the participants 53% were male and 47% were female, with a male female ratio of 1.13: 1. Mean age of the participants was 35.17±6.14 years. Tuberculosis involving brain (i.e. cranial TB) was most common (30.4%) in 15-24 years age group whereas spinal form of TB was most common (42.8%) in 25-34 years age group. Mean age of the participants having Brain TB was 36.46±6.90 years. Mean age of the participants having spinal TB was 32.36±12.52 years. Highest number of the cranial forms of TB was tuberculoma (52.2%) in this study and was found mostly in the young adults.
    [Show full text]
  • Case Report Left Lateral Cervical Mass with Draining Sinuses
    Hindawi Case Reports in Medicine Volume 2019, Article ID 7838596, 6 pages https://doi.org/10.1155/2019/7838596 Case Report Left Lateral Cervical Mass with Draining Sinuses Stylianos A. Michaelides ,1,† George D. Bablekos ,2 Avgerinos-Romanos Michailidis,1 Efthalia Gkioxari,3 Stephanie Vgenopoulou,4 and Maria Chorti4 1Department of Occupational Lung Diseases and Tuberculosis, “Sismanogleio- Amalia Fleming” General Hospital, 1 Sismanogleiou Str, 15126, Attiki, Maroussi, Athens, Greece 2Departments of Biomedical Sciences, Nursing and Physiotherapy, University of West Attica, Campus 1, Attiki, Egaleo, Agiou Spiridonos, 12243 Athens, Greece 3Second Department of 2oracic Medicine, “Sismanogleio- Amalia Fleming” General Hospital, 1 Sismanogleiou Str, 15126, Attiki, Maroussi, Athens, Greece 4Department of Surgical Pathology, “Sismanogleio- Amalia Fleming” General Hospital, 1 Sismanogleiou Str, 15126, Attiki, Maroussi, Athens, Greece †Deceased Correspondence should be addressed to George D. Bablekos; [email protected] Received 3 January 2019; Accepted 27 May 2019; Published 25 July 2019 Academic Editor: Gerd J. Ridder Copyright © 2019 Stylianos A. Michaelides et al. *is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. *e aim of the present study is to describe an uncommon case of tuberculous lymphadenitis (TL) in a symptomless 89-year-old male smoker patient, who presented at the emergency department of our hospital with left lateral cervical swelling with draining sinuses. No other clinical symptoms or physical findings were observed at admission. An elevated erythrocyte sedimentation rate (ESR) and a small calcified nodule in chest CT were the only abnormal findings.
    [Show full text]
  • A Diagnostic Rule for Tuberculous Meningitis Arch Dis Child: First Published As 10.1136/Adc.81.3.221 on 1 September 1999
    Arch Dis Child 1999;81:221–224 221 A diagnostic rule for tuberculous meningitis Arch Dis Child: first published as 10.1136/adc.81.3.221 on 1 September 1999. Downloaded from Rashmi Kumar, S N Singh, Neera Kohli Abstract onstration of mycobacteria in cerebrospinal Diagnostic confusion often exists between fluid (CSF), by direct staining or culture. tuberculous meningitis and other menin- However, these tests are time consuming and goencephalitides. Newer diagnostic tests seldom positive.2 Recognising this problem of are unlikely to be available in many coun- diagnosis, many newer tests have been devel- tries for some time. This study examines oped to diagnose tuberculous meningitis and which clinical features and simple labora- diVerentiate it from pyogenic meningitis—for tory tests can diVerentiate tuberculous example, enzyme linked immunosorbent assay, meningitis from other infections. Two bromide partition test, tuberculostearic acid in hundred and thirty two children (110 CSF, adenosine deaminase in CSF, polymerase tuberculous meningitis, 94 non- chain reaction, etc.34 However, the sensitivity tuberculous meningitis, 28 indeterminate) of these tests is still under study and they are with suspected meningitis and cerebrospi- unlikely to be available where they are really nal fluid (CSF) pleocytosis were enrolled. needed for at least the next decade. In practice, Tuberculous meningitis was defined as in India, treatment is started solely on the basis positive CSF mycobacterial culture or of clinical features and results of simple labora- acid fast bacilli stain, or basal enhance- tory tests of CSF and blood. Therefore, we ment or tuberculoma on computed tomo- attempted to establish a clinical rule for the graphy (CT) scan with clinical response to diagnosis of tuberculous meningitis, whereby a antituberculous treatment.
    [Show full text]
  • Chapter 2, Transmission and Pathogenesis of Tuberculosis (TB)
    Chapter 2 Transmission and Pathogenesis of Tuberculosis Table of Contents Chapter Objectives . 19 Introduction . 21 Transmission of TB . 21 Pathogenesis of TB . 26 Drug-Resistant TB (MDR and XDR) . 35 TB Classification System . 39 Chapter Summary . 41 References . 43 Chapter Objectives After working through this chapter, you should be able to • Identify ways in which tuberculosis (TB) is spread; • Describe the pathogenesis of TB; • Identify conditions that increase the risk of TB infection progressing to TB disease; • Define drug resistance; and • Describe the TB classification system. Chapter 2: Transmission and Pathogenesis of Tuberculosis 19 Introduction TB is an airborne disease caused by the bacterium Mycobacterium tuberculosis (M. tuberculosis) (Figure 2.1). M. tuberculosis and seven very closely related mycobacterial species (M. bovis, M. africanum, M. microti, M. caprae, M. pinnipedii, M. canetti and M. mungi) together comprise what is known as the M. tuberculosis complex. Most, but not all, of these species have been found to cause disease in humans. In the United States, the majority of TB cases are caused by M. tuberculosis. M. tuberculosis organisms are also called tubercle bacilli. Figure 2.1 Mycobacterium tuberculosis Transmission of TB M. tuberculosis is carried in airborne particles, called droplet nuclei, of 1– 5 microns in diameter. Infectious droplet nuclei are generated when persons who have pulmonary or laryngeal TB disease cough, sneeze, shout, or sing. Depending on the environment, these tiny particles can remain suspended in the air for several hours. M. tuberculosis is transmitted through the air, not by surface contact. Transmission occurs when a person inhales droplet nuclei containing M.
    [Show full text]
  • An Uncommon Association of Tuberculous and Pyogenic Bacteria
    Open Access Austin Journal of Clinical Neurology Research Article CNS Bacterial Coinfections: An Uncommon Association of Tuberculous and Pyogenic Bacteria Patricia V1, Luis SHJ2, Armando RPJ3, Ibis DLC1 and Graciela C2* Abstract 1 Department of Infectious Diseases, Instituto Nacional de Background: Pyogenic bacteria-tuberculosis coinfections in the CNS are Cancerología, Mexico uncommon, but some isolated cases have been reported. In contrast with other 2Department of Neuroinfectology, Instituto Nacional de coinfections, they also can be observed in non-immunosuppressed patients. Neurología y Neurocirugía, Mexico 3Department of Radiology, Instituto Nacional de Tuberculosis is still a major global health problem. CNS tuberculosis is Cancerología, México the most severe form of extrapulmonary tuberculosis, and when associated with pyogenic bacterial infections it shows atypical clinical and radiological *Corresponding author: Graciela Cárdenas, characteristics that make an accurate diagnosis difficult. Department of Neuroinfectology, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes sur 3877, Methods: A case series of tuberculosis-pyogenic bacterial CNS coinfection Tlalpan, La fama, 14269, Mexico in patients attended at two referral centers in Mexico City during the last 5 years. Received: August 04, 2017; Accepted: September 18, Results: Evident immunosuppressive factors were observed in two of them. 2017; Published: October 31, 2017 Specific antituberculous treatment was delayed in all three cases due to their atypical clinical
    [Show full text]
  • 5585665076Index-TB Guidelines.Pdf
    Initiative of Central TB Division Ministry of Health and Family Welfare, Government of India ii INDEX-TB GUIDELINES - Guidelines on extra-pulmonary tuberculosis for India Convenors Department of Medicine, All India Institute of Medical Sciences, New Delhi WHO Collaborating Centre (WHO-CC) for Training and Research in Tuberculosis Centre of Excellence for Extra-Pulmonary Tuberculosis, Ministry of Health and Family Welfare, Government of India Partners Global Health Advocates, India Cochrane Infectious Diseases Group Cochrane South Asia World Health Organization Country Office for India © World Health Organization 2016 All rights reserved. The World Health Organization Country Office for India welcomes requests for permission to reproduce or translate its publications, in part or in full. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader.
    [Show full text]
  • Diagnosis of Tuberculosis in Adults and Children David M
    Clinical Infectious Diseases IDSA GUIDELINE Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children David M. Lewinsohn,1,a Michael K. Leonard,2,a Philip A. LoBue,3,a David L. Cohn,4 Charles L. Daley,5 Ed Desmond,6 Joseph Keane,7 Deborah A. Lewinsohn,1 Ann M. Loeffler,8 Gerald H. Mazurek,3 Richard J. O’Brien,9 Madhukar Pai,10 Luca Richeldi,11 Max Salfinger,12 Thomas M. Shinnick,3 Timothy R. Sterling,13 David M. Warshauer,14 and Gail L. Woods15 1Oregon Health & Science University, Portland, Oregon, 2Emory University School of Medicine and 3Centers for Disease Control and Prevention, Atlanta, Georgia, 4Denver Public Health Department, Denver, Colorado, 5National Jewish Health and the University of Colorado Denver, and 6California Department of Public Health, Richmond; 7St James’s Hospital, Dublin, Ireland; 8Francis J. Curry International TB Center, San Francisco, California; 9Foundation for Innovative New Diagnostics, Geneva, Switzerland; 10McGill University and McGill International TB Centre, Montreal, Canada; 11University of Southampton, United Kingdom; 12National Jewish Health, Denver, Colorado, 13Vanderbilt University School of Medicine, Vanderbilt Institute for Global Health, Nashville, Tennessee, 14Wisconsin State Laboratory of Hygiene, Madison, and 15University of Arkansas for Medical Sciences, Little Rock Downloaded from Background. Individuals infected with Mycobacterium tuberculosis (Mtb) may develop symptoms and signs of disease (tuber- culosis disease) or may have no clinical evidence of disease (latent tuberculosis infection [LTBI]). Tuberculosis disease is a leading cause of infectious disease morbidity and mortality worldwide, yet many questions related to its diagnosis remain.
    [Show full text]
  • Does BCG Vaccine Prevent Tuberculous Meningitis?
    144 Archives ofDisease in Childhood 1996; 74: 144-147 Does BCG vaccine prevent tuberculous meningitis? N Thilothammal, P V Krishnamurthy, Desmond K Runyan, K Banu Abstract A prospective study with sufficient power to The reported efficacy of BCG vaccine in establish efficacy is not easy to conduct. Hence preventing pulmonary tuberculosis varies a case-control study was designed to find out from 0-80%; however, its efficacy in pre- the efficacy of BCG vaccine in preventing venting tuberculous meningitis ranges tuberculous meningitis. This study also from 520/%-84%. A case-control study was assessed the role of poor nutrition and low conducted to assess the efficacy of BCG in socioeconomic status in the development of preventing tuberculous meningitis in tuberculous meningitis. children. New cases oftuberculous menin- gitis, confirmed bacteriologically, were registered as cases. Controls were children Patients and methods suffering from febrile convulsions attend- SELECTION OF CASES ing the same hospital. A total of 107 cases This study was conducted at the Institute of and 321 controls, block matched for age, Child Health and Hospital for Children, were registered. Vaccination status was Madras, from August 1990-December 1992. determined from the history reported by Children aged 12 years or less were included in the mother and by BCG scar reading. the study. Data regarding socioeconomic status, Cases were selected from the inpatient crowding, and nutritional status were col- department of the hospital. Inclusion criteria lected. Using
    [Show full text]
  • Recent Advances in the Management of Tubercular Neuro-Infections
    Article NIMHANS Journal Recent Advances in the Management of Tubercular Neuro-Infections Volume: 14 Issue: 04 October 1996 Page: 331-338 B S Singhal Reprints request , D Ganesh Rao &, Uma Ladiwala, - Department of Neurology, Bombay Hospital Institute of Medical Sciences, Bombay - 400 020, India Abstract The CNS manifestations of tuberculosis cause significant morbidity and mortality. This review examines the magnitude, clinical presentation, investigations, differential diagnosis, complications and sequalae of such tubercular neuro-infections. Tuberculosis of spine with cord compression, and relationship between CNS tuberculosis and HIV-AIDS are also described. Treatment of CNS tuberculosis, with emphasis on multi-drug resistant tuberculosis has also been reviewed. Key words - Tuberculosis, Tubercular meningitis, Multi-drug resistant tuberculosis, AIDS Tuberculosis of the central nervous system (CNS) has been recognized since ancient days. A Vedic hymn dated approximately two millenia B.C. invokes a treatment ritual for "consumption seated in thy head ......" [1]. The first description of tubercular meningitis (TBM) is credited to Robert Whytt [2]. The final proof of tuberculosis as the cause of meningitis followed the discovery of Mycobacterium tuberculosis by Koch in 1882. The CNS manifestations of tuberculosis cause significant morbidity and mortality. The introduction of streptomycin in 1946 and other drugs such as isoniazid, pyrazinamide and more recently, rifampicin revolutionised the treatment of tuberculosis. It was thought that with the indroduction of this regimen, the menace of tuberculosis could be contained. However, the past decade has seen a dramatic increase in the magnitude of the problem of tuberculosis. This is due to the epidemic of the acquired immuno deficiency syndrome (AIDS) and the emergence of multi-drug resistant (MDR-TB) tuberculosis.
    [Show full text]
  • Pott's Disease with Incidentally Discovered Multiple Brain
    Hindawi Case Reports in Infectious Diseases Volume 2021, Article ID 5552351, 4 pages https://doi.org/10.1155/2021/5552351 Case Report Pott’s Disease with Incidentally Discovered Multiple Brain Tuberculomas in a Previously Healthy 10-Year-Old Girl May Albarrak ,1 Abdulrahaman Alodayani,1 Nasir Al Otaibi,2 and Yasser Albrikeet2 1Pediatric Infectious Diseases Section, Prince Sultan Military Medical City, Riyadh, Saudi Arabia 2Spinal Surgery Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia Correspondence should be addressed to May Albarrak; [email protected] Received 12 January 2021; Revised 13 March 2021; Accepted 13 April 2021; Published 21 April 2021 Academic Editor: Annac Skiada Copyright © 2021 May Albarrak et al. &is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Pott’s disease (PD) represents the most common form of spinal tuberculosis. Its association with brain tuberculomas is extremely rare. Herein, we report a previously healthy child with PD and concurrent multiple brain tuberculomas who was successfully treated with antituberculous therapy, surgical drainage of the paravertebral abscess, and adjuvant steroid therapy. 1. Introduction tuberculoma [5]; however, the association of PD with brain tuberculoma is an extremely rare presentation [4, 6, 7]. &is Tuberculosis (TB) remains an endemic disease in the case report presents a rare case of PD affecting the thoracic Kingdom of Saudi Arabia despite the government’s efforts to vertebrae with concurrent multiple brain tuberculomas that eradicate the disease. According to the World Health Or- were incidentally discovered by brain MRI in a previously ganization (WHO), in 2017, Saudi Arabia reported an an- healthy girl.
    [Show full text]
  • Infectious Diseases of the Philippines
    INFECTIOUS DISEASES OF THE PHILIPPINES Stephen Berger, MD Infectious Diseases of the Philippines - 2013 edition Infectious Diseases of the Philippines - 2013 edition Stephen Berger, MD Copyright © 2013 by GIDEON Informatics, Inc. All rights reserved. Published by GIDEON Informatics, Inc, Los Angeles, California, USA. www.gideononline.com Cover design by GIDEON Informatics, Inc No part of this book may be reproduced or transmitted in any form or by any means without written permission from the publisher. Contact GIDEON Informatics at [email protected]. ISBN-13: 978-1-61755-582-4 ISBN-10: 1-61755-582-7 Visit http://www.gideononline.com/ebooks/ for the up to date list of GIDEON ebooks. DISCLAIMER: Publisher assumes no liability to patients with respect to the actions of physicians, health care facilities and other users, and is not responsible for any injury, death or damage resulting from the use, misuse or interpretation of information obtained through this book. Therapeutic options listed are limited to published studies and reviews. Therapy should not be undertaken without a thorough assessment of the indications, contraindications and side effects of any prospective drug or intervention. Furthermore, the data for the book are largely derived from incidence and prevalence statistics whose accuracy will vary widely for individual diseases and countries. Changes in endemicity, incidence, and drugs of choice may occur. The list of drugs, infectious diseases and even country names will vary with time. Scope of Content: Disease designations may reflect a specific pathogen (ie, Adenovirus infection), generic pathology (Pneumonia - bacterial) or etiologic grouping (Coltiviruses - Old world). Such classification reflects the clinical approach to disease allocation in the Infectious Diseases Module of the GIDEON web application.
    [Show full text]