Tuberculous Meningitis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intracranial Actinomycosis of Odontogenic Origin Masquerading As Auto-Immune Orbital Myositis: a Fatal Case and Review of the Literature G
Hötte et al. BMC Infectious Diseases (2019) 19:763 https://doi.org/10.1186/s12879-019-4408-2 CASE REPORT Open Access Intracranial actinomycosis of odontogenic origin masquerading as auto-immune orbital myositis: a fatal case and review of the literature G. J. Hötte1,2*, M. J. Koudstaal3, R. M. Verdijk4, M. J. Titulaer5, J. F. H. M. Claes6, E. M. Strabbing3, A. van der Lugt7 and D. Paridaens1,2 Abstract Background: Actinomycetes can rarely cause intracranial infection and may cause a variety of complications. We describe a fatal case of intracranial and intra-orbital actinomycosis of odontogenic origin with a unique presentation and route of dissemination. Also, we provide a review of the current literature. Case presentation: A 58-year-old man presented with diplopia and progressive pain behind his left eye. Six weeks earlier he had undergone a dental extraction, followed by clindamycin treatment for a presumed maxillary infection. The diplopia responded to steroids but recurred after cessation. The diplopia was thought to result from myositis of the left medial rectus muscle, possibly related to a defect in the lamina papyracea. During exploration there was no abnormal tissue for biopsy. The medial wall was reconstructed and the myositis responded again to steroids. Within weeks a myositis on the right side occurred, with CT evidence of muscle swelling. Several months later he presented with right hemiparesis and dysarthria. Despite treatment the patient deteriorated, developed extensive intracranial hemorrhage, and died. Autopsy showed bacterial aggregates suggestive of actinomycotic meningoencephalitis with septic thromboembolism. Retrospectively, imaging studies showed abnormalities in the left infratemporal fossa and skull base and bilateral cavernous sinus. -
Kaistella Soli Sp. Nov., Isolated from Oil-Contaminated Soil
A001 Kaistella soli sp. nov., Isolated from Oil-contaminated Soil Dhiraj Kumar Chaudhary1, Ram Hari Dahal2, Dong-Uk Kim3, and Yongseok Hong1* 1Department of Environmental Engineering, Korea University Sejong Campus, 2Department of Microbiology, School of Medicine, Kyungpook National University, 3Department of Biological Science, College of Science and Engineering, Sangji University A light yellow-colored, rod-shaped bacterial strain DKR-2T was isolated from oil-contaminated experimental soil. The strain was Gram-stain-negative, catalase and oxidase positive, and grew at temperature 10–35°C, at pH 6.0– 9.0, and at 0–1.5% (w/v) NaCl concentration. The phylogenetic analysis and 16S rRNA gene sequence analysis suggested that the strain DKR-2T was affiliated to the genus Kaistella, with the closest species being Kaistella haifensis H38T (97.6% sequence similarity). The chemotaxonomic profiles revealed the presence of phosphatidylethanolamine as the principal polar lipids;iso-C15:0, antiso-C15:0, and summed feature 9 (iso-C17:1 9c and/or C16:0 10-methyl) as the main fatty acids; and menaquinone-6 as a major menaquinone. The DNA G + C content was 39.5%. In addition, the average nucleotide identity (ANIu) and in silico DNA–DNA hybridization (dDDH) relatedness values between strain DKR-2T and phylogenically closest members were below the threshold values for species delineation. The polyphasic taxonomic features illustrated in this study clearly implied that strain DKR-2T represents a novel species in the genus Kaistella, for which the name Kaistella soli sp. nov. is proposed with the type strain DKR-2T (= KACC 22070T = NBRC 114725T). [This study was supported by Creative Challenge Research Foundation Support Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2020R1I1A1A01071920).] A002 Chitinibacter bivalviorum sp. -
Lesson of the Month (2)
CMJ0906-Pande_LoM.qxd 11/17/09 9:58 AM Page 626 7 Nelson RL, Persky V, Davis F, Becker E. Risk of disease in siblings Address for correspondence: Dr SD Pande, Changi of patients with hereditary haemochromatosis. Digestion General Hospital, 2 Simei Street 3, Singapore 529889. 2001;64:120–4. Email: [email protected] 8 Reyes M, Dunet DO, Isenberg KB, Trisoloni M, Wagener DK. Family based detection for hereditary haemochromatosis. J Genet Couns 2008;17:92–100. Clinical Medicine 2009, Vol 9, No 6: 626–7 lesson of the month (2) negative. He was treated empirically with intravenous acyclovir and ceftriaxone for three days before all these culture results were Considering syphilis in aseptic meningitis available. He subsequently made a very good recovery. As part of a screen for other causes of aseptic meningitis, syphilis serology was Clinicians need to consider syphilis in the differential requested which was positive for immunoglobulin M (IgM) anti- diagnosis of macular or papular rashes with body and venereal disease research laboratory (VDRL) was posi- neurological conditions, particularly aseptic meningitis, tive with a titre of 1:64. This was confirmed with a repeat sample. as early diagnosis and treatment lead to a better The patient therefore continued treatment with ceftriaxone for prognosis. two weeks. As part of contact tracing his wife, who was asympto- matic, was screened for syphilis and was found to have positive serology. She was treated with a standard regime of benzathine penicillin. On follow-up, both showed good responses serologi- cally and both patients tested negative for HIV. Lesson In March 2007 a 45-year-old heterosexual male presented to the Discussion medical assessment unit with a three-week history of headaches, occasional vomiting and more recent confusion. -
West Nile Virus Aseptic Meningitis and Stuttering in Woman
LETTERS Author affi liation: University of the Punjab, Address for correspondence: Muhammad having received multiple mosquito Lahore, Pakistan Idrees, Division of Molecular Virology and bites during the preceding weeks. Molecular Diagnostics, National Centre of At admission, she had a DOI: 10.3201/eid1708.100950 Excellence in Molecular Biology, University temperature of 101.3°F, pulse rate of Punjab, 87 West Canal Bank Rd, Thokar of 92 beats/min, blood pressure of References Niaz Baig, Lahore 53700, Pakistan; email: 130/80 mm Hg, and respiratory rate of 1. Idrees M, Lal A, Naseem M, Khalid M. [email protected] 16 breaths/min. She appeared mildly High prevalence of hepatitis C virus infec- ill but was alert and oriented with no tion in the largest province of Pakistan. nuchal rigidity, photophobia, rash, or J Dig Dis. 2008;9:95–103. doi:10.1111/ j.1751-2980.2008.00329.x limb weakness. Results of a physical 2. Martell M, Esteban JI, Quer J, Genesca examination were unremarkable, and J, Weiner A, Gomez J. Hepatitis C virus results of a neurologic examination circulates as a population of different but were notable only for stuttering. closely related genomes: quasispecies na- ture of HCV genome distribution. J Virol. Laboratory test results included a West Nile Virus 3 1992;66:3225–9. leukocyte count of 12,300 cells/mm 3. Jarvis LM, Ludlam CA, Simmonds P. Hep- Aseptic Meningitis (63% neutrophils, 29% lymphocytes, atitis C virus genotypes in multi-transfused 7% monocytes, 1% basophils) and individuals. Haemophilia. 1995;1(Sup- and Stuttering in pl):3–7. -
Evaluation of the Various Clinical Presentations Of
EVALUATION OF THE VARIOUS CLINICAL PRESENTATIONS OF ADULT CNS TUBERCULOSIS JOY KMNI1, KUNDU NC2, AKHTER M3, HOSSAIN MZ4, RAHMAN AHMW5, RAHMAN MM6, SAIFULLAH M7, ROUF MA8, HAQUE MM9 Abstract: Background: Central nervous system (CNS) involvement is one of the most important extra- pulmonary manifestations of tuberculosis (TB) causing considerable mortality and morbidity. Presentations of CNS TB are extremely variable. Treatments are generally more effective if the disease can be detected early. This study is to find out the various clinical patterns and investigation findings that might help in early detection of CNS TB. Objective: This study was conducted to detect various clinical manifestations of adult CNS TB at an earlier stage of evaluation. Methods: This was a hospital based observational study (cross sectional type) conducted on 30 patients of CNS TB who were admitted in Sir Salimullah Medical College Mitford Hospital, Dhaka during a period of 6 months from October 2013 to April 2014 . Results: Among the participants 53% were male and 47% were female, with a male female ratio of 1.13: 1. Mean age of the participants was 35.17±6.14 years. Tuberculosis involving brain (i.e. cranial TB) was most common (30.4%) in 15-24 years age group whereas spinal form of TB was most common (42.8%) in 25-34 years age group. Mean age of the participants having Brain TB was 36.46±6.90 years. Mean age of the participants having spinal TB was 32.36±12.52 years. Highest number of the cranial forms of TB was tuberculoma (52.2%) in this study and was found mostly in the young adults. -
Responses to Ecopollutants and Pathogenization Risks of Saprotrophic Rhodococcus Species
pathogens Review Responses to Ecopollutants and Pathogenization Risks of Saprotrophic Rhodococcus Species Irina B. Ivshina 1,2,*, Maria S. Kuyukina 1,2 , Anastasiia V. Krivoruchko 1,2 and Elena A. Tyumina 1,2 1 Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms UB RAS, 13 Golev Str., 614081 Perm, Russia; [email protected] (M.S.K.); [email protected] (A.V.K.); [email protected] (E.A.T.) 2 Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia * Correspondence: [email protected]; Tel.: +7-342-280-8114 Abstract: Under conditions of increasing environmental pollution, true saprophytes are capable of changing their survival strategies and demonstrating certain pathogenicity factors. Actinobacteria of the genus Rhodococcus, typical soil and aquatic biotope inhabitants, are characterized by high ecological plasticity and a wide range of oxidized organic substrates, including hydrocarbons and their derivatives. Their cell adaptations, such as the ability of adhering and colonizing surfaces, a complex life cycle, formation of resting cells and capsule-like structures, diauxotrophy, and a rigid cell wall, developed against the negative effects of anthropogenic pollutants are discussed and the risks of possible pathogenization of free-living saprotrophic Rhodococcus species are proposed. Due to universal adaptation features, Rhodococcus species are among the candidates, if further anthropogenic pressure increases, to move into the group of potentially pathogenic organisms with “unprofessional” parasitism, and to join an expanding list of infectious agents as facultative or occasional parasites. Citation: Ivshina, I.B.; Kuyukina, Keywords: actinobacteria; Rhodococcus; pathogenicity factors; adhesion; autoaggregation; colonization; M.S.; Krivoruchko, A.V.; Tyumina, defense against phagocytosis; adaptive strategies E.A. -
The Challenge of Drug-Induced Aseptic Meningitis
REVIEW ARTICLE The Challenge of Drug-Induced Aseptic Meningitis German Moris, MD; Juan Carlos Garcia-Monco, MD everal drugs can induce the development of aseptic meningitis. Drug-induced aseptic men- ingitis (DIAM) can mimic an infectious process as well as meningitides that are secondary to systemic disorders for which these drugs are used. Thus, DIAM constitutes a diagnostic and patient management challenge. Cases of DIAM were reviewed through a MEDLINE Sliterature search (up to June 1998) to identify possible clinical and laboratory characteristics that would be helpful in distinguishing DIAM from other forms of meningitis or in identifying a specific drug as the culprit of DIAM. Our review showed that nonsteroidal anti-inflammatory drugs (NSAIDs), antibiotics, intravenous immunoglobulins, and OKT3 antibodies (monoclonal antibodies against the T3 receptor) are the most frequent cause of DIAM. Resolution occurs several days after drug discon- tinuation and the clinical and cerebrospinal fluid profile (neutrophilic pleocytosis) do not allow DIAM to be distinguished from infectious meningitis. Nor are there any specific characteristics associated with a specific drug. Systemic lupus erythematosus seems to predispose to NSAID-related meningi- tis. We conclude that a thorough history on prior drug intake must be conducted in every case of meningitis, with special focus on those aforementioned drugs. If there is a suspicion of DIAM, a third- generation cephalosporin seems a reasonable treatment option until cerebrospinal fluid cultures are available. Arch Intern Med. 1999;159:1185-1194 Several drugs can induce meningitis, re- been associated with drug-induced aseptic sulting in a diagnostic and therapeutic meningitis (DIAM) (Table 1): nonsteroi- challenge. -
Case Report Left Lateral Cervical Mass with Draining Sinuses
Hindawi Case Reports in Medicine Volume 2019, Article ID 7838596, 6 pages https://doi.org/10.1155/2019/7838596 Case Report Left Lateral Cervical Mass with Draining Sinuses Stylianos A. Michaelides ,1,† George D. Bablekos ,2 Avgerinos-Romanos Michailidis,1 Efthalia Gkioxari,3 Stephanie Vgenopoulou,4 and Maria Chorti4 1Department of Occupational Lung Diseases and Tuberculosis, “Sismanogleio- Amalia Fleming” General Hospital, 1 Sismanogleiou Str, 15126, Attiki, Maroussi, Athens, Greece 2Departments of Biomedical Sciences, Nursing and Physiotherapy, University of West Attica, Campus 1, Attiki, Egaleo, Agiou Spiridonos, 12243 Athens, Greece 3Second Department of 2oracic Medicine, “Sismanogleio- Amalia Fleming” General Hospital, 1 Sismanogleiou Str, 15126, Attiki, Maroussi, Athens, Greece 4Department of Surgical Pathology, “Sismanogleio- Amalia Fleming” General Hospital, 1 Sismanogleiou Str, 15126, Attiki, Maroussi, Athens, Greece †Deceased Correspondence should be addressed to George D. Bablekos; [email protected] Received 3 January 2019; Accepted 27 May 2019; Published 25 July 2019 Academic Editor: Gerd J. Ridder Copyright © 2019 Stylianos A. Michaelides et al. *is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. *e aim of the present study is to describe an uncommon case of tuberculous lymphadenitis (TL) in a symptomless 89-year-old male smoker patient, who presented at the emergency department of our hospital with left lateral cervical swelling with draining sinuses. No other clinical symptoms or physical findings were observed at admission. An elevated erythrocyte sedimentation rate (ESR) and a small calcified nodule in chest CT were the only abnormal findings. -
Aseptic Meningitis Face Sheet
Aseptic Meningitis Face Sheet 1. What is aseptic meningitis (AM)? - AM refers to a viral infection of the meninges (a system of membranes surrounding the brain and spinal cord). It is a fairly common disease, however, almost all cases occur as an isolated event, and outbreaks are rare. 2. Who gets AM? - Anyone can get AM but it occurs most often in children. 3. What viruses cause this form of meningitis? - Approximately half of the cases of AM in the United States are caused by common intestinal viruses (enteroviruses). Occasionally, children develop AM associated with either mumps or herpes virus infection. Mosquito-borne viruses: e.g. WNV also account for a few cases each year in Pennsylvania. In most cases, the specific virus is never identified. 4. How are viruses that cause AM spread? - In the absence of a specific laboratory diagnosis of the causative AM virus, it is difficult to implement targeted prevention measures as some are spread person-to-person while others are spread by insects. 5. What are the symptoms? - They include fever, headache, stiff neck and fatigue. Rash, sore throat and intestinal symptoms may also occur. 6. How soon do symptoms appear? - Generally appear within one week of exposure. 7. How is AM diagnosed? – The only way to diagnose AM is to collect a sample of spinal fluid through a lumbar puncture (also known as a spinal tap). 8. Is a person with AM contagious? – While some of the enteroviruses that may cause AM are potentially contagious person to person, others, such as mosquito- borne viruses, cannot be spread person to person. -
Progressive Multifocal Leukoencephalopathy and the Spectrum of JC Virus-Related Disease
REVIEWS Progressive multifocal leukoencephalopathy and the spectrum of JC virus- related disease Irene Cortese 1 ✉ , Daniel S. Reich 2 and Avindra Nath3 Abstract | Progressive multifocal leukoencephalopathy (PML) is a devastating CNS infection caused by JC virus (JCV), a polyomavirus that commonly establishes persistent, asymptomatic infection in the general population. Emerging evidence that PML can be ameliorated with novel immunotherapeutic approaches calls for reassessment of PML pathophysiology and clinical course. PML results from JCV reactivation in the setting of impaired cellular immunity, and no antiviral therapies are available, so survival depends on reversal of the underlying immunosuppression. Antiretroviral therapies greatly reduce the risk of HIV-related PML, but many modern treatments for cancers, organ transplantation and chronic inflammatory disease cause immunosuppression that can be difficult to reverse. These treatments — most notably natalizumab for multiple sclerosis — have led to a surge of iatrogenic PML. The spectrum of presentations of JCV- related disease has evolved over time and may challenge current diagnostic criteria. Immunotherapeutic interventions, such as use of checkpoint inhibitors and adoptive T cell transfer, have shown promise but caution is needed in the management of immune reconstitution inflammatory syndrome, an exuberant immune response that can contribute to morbidity and death. Many people who survive PML are left with neurological sequelae and some with persistent, low-level viral replication in the CNS. As the number of people who survive PML increases, this lack of viral clearance could create challenges in the subsequent management of some underlying diseases. Progressive multifocal leukoencephalopathy (PML) is for multiple sclerosis. Taken together, HIV, lymphopro- a rare, debilitating and often fatal disease of the CNS liferative disease and multiple sclerosis account for the caused by JC virus (JCV). -
A Diagnostic Rule for Tuberculous Meningitis Arch Dis Child: First Published As 10.1136/Adc.81.3.221 on 1 September 1999
Arch Dis Child 1999;81:221–224 221 A diagnostic rule for tuberculous meningitis Arch Dis Child: first published as 10.1136/adc.81.3.221 on 1 September 1999. Downloaded from Rashmi Kumar, S N Singh, Neera Kohli Abstract onstration of mycobacteria in cerebrospinal Diagnostic confusion often exists between fluid (CSF), by direct staining or culture. tuberculous meningitis and other menin- However, these tests are time consuming and goencephalitides. Newer diagnostic tests seldom positive.2 Recognising this problem of are unlikely to be available in many coun- diagnosis, many newer tests have been devel- tries for some time. This study examines oped to diagnose tuberculous meningitis and which clinical features and simple labora- diVerentiate it from pyogenic meningitis—for tory tests can diVerentiate tuberculous example, enzyme linked immunosorbent assay, meningitis from other infections. Two bromide partition test, tuberculostearic acid in hundred and thirty two children (110 CSF, adenosine deaminase in CSF, polymerase tuberculous meningitis, 94 non- chain reaction, etc.34 However, the sensitivity tuberculous meningitis, 28 indeterminate) of these tests is still under study and they are with suspected meningitis and cerebrospi- unlikely to be available where they are really nal fluid (CSF) pleocytosis were enrolled. needed for at least the next decade. In practice, Tuberculous meningitis was defined as in India, treatment is started solely on the basis positive CSF mycobacterial culture or of clinical features and results of simple labora- acid fast bacilli stain, or basal enhance- tory tests of CSF and blood. Therefore, we ment or tuberculoma on computed tomo- attempted to establish a clinical rule for the graphy (CT) scan with clinical response to diagnosis of tuberculous meningitis, whereby a antituberculous treatment. -
Chapter 2, Transmission and Pathogenesis of Tuberculosis (TB)
Chapter 2 Transmission and Pathogenesis of Tuberculosis Table of Contents Chapter Objectives . 19 Introduction . 21 Transmission of TB . 21 Pathogenesis of TB . 26 Drug-Resistant TB (MDR and XDR) . 35 TB Classification System . 39 Chapter Summary . 41 References . 43 Chapter Objectives After working through this chapter, you should be able to • Identify ways in which tuberculosis (TB) is spread; • Describe the pathogenesis of TB; • Identify conditions that increase the risk of TB infection progressing to TB disease; • Define drug resistance; and • Describe the TB classification system. Chapter 2: Transmission and Pathogenesis of Tuberculosis 19 Introduction TB is an airborne disease caused by the bacterium Mycobacterium tuberculosis (M. tuberculosis) (Figure 2.1). M. tuberculosis and seven very closely related mycobacterial species (M. bovis, M. africanum, M. microti, M. caprae, M. pinnipedii, M. canetti and M. mungi) together comprise what is known as the M. tuberculosis complex. Most, but not all, of these species have been found to cause disease in humans. In the United States, the majority of TB cases are caused by M. tuberculosis. M. tuberculosis organisms are also called tubercle bacilli. Figure 2.1 Mycobacterium tuberculosis Transmission of TB M. tuberculosis is carried in airborne particles, called droplet nuclei, of 1– 5 microns in diameter. Infectious droplet nuclei are generated when persons who have pulmonary or laryngeal TB disease cough, sneeze, shout, or sing. Depending on the environment, these tiny particles can remain suspended in the air for several hours. M. tuberculosis is transmitted through the air, not by surface contact. Transmission occurs when a person inhales droplet nuclei containing M.