Practical Applications of Homomorphic Encryption

Total Page:16

File Type:pdf, Size:1020Kb

Practical Applications of Homomorphic Encryption Practical Applications of Homomorphic Encryption Michael Brenner, Henning Perl and Matthew Smith Distributed Computing Security Group, Leibniz Universitt Hannover, Hannover, Germany Keywords: Homomorphic Encryption, Private Information Retrieval, Encrypted Search. Abstract: Homomorphic cryptography has been one of the most interesting topics of mathematics and computer security since Gentry presented the first construction of a fully homomorphic encryption (FHE) scheme in 2009. Since then, a number of different schemes have been found, that follow the approach of bootstrapping a fully homo- morphic scheme from a somewhat homomorphic foundation. All existing implementations of these systems clearly proved, that fully homomorphic encryption is not yet practical, due to significant performance limita- tions. However, there are many applications in the area of secure methods for cloud computing, distributed computing and delegation of computation in general, that can be implemented with homomorphic encryption schemes of limited depth. We discuss a simple algebraically homomorphic scheme over the integers that is based on the factorization of an approximate semiprime integer. We analyze the properties of the scheme and provide a couple of known protocols that can be implemented with it. We also provide a detailed discussion on searching with encrypted search terms and present implementations and performance figures for the solutions discussed in this paper. 1 INTRODUCTION discuss an algebraically homomorphic scheme and show for a couple of problems of practical relevance, Fully homomorphic encryption fired many people’s how these can be solved by a surprisingly small num- imagination in the field of distributed computing se- ber of operations on encrypted values. We exem- curity. Architectures have been proposed and many plarily discuss solutions to the Millionaires’ Problem, application scenarios have been identified that can one-round Oblivious Transfer and oblivious memory benefit from FHE. Encrypted online storage, secure access based on the homomorphic scheme. We also delegation of confidential computation and even pri- discuss searching over encrypted data with encrypted vacy for searching the web: the Cloud was about to search terms. Since this is a very important opera- turn secure. Unfortunately, all implementations of tion in distributed environments, we present our so- fully homomorphic encryption schemes showed, that lution to this in more detail in a separate section. We this technique is still much too slow for practical ap- show a delegationscheme, where the remote party op- plications. erates with encrypted arguments on public data and The most important property of FHE is un- generates encrypted results.This is useful when pos- limited chaining of algebraic operations in the ci- ing search requests to a public database while main- pherspace, which means that an arbitrary number of taining confidentiality of request and response. additions and multiplications can be applied to en- The paper is structured as follows: Section 2 gives crypted operands. To achieve this, an FHE scheme a summary of the current status of homomorphic must provide a mechanism to reduce the noise of ci- cryptography. Section 3 outlines a somewhat homo- pher values, because these schemes are based on a morphic encryption scheme and analyses its proper- slightly inaccurate representation of the plaintext val- ties in detail. Section 4 introduces a selection of algo- ues. Every single operation on a ciphertext causes rithmic primitives that can be secured using our ho- even lower accuracy and eventually, the ciphertext can momorphic scheme. Section 5 introduces a constant- no longer be properly decrypted. depth approach to encrypted searching. In Section 6 This paper focuses on somewhat homomorphic we present details and performance figures of our im- encryption, where no re-encryption is required but plementation. Section 7 concludes the paper. only a limited number of operations is possible. We Brenner M., Perl H. and Smith M.. 5 Practical Applications of Homomorphic Encryption. DOI: 10.5220/0003969400050014 In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2012), pages 5-14 ISBN: 978-989-8565-24-2 Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.) SECRYPT2012-InternationalConferenceonSecurityandCryptography 2 RELATED WORK • the bit length ρ of the message space, defined as λ − η. Since the breakthrough work of (Gentry, 2009), a number of similar approaches to fully homomorphic 3.1 The Basic Construction encryption appeared, like (Smart and Vercauteren, 2010) or slightly different approaches like (Braker- Our scheme E is defined as a tuple {P,C,K,E,D,⊕,⊗} ski and Vaikuntanathan, 2011). Performance figures where the elements denote the following: of actual implementations (Brenner et al., 2011) and P is the plaintext space and contains elements applications of FHE show that these systems can be from N+ limited by the prime integer p of order 2λ used for small problems only. Due to the computa- such that for two plaintext operands a,b ∈ NP,a · b < p η tional overhead of current FHE schemes, the ques- and NP := {x|x < 2 }. tion arises, if the underlyingSHE schemes can also be C is the ciphertext space and contains elements used for more practical homomorphicencryption. Re- from N+. cent proposals, like (Naehrig et al., 2011) follow this K is the key generator. The secret key is a large approach. However, the fully homomorphic encryp- prime integer p, the auxiliary compression argument tion is still subject to progress in terms of new consid- is d with d ← 2s + rp with r ∈ N+ and s ∈ NC with ∀x ∈ erations of hardness assumptions (Stehl and Steinfeld, NC,∀y ∈ NP,2x < y (see compactness). 2010) or conceptual simplicity (Coron et al., 2011). E is the encryption function. We encrypt a bit There are different paradigms for secure delega- value b by picking an integer a with a ≡ b mod 2 and tion of computation like secure function evaluation adding a random even or odd multiple of the prime (SFE) mostly based on Yao's Garbled Circuits (Yao, modulus, such that a′ = a +(rp). If r is composite, it 1982) and extensions by (Malkhi et al., 2004) or must contain at least one large prime factor of order λ (Kolesnikov et al., 2009b). Garbled circuits have 2 . It is mandatory that a ∈ N+, i.e. the encryption also been combined with homomorphicencryption by must add noise (see below). (Gentry et al., 2010) and (Kolesnikov et al., 2009a) to D is the decryption function. The decrypted result overcome their inherent disadvantage of of being lim- is the remainder of a ciphertext modulo the prime key ited to static one-pass boolean circuits. p: a = a′ mod p. A theoretical approach to achieve privacy of mem- ⊕ is the addition in ciphertext space. Due to the ory access patterns and algorithm execution in a spe- cipher structure, the addition is performed as an ordi- cial type of Turing Machines is the Oblivious Random nary arithmetic addition. The scheme is mixed addi- Access Machine (ORAM) by (Goldreich, 1987) (Gol- tive. dreich and Ostrovsky, 1996). There are recent propos- ⊗ is the multiplication in ciphertext space. Like als to reduce the complexity of ORAMs by Pinkas et the addition, the multiplication is performed as an al. (Pinkas and Reinman, 2010) and further devel- ordinary arithmetic multiplication. The scheme is opments towards practical applications by (Damgrd mixed multiplicative. et al., 2011) and (Goodrich and Mitzenmacher, 2011). Section 4 outlines how to achieve oblivious memory In this scheme, the positive plaintext value is also access with our scheme. the noise for the ciphertext because it additively in- terferes with the product of the prime factors that en- crypt it. In order to obtain a probabilistic encryption 3 ASOMEWHAT scheme, we perform parity (mod 2) arithmetics, i.e. HOMOMORPHIC a plaintext bit is encoded in a random integer of the same parity. Notice that the encryption does not re- ENCRYPTION SCHEME veal the parity of the plaintext integer, because the encryption function E picks at random even or odd This section describes the encryption scheme and its multiples r of the key p. This effectively allows us to properties correctness, security and compactness. Our hide the parity of the plaintext and to encode binary somewhat homomorphic encryption scheme E de- information. pends on the following parameters: • the security parameter λ, 3.2 Correctness η • the bit length of a cipher’s initial noise, We show the correctness of the encryption and de- • the modulus p which is a large prime integer of cryption, as well as the homomorphic operations in λ order 2 , the following lemmas, assuming that p ∈ N+ be a 6 PracticalApplicationsofHomomorphicEncryption large prime integer as a secret key and a and b be two that efficiently computes p from any cipher a′. + arbitrary positive integers with a,b ≪ p ∈ N . That means, that Aex is able to extract p from any inte- gercomputedbya term ofthe form a+ pq for arbitrary Lemma 1. The encryption scheme E is mixed additive a, p,q and thus can be applied in a function and the addition is correct if a + b < p. B f ac(i) : p ← Aex(0 + i) a′ Proof. We perform the encrypted addition as ( ⊕ to factorize arbitrary composite integers (pq) that b′ a′ b′ a r p b r p ) which extends to ( ⊕ )=( + 1 )+( + 2 ) = can be trivially expressed as 0 + pq. a + b +(r1 + r2)p and decrypted mod p yields (a + b). Now we show the security of the encryption ′ The mixed additive operation is defined as a ⊕ b = scheme against an attempt of A to compute the plain- (a + rp) + b = a + rp + b mod p = a + b. text value of a cipher. We achieve this by showing in Lemma 2. The encryption scheme E is mixed multi- addition to Lemma 4 an IND-CPA equivalent prop- plicative and the multiplication is correct if a ∗ b < p.
Recommended publications
  • An Integrated Symmetric Key Cryptographic Method
    I.J.Modern Education and Computer Science, 2012, 5, 1-9 Published Online June 2012 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijmecs.2012.05.01 An Integrated Symmetric Key Cryptographic Method – Amalgamation of TTJSA Algorithm , Advanced Caesar Cipher Algorithm, Bit Rotation and Reversal Method: SJA Algorithm Somdip Dey Department of Computer Science, St. Xavier’s College [Autonomous], Kolkata, India. Email: [email protected] Joyshree Nath A.K. Chaudhuri School of IT, Calcutta University, Kolkata, India. Email: [email protected] Asoke Nath Department of Computer Science, St. Xavier’s College [Autonomous], Kolkata, India. Email: [email protected] Abstract—In this paper the authors present a new In banking system the data must be fully secured. Under integrated symmetric-key cryptographic method, named no circumstances the authentic data should go to hacker. SJA, which is the combination of advanced Caesar Cipher In defense the security of data is much more prominent. method, TTJSA method, Bit wise Rotation and Reversal The leakage of data in defense system can be highly fatal method. The encryption method consists of three basic and can cause too much destruction. Due to this security steps: 1) Encryption Technique using Advanced Caesar issue different cryptographic methods are used by Cipher, 2) Encryption Technique using TTJSA Algorithm, different organizations and government institutions to and 3) Encryption Technique using Bit wise Rotation and protect their data online. But, cryptography hackers are Reversal. TTJSA Algorithm, used in this method, is again always trying to break the cryptographic methods or a combination of generalized modified Vernam Cipher retrieve keys by different means.
    [Show full text]
  • Investigation of Some Cryptographic Properties of the 8X8 S-Boxes Created by Quasigroups
    Computer Science Journal of Moldova, vol.28, no.3(84), 2020 Investigation of Some Cryptographic Properties of the 8x8 S-boxes Created by Quasigroups Aleksandra Mileva, Aleksandra Stojanova, Duˇsan Bikov, Yunqing Xu Abstract We investigate several cryptographic properties in 8-bit S- boxes obtained by quasigroups of order 4 and 16 with several different algebraic constructions. Additionally, we offer a new construction of N-bit S-boxes by using different number of two layers – the layer of bijectional quasigroup string transformations, and the layer of modular addition with N-bit constants. The best produced 8-bit S-boxes so far are regular and have algebraic degree 7, nonlinearity 98 (linearity 60), differential uniformity 8, and autocorrelation 88. Additionally we obtained 8-bit S-boxes with nonlinearity 100 (linearity 56), differential uniformity 10, autocorrelation 88, and minimal algebraic degree 6. Relatively small set of performed experiments compared with the extremly large set of possible experiments suggests that these results can be improved in the future. Keywords: 8-bit S-boxes, nonlinearity, differential unifor- mity, autocorrelation. MSC 2010: 20N05, 94A60. 1 Introduction The main building blocks for obtaining confusion in all modern block ciphers are so called substitution boxes, or S-boxes. Usually, they work with much less data (for example, 4 or 8 bits) than the block size, so they need to be highly nonlinear. Two of the most successful attacks against modern block ciphers are linear cryptanalysis (introduced by ©2020 by CSJM; A. Mileva, A. Stojanova, D. Bikov, Y. Xu 346 Investigation of Some Cryptographic Properties of 8x8 S-boxes .
    [Show full text]
  • Security Evaluation of the K2 Stream Cipher
    Security Evaluation of the K2 Stream Cipher Editors: Andrey Bogdanov, Bart Preneel, and Vincent Rijmen Contributors: Andrey Bodganov, Nicky Mouha, Gautham Sekar, Elmar Tischhauser, Deniz Toz, Kerem Varıcı, Vesselin Velichkov, and Meiqin Wang Katholieke Universiteit Leuven Department of Electrical Engineering ESAT/SCD-COSIC Interdisciplinary Institute for BroadBand Technology (IBBT) Kasteelpark Arenberg 10, bus 2446 B-3001 Leuven-Heverlee, Belgium Version 1.1 | 7 March 2011 i Security Evaluation of K2 7 March 2011 Contents 1 Executive Summary 1 2 Linear Attacks 3 2.1 Overview . 3 2.2 Linear Relations for FSR-A and FSR-B . 3 2.3 Linear Approximation of the NLF . 5 2.4 Complexity Estimation . 5 3 Algebraic Attacks 6 4 Correlation Attacks 10 4.1 Introduction . 10 4.2 Combination Generators and Linear Complexity . 10 4.3 Description of the Correlation Attack . 11 4.4 Application of the Correlation Attack to KCipher-2 . 13 4.5 Fast Correlation Attacks . 14 5 Differential Attacks 14 5.1 Properties of Components . 14 5.1.1 Substitution . 15 5.1.2 Linear Permutation . 15 5.2 Key Ideas of the Attacks . 18 5.3 Related-Key Attacks . 19 5.4 Related-IV Attacks . 20 5.5 Related Key/IV Attacks . 21 5.6 Conclusion and Remarks . 21 6 Guess-and-Determine Attacks 25 6.1 Word-Oriented Guess-and-Determine . 25 6.2 Byte-Oriented Guess-and-Determine . 27 7 Period Considerations 28 8 Statistical Properties 29 9 Distinguishing Attacks 31 9.1 Preliminaries . 31 9.2 Mod n Cryptanalysis of Weakened KCipher-2 . 32 9.2.1 Other Reduced Versions of KCipher-2 .
    [Show full text]
  • Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1
    International Journal of Grid and Distributed Computing Vol. 10, No. 11 (2017), pp.79-98 http://dx.doi.org/10.14257/ijgdc.2017.10.11.08 Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1 Rahul Saha1, G. Geetha2, Gulshan Kumar3 and Hye-Jim Kim4 1,3School of Computer Science and Engineering, Lovely Professional University, Punjab, India 2Division of Research and Development, Lovely Professional University, Punjab, India 4Business Administration Research Institute, Sungshin W. University, 2 Bomun-ro 34da gil, Seongbuk-gu, Seoul, Republic of Korea Abstract Cryptography has always been a core component of security domain. Different security services such as confidentiality, integrity, availability, authentication, non-repudiation and access control, are provided by a number of cryptographic algorithms including block ciphers, stream ciphers and hash functions. Though the algorithms are public and cryptographic strength depends on the usage of the keys, the ciphertext analysis using different functions and operations used in the algorithms can lead to the path of revealing a key completely or partially. It is hard to find any survey till date which identifies different operations and functions used in cryptography. In this paper, we have categorized our survey of cryptographic functions and operations in the algorithms in three categories: block ciphers, stream ciphers and cryptanalysis attacks which are executable in different parts of the algorithms. This survey will help the budding researchers in the society of crypto for identifying different operations and functions in cryptographic algorithms. Keywords: cryptography; block; stream; cipher; plaintext; ciphertext; functions; research problems 1. Introduction Cryptography [1] in the previous time was analogous to encryption where the main task was to convert the readable message to an unreadable format.
    [Show full text]
  • Impossible Differential Cryptanalysis of the Lightweight Block Ciphers TEA, XTEA and HIGHT
    Impossible Differential Cryptanalysis of the Lightweight Block Ciphers TEA, XTEA and HIGHT Jiazhe Chen1;2;3?, Meiqin Wang1;2;3??, and Bart Preneel2;3 1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, School of Mathematics, Shandong University, Jinan 250100, China 2 Department of Electrical Engineering ESAT/SCD-COSIC, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium 3 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium [email protected] Abstract. TEA, XTEA and HIGHT are lightweight block ciphers with 64-bit block sizes and 128-bit keys. The round functions of the three ci- phers are based on the simple operations XOR, modular addition and shift/rotation. TEA and XTEA are Feistel ciphers with 64 rounds de- signed by Needham and Wheeler, where XTEA is a successor of TEA, which was proposed by the same authors as an enhanced version of TEA. HIGHT, which is designed by Hong et al., is a generalized Feistel cipher with 32 rounds. These block ciphers are simple and easy to implement but their diffusion is slow, which allows us to find some impossible prop- erties. This paper proposes a method to identify the impossible differentials for TEA and XTEA by using the weak diffusion, where the impossible differential comes from a bit contradiction. Our method finds a 14-round impossible differential of XTEA and a 13-round impossible differential of TEA, which result in impossible differential attacks on 23-round XTEA and 17-round TEA, respectively. These attacks significantly improve the previous impossible differential attacks on 14-round XTEA and 11-round TEA given by Moon et al.
    [Show full text]
  • New Cryptanalysis of Block Ciphers with Low Algebraic Degree
    New Cryptanalysis of Block Ciphers with Low Algebraic Degree Bing Sun1,LongjiangQu1,andChaoLi1,2 1 Department of Mathematics and System Science, Science College of National University of Defense Technology, Changsha, China, 410073 2 State Key Laboratory of Information Security, Graduate University of Chinese Academy of Sciences, China, 10039 happy [email protected], ljqu [email protected] Abstract. Improved interpolation attack and new integral attack are proposed in this paper, and they can be applied to block ciphers using round functions with low algebraic degree. In the new attacks, we can determine not only the degree of the polynomial, but also coefficients of some special terms. Thus instead of guessing the round keys one by one, we can get the round keys by solving some algebraic equations over finite field. The new methods are applied to PURE block cipher successfully. The improved interpolation attacks can recover the first round key of 8-round PURE in less than a second; r-round PURE with r ≤ 21 is breakable with about 3r−2 chosen plaintexts and the time complexity is 3r−2 encryptions; 22-round PURE is breakable with both data and time complexities being about 3 × 320. The new integral attacks can break PURE with rounds up to 21 with 232 encryptions and 22-round with 3 × 232 encryptions. This means that PURE with up to 22 rounds is breakable on a personal computer. Keywords: block cipher, Feistel cipher, interpolation attack, integral attack. 1 Introduction For some ciphers, the round function can be described either by a low degree polynomial or by a quotient of two low degree polynomials over finite field with characteristic 2.
    [Show full text]
  • S3-020672 Group Release Function
    3GPP TSG SA WG3 Security — S3#26 S3-020672 19- 22 November 2002, Oxford, UK CR-Form-v7 CHANGE REQUEST ! ! Current version: ! TS 33.102 CR CRNum ! rev - 5.0.0 For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols. Proposed change affects: UICC apps! ME X Radio Access Network X Core Network Title: ! USIM support in GERAN only terminals Source: ! Siemens Work item code: ! Security Date: ! 9/10/2002 Category: ! B Release: ! Rel-5 Use one of the following categories: Use one of the following releases: F (correction) 2 (GSM Phase 2) A (corresponds to a correction in an earlier release) R96 (Release 1996) B (addition of feature), R97 (Release 1997) C (functional modification of feature) R98 (Release 1998) D (editorial modification) R99 (Release 1999) Detailed explanations of the above categories can Rel-4 (Release 4) be found in 3GPP TR 21.900. Rel-5 (Release 5) Rel-6 (Release 6) Reason for change: ! To support Group Release function. Summary of change: ! Introduces an interface to the f8 function to support group release functionality. Typographical errors in references are also corrected. Consequences if ! Group release will be insecure, allowing a denial-of-service attack. not approved: Clauses affected: ! 6.7, 6.5.6, 6.6.6. Y N Other specs ! N Other core specifications ! affected: N Test specifications N O&M Specifications Other comments: ! CR page 1 3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2 6.5.6 UIA identification Each UMTS Integrity Algorithm (UIA) will be assigned a 4-bit identifier.
    [Show full text]
  • Cryptanalysis of Symmetric Encryption Algorithms Colin Chaigneau
    Cryptanalysis of symmetric encryption algorithms Colin Chaigneau To cite this version: Colin Chaigneau. Cryptanalysis of symmetric encryption algorithms. Cryptography and Security [cs.CR]. Université Paris-Saclay, 2018. English. NNT : 2018SACLV086. tel-02012149 HAL Id: tel-02012149 https://tel.archives-ouvertes.fr/tel-02012149 Submitted on 8 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cryptanalyse des algorithmes de chiffrement symetrique´ These` de doctorat de l’Universite´ Paris-Saclay prepar´ ee´ a` l’Universite´ de Versailles Saint-Quentin-en-Yvelines NNT : 2018SACLV086 Ecole doctorale n◦580 Sciences et Technologies de l’Information et de la Communication (STIC) Specialit´ e´ de doctorat : Mathematiques` et Informatique These` present´ ee´ et soutenue a` Versailles, le mercredi 28 novembre 2018, par Colin Chaigneau Composition du Jury : M. Louis GOUBIN Professeur, Universite´ de Versailles President´ Saint-Quentin-en-Yvelines, France M. Thierry BERGER Professeur Em´ erite,´ Universite´ de Limoges, France Rapporteur Mme. Mar´ıa NAYA-PLASENCIA Directrice de Recherche, INRIA Paris, France Rapporteure M. Patrick DERBEZ Maˆıtre de Conference,´ Universite´ de Rennes 1, France Examinateur Mme. Marine MINIER Professeure, Universite´ de Lorraine, France Examinatrice M. Gilles VAN ASSCHE Senior Principal Cryptographer, STMicroelectronics, Examinateur Belgique M.
    [Show full text]
  • UES Application Report
    UES Application Report https://apps.fas.usda.gov/ues/WebApp/Application/ApplicationReport United States Department of Agriculture Unified Export Strategy Home UES Financial Reports In Reports Out Tools About FAS Help You are here : Home > UES > Application > Application Report Welcome naega1!, PART - [Author][Cashier][Contributor] [ Log Off ] UES Application Report The entire UES Application for the chosen year is displayed here. Scroll to see the entire report or to navigate to a specific section, you can click directly on the Table of Contents sections. 2017 Unified Export Strategy Application Participant: North American Export Grain Association (NAEGA) Table of Contents 1.SECTION 1: PROFILE, INDUSTRY EXPORT GOAL, AND CONTRIBUTIONS 1.1 Applicant Profile 1.1.1 Participant Profile 1.1.2 Office 1.1.3 Contact 1.1.4 Industry 1.1.5 Industry Personnel 1.1.6 MAP/FMD Start/End Dates from Plan Submittal 1.1.7 Resource Request Table 1.2 Industry Export Goals 1.3 Promised Contributions 1.4 Proposals 2.SECTION 2: MARKET ANALYSIS, ASSESSMENT, AND STRATEGY 2.1 Market Definitions 2.2 Promoted Commodities 2.3 Targeted Market Assessment 3.SECTION 3: FOREIGN OFFICES AND ADMINISTRATIVE COSTS 3.1 Administrative Budget (Admin Activity) Summary For MAP, FMD Section 108 And TASC 3.2 Worldwide US Personnel Cost Summary: FMD 3.3 Worldwide Contingent Liabilities Summary: FMD 1 of 61 6/3/2016 11:33 AM UES Application Report https://apps.fas.usda.gov/ues/WebApp/Application/ApplicationReport 1.SECTION 1: PROFILE, INDUSTRY EXPORT GOAL, AND CONTRIBUTIONS 1.1 Applicant Profile 1.1.1 Participant Profile Description: The North American Export Grain Association, Inc.
    [Show full text]
  • Cryptanalysis of Full Sprout ∗
    Cryptanalysis of Full Sprout ∗ Virginie Lallemand and Mar´ıaNaya-Plasencia Inria, France Abstract. A new method for reducing the internal state size of stream cipher registers has been proposed in FSE 2015, allowing to reduce the area in hardware implementations. Along with it, an instantiated pro- posal of a cipher was also proposed: Sprout. In this paper, we analyze the security of Sprout, and we propose an attack that recovers the whole key more than 210 times faster than exhaustive search and has very low data complexity. The attack can be seen as a divide-and-conquer evolved technique, that exploits the non-linear influence of the key bits on the update function. We have implemented the attack on a toy version of Sprout, that conserves the main properties exploited in the attack. The attack completely matches the expected complexities predicted by our theoretical cryptanalysis, which proves its validity. We believe that our attack shows that a more careful analysis should be done in order to instantiate the proposed design method. Keywords: Stream cipher, Cryptanalysis, Lightweight, Sprout. 1 Introduction The need of low-cost cryptosystems for several emerging applications like RFID tags and sensor networks has drawn considerable attention to the area of lightweight primitives over the last years. Indeed, those new applications have very limited resources and necessitate specific algorithms that ensure a perfect balance be- tween security, power consumption, area size and memory needed. The strong demand from the community (for instance, [5]) and from the industry has led to the design of an enormous amount of promising such primitives, with differ- ent implementation features.
    [Show full text]
  • Rockpoint Acquires UES Highrise for $218M with Wells Fargo Loan
    The Insider’s Weekly Guide to the Commercial Mortgage Industry In This Issue 1 Rockpoint Acquires UES Highrise for $218M With Wells Fargo Loan 1 Bank of America Finances Ten Almaden Buy in Deal Brokered by HFF 3 U.S. CMBS Delinquency Declines Further After Hitting Five-Year Low 3 NYCB Recapitalizes 216 East 45th Street 3 Deutsche Bank Finances Related High Line Acquisition 5 Greystone Further Expands Freddie Mac Loan Offering. 5 Hotel REIT Takes $150M Unsecured Term Loan Facility “Dodd-Frank greatly concerns me. We had historic changes to banking rules after 2008.” —Ed Lombardo From Q&A on page 7 Rockpoint Acquires UES Highrise for $218M With Bank of America Finances Ten Almaden Wells Fargo Loan Buy in Deal Brokered by HFF Rockpoint Group acquired The Wim- The 205,261-square-foot property, built a HFF secured $76.6 million in acquisi- bledon, a 28-story apartment high-rise on few blocks from Central Park in 1980, con- tion financing on behalf of KBS Capital the Upper East Side, for $218 million, or tains 223 apartment units and 6,200 square Advisors for its $116.7 million purchase $977,578 per unit, with a $115 million loan feet of ground-floor retail space occupied of a 309,255-square-foot office building in from Wells Fargo, city records show. by a Citibank branch. downtown San Jose, Calif. The Boston-based real estate investment J.P. Morgan’s asset management arm The three-year, floating-rate loan from firm purchased the luxury rental building bought The Wimbledon from New York- Bank of America was provided to KBS at 200 East 82nd Street from J.P.
    [Show full text]
  • An Examination of the Seed Rain and Seed Bank and Evidence of Seed Exchange Between a Beech Gap and a Spruce Forest in the Great Smoky Mountains
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-1981 An Examination of the Seed Rain and Seed Bank and Evidence of Seed Exchange Between a Beech Gap and a Spruce Forest in the Great Smoky Mountains Noel Bruce Pavlovic University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Life Sciences Commons Recommended Citation Pavlovic, Noel Bruce, "An Examination of the Seed Rain and Seed Bank and Evidence of Seed Exchange Between a Beech Gap and a Spruce Forest in the Great Smoky Mountains. " Master's Thesis, University of Tennessee, 1981. https://trace.tennessee.edu/utk_gradthes/1433 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Noel Bruce Pavlovic entitled "An Examination of the Seed Rain and Seed Bank and Evidence of Seed Exchange Between a Beech Gap and a Spruce Forest in the Great Smoky Mountains." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Ecology and Evolutionary Biology. E. E. C. Clebsch, Major Professor We have read this thesis and recommend its acceptance: H.
    [Show full text]