Geomorphic Indicators of Holocene Winds in Egypt's Western Desert

Total Page:16

File Type:pdf, Size:1020Kb

Geomorphic Indicators of Holocene Winds in Egypt's Western Desert Geomorphology 56 (2003) 155–166 www.elsevier.com/locate/geomorph Geomorphic indicators of Holocene winds in Egypt’s Western Desert Ian A. Brookes* Department of Geography, York University, Toronto, ON, Canada M3J 1P3 Received 1 July 2002; received in revised form 6 January 2003; accepted 14 January 2003 Abstract Geomorphic mapping of Egypt’s Western Desert from LANDSAT-MSS images reveals oriented aeolian landforms that record, in part, Holocene winds. Wind directions reconstructed from these landforms indicate the dominance of N–S airflow from 30jNto20jN, turning clockwise southward to NE–SW, conformable with modern circulation. A second direction appears over western Egypt, W between 30jN and 26jN, NW between 26jN and 20jN. Cross-cutting aeolian landforms show that W/ NW winds are older than the N/NE winds. Geomorphic evidence, abundant south to 26jN and less abundant to 20jN, also indicates that W and NW winds were early Holocene ‘palaeowesterlies’. Some evidence also indicates that they extended eastward to at least 30jE, perhaps to the Red Sea. These winds steered moist Atlantic/Mediterranean air masses to Egypt, sustaining early Holocene lakes and playas north of the limit of tropical monsoonal rainfall at 20jN. Upon aridification, beginning after 5 kyr BP, yardangs oriented west to east were eroded in early Holocene basinal sediments in western Egypt, indicating that these winds continued there for 1–2 kyr, until 3–4 kyr BP. Optically stimulated luminescence (OSL) ages of surface sand sheet in southern Egypt indicate that the present north–south winds were established ca. 3–4 kyr BP, at the same time as the northern savanna boundary was stabilized at its present position. D 2003 Elsevier Science B.V. All rights reserved. Keywords: Egypt; Sahara; Holocene; Aeolian geomorphology; Palaeoclimate; Palaeowinds 1. Introduction Hassan, 1986; Brookes, 1989a; Haynes et al., 1989; Neumann, 1989; Kro¨pelin, 1993; Street-Perrott and Palaeoclimatic reconstructions in NE Africa for the Perrott, 1993; Pachur and Wu¨nnemann, 1996; Stokes period of the last glacial to the present have been based et al., 1998; Gasse, 2000, 2002; Hassan et al., 2001; on evidence from (i) lacustrine and aeolian sediments Swezey, 2001). Interpretations converge on a cold, dry, and their physical and chemical properties, (ii) pollen windy last glacial maximum (15–20 14C kyr BP), spectra and other palaeobiological indicators within changing through an erratic transition to a multiphase, these sediments, and (iii) archaeological remains. perhaps still cool, wetter, early Holocene (10–5 kyr Chronology has been supported by radiocarbon and BP), with pronounced arid intervals, the ‘‘African optically stimulated luminescence (OSL) ages (e.g., Humid Period’’ of DeMenocal et al. (2000), then to a drier and windier later Holocene (5 kyr BP to present). * Tel.: +1-416-265-8318. These empirical studies have spawned theoretical E-mail address: [email protected] (I.A. Brookes). research into climate change in North Africa, focussed 0169-555X/$ - see front matter D 2003 Elsevier Science B.V. All rights reserved. doi:10.1016/S0169-555X(03)00076-X 156 I.A. Brookes / Geomorphology 56 (2003) 155–166 on modelling of atmospheric and surface responses to arid core of the Western Desert is estimated at between orbitally forced insolation. The purpose has been to 2500 and 5000 mm (Shahin, 1985). Gasse (2002) simulate atmospheric processes and surface feedbacks gives an excellent summary of North African clima- responsible for the presence and character of Late tology with references. Pleistocene and Holocene lakes and playas in the Modern wind patterns in the Western Desert com- now hyperarid region of the Sahara and its arid borders prise two fields. A northern zone of variable winds (e.g., Kutzbach et al., 1993, 1996; Claussen and extends south from the Mediterranean coast, more Gayler, 1997; Kutzbach and Liu, 1997; Texier et al., westerly and stronger in winter (November to April), 1997; Ganapolski et al., 1998; de Noblet et al., 2000; bringing rain in cyclonic storms to about 25jN. In Doherty et al., 2000). Wind patterns, however, are not summer (May to October), weaker westerly winds usually considered in either empirical reconstructions reach only to about 30jN and yield no rainfall. Over or simulation models, and then only as output rather a more extensive southern zone of the Western Desert than input (e.g., Kutzbach et al., 1993). This paper between 30jN and 20jN, northerly winds dominate reports geomorphic evidence of wind patterns over an and bring no rainfall at either season. They strengthen area of Egypt encompassing 8j of latitude and longi- in winter, often meeting westerly winds along rain- tude, patterns that are, in part, of Holocene age, and bearing fronts which can affect any part of the desert at which provide input data to palaeoclimatic models. this season. Southward, these northerly winds veer northeasterly around the eastern limb of the subtropical anticyclone. 2. Study area The study area encompasses 70% of the Western 3. Methods Desert, about half of Egypt’s area (Fig. 1). Physio- graphically, the northern half of this desert is a low- The study area is covered by a set of 24 LANDSAT- relief, cuesta-form plateau developed across north- MSS images acquired from 1972 to 1976. These are dipping Palaeogene limestones, sloping south to north false-colour composites of bands 4, 5, and 7, processed for 550 km from f 500 to f 200 m elevation. Pro- at 1:250,000 scale by Earth Satellite Corporation longed wind erosion has formed fields of yardangs (ESC) and held at the National Air and Space Museum over much of it (Brookes, 2001). Its southern boundary (both in Washington, DC). Images were enhanced is a 200- to 300-m-high escarpment which overlooks a using GEOPIC, developed at ESC, a procedure which low-relief mosaic of plains, low cuestas, and isolated emphasized subtle tonal variations of surface materials hills at 100–250 m, developed on north-dipping and which revealed linear features, such as roads and Mesozoic sandstones extending over 500 km south- dunes, below the 79-m pixel resolution (El-Baz, ward into Sudan. The geomorphic evolution of this Centre for Remote Sensing, Boston University, written southern desert has been interpreted by Haynes (1982) communication, 2001). Some sense of resolution of and Maxwell and Haynes (2001). the images can be gained from the visibility of roads Climate in the study area is arid, with a large roughly 20 m wide (including bordering disturbed hyperarid core area where the few meteorological ground), and from visible barchans of comparable stations at oases record practically no rainfall (Fig. width that were visited in the field. 1). Over the wider region rain does fall, however, Aeolian erosional landforms mapped from these mainly from cyclonic winter storms, tracking SE images and recorded in the field for directional infor- across the Mediterranean Sea to meet westerly waves mation are discussed in the following. crossing the Sahara from the tropical Atlantic. A Aeolian erosional lineations (AELs):Theseare concise meteorological perspective on winter rainfall parallel, unstreamlined, ridge-trough sets, as well as across North Africa is given by Geb (2000). Rare fields of streamlined forms (yardangs). Those AELs summer rains mark exceptional northern excursions of capable of resolution on the LANDSAT images are all monsoonal convective systems, which are normally in bedrock, whereas smaller ones in unconsolidated restricted to south of 21jN. Evaporation in the hyper- sediments were recorded in the field. Because of the I.A. Brookes / Geomorphology 56 (2003) 155–166 157 Fig. 1. Egypt showing major physiographic features—plateaus, scarps (toothed lines), oasis depressions, dune fields (stippled), from El-Baz and Wolfe (1982); mean annual isohyets (mm) after Haynes (1987); rectangles (a–e) represent sample areas shown in Fig. 2a–e; latitude/longitude shown at 5j intervals; scale bar 200 km. 158 I.A. Brookes / Geomorphology 56 (2003) 155–166 time required to form these features in bedrock, bed- taken either from simple linear dunes, or from com- rock AELs are interpreted as of mainly pre-Holocene pound linear dunes only where they are parallel to age (Brookes, 2001). Within sets of bedrock AELs, nearby simple ones, which therefore allow only one however, features such as faceting of upwind faces can wind direction to be inferred. reflect more recent wind erosion. Also, bedrock AELs In western Egypt, where geomorphic features indi- are sometimes parallel to lineations in unconsolidated cate two palaeowind directions (W/NW and N/NE), Holocene sediments and can then be argued to reflect linear and transverse dunes are combined in fields at least some Holocene wind erosion. where transverse dunes perpendicular to the W/NW Aeolian scour zones: These are swaths of bedrock palaeowinds occur as ‘barbs’ attached to the flanks of or surficial deposits, < 10 to hundreds of kilometres linear dune ‘shafts’ lying parallel to N/NE palaeowinds long and < 1–5 km wide, where varnish and other (Sections 4.1.2–4.1.4 below). On the other hand, in patina has been erased or prevented from forming, and the central and eastern parts of the Western Desert, which therefore appear on the images lighter in colour where only one palaeowind direction is indicated, this than adjacent terrain, with sharp boundaries against it. compound dune form is absent and the two types, In the lee of cliffs, scour zones reflect wind accelerated transverse and linear, are less common and occur through ravines, but, where not topographically local- separately. ized, they reflect regional wind structure. These scour As with AELs, dunes (possibly) and ‘draa’ (defi- zones, too, probably record a longer period of wind nitely) represent a longer geomorphic history than the erosion than the last 10 kyr; but their parallelism with Holocene (Embabi, 1998). However, where smaller, mobile features such as small dunes, and with yard- more mobile, linear dunes and the mobile superstruc- angs in Holocene sediments, indicates that, in part, tures of larger forms are parallel to other mobile they reflect Holocene wind directions.
Recommended publications
  • Synoptic-Scale Control Over Modern Rainfall and Flood Patterns in the Levant Drylands with Implications for Past Climates
    JUNE 2018 ARMONETAL. 1077 Synoptic-Scale Control over Modern Rainfall and Flood Patterns in the Levant Drylands with Implications for Past Climates MOSHE ARMON Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel ELAD DENTE Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, and Geological Survey of Israel, Jerusalem, Israel JAMES A. SMITH Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey YEHOUDA ENZEL AND EFRAT MORIN Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel (Manuscript received 23 January 2018, in final form 1 May 2018) ABSTRACT Rainfall in the Levant drylands is scarce but can potentially generate high-magnitude flash floods. Rainstorms are caused by distinct synoptic-scale circulation patterns: Mediterranean cyclone (MC), active Red Sea trough (ARST), and subtropical jet stream (STJ) disturbances, also termed tropical plumes (TPs). The unique spatiotemporal char- acteristics of rainstorms and floods for each circulation pattern were identified. Meteorological reanalyses, quantitative precipitation estimates from weather radars, hydrological data, and indicators of geomorphic changes from remote sensing imagery were used to characterize the chain of hydrometeorological processes leading to distinct flood patterns in the region. Significant differences in the hydrometeorology of these three flood-producing synoptic systems were identified: MC storms draw moisture from the Mediterranean and generate moderate rainfall in the northern part of the region. ARST and TP storms transfer large amounts of moisture from the south, which is converted to rainfall in the hyperarid southernmost parts of the Levant.
    [Show full text]
  • Roman Military Operations in Arid Environments (108 BC-AD 400)
    Just Deserts: Roman Military Operations in Arid Environments (108 BC-AD 400). Acknowledgements This work would have been impossible without the help, advice and support of a number of people. I am grateful to my mother for her unfailing support and frequent emailed pictures of puppies. I must give great credit to friends Tony Keen, Penny Goodman and Laurie Cubbison for their advice over the process, and their reassurance that much of my reaction to the rigours of the research was both normal and would ease eventually. For academic support I must acknowledge my primary and secondary supervisors Louis Rawlings and Kate Gilliver for their advice and direction, as well as the rest of the academic staff of Cardiff HISAR/SHARE. I owe much to Matthew Kilburn for both the moral support and the discussions of somewhat different asymmetric strategies, as well as Matt Hills for delightful DVD signing queues, Caroline Marks for sanity- saving Saturday coffees, Leslie McMurtry for the art and madness, Tessa Brailsford for the music breaks, and the best guitarist in Physics, Edmund Schluessel. I also gratefully acknowledge my wider online family and my friends who I only get to see in pixels: Erin Chapman, Ray Stillwell, Vicky Pyne, Vicky Hyde, Valerie Kessler, Perri Smith, Lizbet Lewis, Dianne DeSha, Nea Dodson, Celli Lane, Chris Kamnikar, and everyone else on Livejournal or Twitter who have never failed to cheer me when possible and console me when needed. Finally, I wish to thank the indigenous Yemeni and the indigenous Mesoamericans for their discoveries of coffee and chocolate. I couldn't have done it without you.
    [Show full text]
  • Origin of the Sinai-Negev Erg, Egypt and Israel
    Quaternary Science Reviews 69 (2013) 28e48 Contents lists available at SciVerse ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Origin of the SinaieNegev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history Daniel R. Muhs a,*, Joel Roskin b, Haim Tsoar b, Gary Skipp a, James R. Budahn a, Amihai Sneh c, Naomi Porat c, Jean-Daniel Stanley d, Itzhak Katra b, Dan G. Blumberg b a U.S. Geological Survey, MS 980, Box 25046, Federal Center, Denver, CO 80225, USA b Dept. of Geography and Environmental Development, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel c Geological Survey of Israel, 30 Malkhe Israel St., Jerusalem 95501, Israel d Geoarchaeology-Paleobiology Department, E-205 NMNH, MRC-121, Smithsonian Institution, Washington, DC 20013, USA article info abstract Article history: The SinaieNegev erg occupies an area of 13,000 km2 in the deserts of Egypt and Israel. Aeolian sand of Received 22 November 2012 this erg has been proposed to be derived from the Nile Delta, but empirical data supporting this view Received in revised form are lacking. An alternative source sediment is sand from the large Wadi El Arish drainage system in 12 February 2013 central and northern Sinai. Mineralogy of the Negev and Sinai dunes shows that they are high in quartz, Accepted 20 February 2013 with much smaller amounts of K-feldspar and plagioclase. Both Nile Delta sands and Sinai wadi sands, Available online 30 March 2013 upstream of the dunes, also have high amounts of quartz relative to K-feldspar and plagioclase.
    [Show full text]
  • North American Deserts Chihuahuan - Great Basin Desert - Sonoran – Mojave
    North American Deserts Chihuahuan - Great Basin Desert - Sonoran – Mojave http://www.desertusa.com/desert.html In most modern classifications, the deserts of the United States and northern Mexico are grouped into four distinct categories. These distinctions are made on the basis of floristic composition and distribution -- the species of plants growing in a particular desert region. Plant communities, in turn, are determined by the geologic history of a region, the soil and mineral conditions, the elevation and the patterns of precipitation. Three of these deserts -- the Chihuahuan, the Sonoran and the Mojave -- are called "hot deserts," because of their high temperatures during the long summer and because the evolutionary affinities of their plant life are largely with the subtropical plant communities to the south. The Great Basin Desert is called a "cold desert" because it is generally cooler and its dominant plant life is not subtropical in origin. Chihuahuan Desert: A small area of southeastern New Mexico and extreme western Texas, extending south into a vast area of Mexico. Great Basin Desert: The northern three-quarters of Nevada, western and southern Utah, to the southern third of Idaho and the southeastern corner of Oregon. According to some, it also includes small portions of western Colorado and southwestern Wyoming. Bordered on the south by the Mojave and Sonoran Deserts. Mojave Desert: A portion of southern Nevada, extreme southwestern Utah and of eastern California, north of the Sonoran Desert. Sonoran Desert: A relatively small region of extreme south-central California and most of the southern half of Arizona, east to almost the New Mexico line.
    [Show full text]
  • The Corrosive Well Waters of Egypt's Western Desert
    The Corrosive Well Waters of Egypt's Western Desert GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1757-O Prepared in cooperation with the Arab Republic of Egypt under the auspices of the United States Agency for International Development The Corrosive Well Waters of Egypt's Western Desert By FRANK E. CLARKE CONTRIBUTIONS TO THE HYDROLOGY OF AFRICA AND THE MEDITERRANEAN REGION GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1757-O Prepared in Cooperation with the Arab Republic of Egypt under the auspices of the United States Agency for International Development UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1979 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Clarke, Frank Eldridge, 1913 The corrosive well waters of Egypt's western desert. (Contributions to the hydrology of Africa and the Mediterranean region) (Geological Survey water-supply paper; 1757-0) "Prepared in cooperation with the Arab Republic of Egypt, under the aus­ pices of the United States Agency for International Development." Bibliography: p. Includes index Supt. of Docs. no. : I 19.16 : 1757-0 1. Corrosion resistant materials. 2. Water, Underground Egypt. 3. Water quality Egypt. 4. Wells Egypt Corrosion. 5. Pumping machinery Cor­ rosion. I. United States. Agency for International Development. II. Title. III. Series. IV. Series: United States. Geological Survey. Water-supply paper; 1757-0. TA418.75.C58 627'.52 79-607011 For sale by Superintendent of Documents, U.S. Government
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Western Desert, Egypt): Evolution to a Post-Eocene Continental Event
    The uppermost deposits of the stratigraphic succession of the Farafra Depression (Western Desert, Egypt): Evolution to a Post-Eocene continental event ⇑ M.E. Sanz-Montero a, , H. Wanas b, M.B. Muñoz-García c,1, L. González-Acebrón c,1, M.V. López d,2 a Dpto. Petrología y Geoquímica, Facultad Ciencias Geológicas, Universidad Complutense de Madrid (UCM), C/José Antonio Novais 12, 28040 Madrid, Spain b Geology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt c Dpto. Estratigrafía, Facultad Ciencias Geológicas, Universidad Complutense de Madrid (UCM), C/José Antonio Novais 12, 28040 Madrid, Spain d Instituto de Geociencias (CSIC, UCM), C/José Antonio Novais 12, 28040 Madrid, Spain Abstract This paper gives insight into continental sedimentary deposits that occur at the uppermost part of the stratigraphic succession present in the north-eastern sector of the Farafra Depression (Western Desert, Egypt). Using space imagery to complete the field work, the geology of the area has been mapped and the presence of a N–S oriented fault system is documented. The analysis of the morphotectonic features related to this fault system allows reconstructing the structural and sedimentological evolution of the area. The study indicates that the continental deposits were accumulated in alluvial systems that uncon-formably overlie shale and evaporitic rocks attributable to the Paleocene–Eocene Esna Formation. The deposits of the Esna Formation show soft-sediment deformation features, which include slump associ- ated to dish and pillar sedimentary structures and provide evidence of syndepositional tectonic activity during the sedimentation of this unit. The outcrops are preserved in two areas on separated fault-bounded blocks.
    [Show full text]
  • Origin of the Sinai-Negev Erg, Egypt and Israel: Mineralogical and Geochemical Evidence for the Importance of the Nile and Sea Level History Daniel R
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- ubP lished Research US Geological Survey 2013 Origin of the Sinai-Negev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history Daniel R. Muhs U.S. Geological Survey, [email protected] Joel Roskin Ben-Gurion University of the Negev Haim Tsoar Ben-Gurion University of the Negev Gary Skipp U.S. Geological Survey, [email protected] James Budahn U.S. Geological Survey See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Geology Commons, Oceanography and Atmospheric Sciences and Meteorology Commons, Other Earth Sciences Commons, and the Other Environmental Sciences Commons Muhs, Daniel R.; Roskin, Joel; Tsoar, Haim; Skipp, Gary; Budahn, James; Sneh, Amihai; Porat, Naomi; Stanley, Jean-Daniel; Katra, Itzhak; and Blumberg, Dan G., "Origin of the Sinai-Negev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history" (2013). USGS Staff -- Published Research. 931. https://digitalcommons.unl.edu/usgsstaffpub/931 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- ubP lished Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Daniel R. Muhs, Joel Roskin, Haim Tsoar, Gary Skipp, James Budahn, Amihai Sneh, Naomi Porat, Jean-Daniel Stanley, Itzhak Katra, and Dan G. Blumberg This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/usgsstaffpub/931 Quaternary Science Reviews 69 (2013) 28e48 Contents lists available at SciVerse ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Origin of the SinaieNegev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history Daniel R.
    [Show full text]
  • A Geomorphic Classification System
    A Geomorphic Classification System U.S.D.A. Forest Service Geomorphology Working Group Haskins, Donald M.1, Correll, Cynthia S.2, Foster, Richard A.3, Chatoian, John M.4, Fincher, James M.5, Strenger, Steven 6, Keys, James E. Jr.7, Maxwell, James R.8 and King, Thomas 9 February 1998 Version 1.4 1 Forest Geologist, Shasta-Trinity National Forests, Pacific Southwest Region, Redding, CA; 2 Soil Scientist, Range Staff, Washington Office, Prineville, OR; 3 Area Soil Scientist, Chatham Area, Tongass National Forest, Alaska Region, Sitka, AK; 4 Regional Geologist, Pacific Southwest Region, San Francisco, CA; 5 Integrated Resource Inventory Program Manager, Alaska Region, Juneau, AK; 6 Supervisory Soil Scientist, Southwest Region, Albuquerque, NM; 7 Interagency Liaison for Washington Office ECOMAP Group, Southern Region, Atlanta, GA; 8 Water Program Leader, Rocky Mountain Region, Golden, CO; and 9 Geology Program Manager, Washington Office, Washington, DC. A Geomorphic Classification System 1 Table of Contents Abstract .......................................................................................................................................... 5 I. INTRODUCTION................................................................................................................. 6 History of Classification Efforts in the Forest Service ............................................................... 6 History of Development .............................................................................................................. 7 Goals
    [Show full text]
  • Splendors of and Made Themselves Accessible for Questions.”
    “Libya has some of the best Roman and Greek archaeological sites I’ve ever seen and they are not overrun with other tourists. Our leaders are excellent sources of information SplendorS of and made themselves accessible for questions.” “Excellent tour—the sites, people, libya guides and cultural experiences were wonderful. It’s a must see and March 16 – 30, 2011 (15 days) experience tour. Thanks for an out- October 19 – November 2, 2011 (15 days) standing experience.” Travel with Dr. Susan Kane, Director of the Cyrenaica Archaeological Project at Cyrene, Libya, and advisor to the Libyan Department of Antiquities. VISIT LIBYA’S SPECTACULAR UNESCO WORLD HERITAGE SITES: • Spend a full day at Cyrene, one of the greatest ancient Greek city-states. Its vast ruins include the Temple of Zeus, which is larger than the Parthenon of Athens. • Admire the magnificent coastal site of Leptis Magna, one of the largest and Above, Leptis Magna’s 16,000 seat amphitheater overlooking the best-preserved Roman cities in the world. Mediterranean. Below, the theater at • Marvel at the Roman city of Sabratha, where the aquamarine sea surrounds Sabratha is considered one of the finest in the remains of partially excavated temples, houses and extensive baths. the Roman world. • Explore the legendary caravan city of Ghadames (Roman Cydamus). HISTORICAL & CULTURAL TREASURES • Discover Tripoli’s Arch of Marcus Aurelius, the Ahmad Pasha al Qaramanli Mosque, and lively souks with a myriad of wares. • Visit the traditional Berber village of Nalut, scenically situated alongside the Jabal Nafusa mountain range, where the Berber settlement dates back to the 11th century.
    [Show full text]
  • The Western Desert Is Part of the Driest Region on Earth, Where The
    Chapter 10 WIND PAÏTtiKNS IN THK WESTERN DEbERT FARUUK EL-ÜAZ and R. W. WOLFE cJational Air and Space Museum Smitnsonian Institution Washington, D.C. 2Û30U AtíSTKAüT The Western Desert is part of the driest region on Earth, where the inaident solar radiation is capable of eva- porating 200 times the amount of precipitation^ For this reason wind is the main agent of erosion and deposition in a sompletely eolian environment. Data on wind velocity and direction are analysed in this paper to establish their relationships to sand transport and orientation of dunes. Surface wind data are swrmarized for 42 meteorological sta- tions between 15° and 35° N latitude and 15° and 41° E longitude. The summaries are presented in the form of graphs showing the patterns of sand-moving winds in wind roses, sand-drift potential in resultants, and streamlines. The basic patterns agree with the overall southward, direc- tion of prevailing wind, and thus of general sand transport directions. Variations from this general pattern are believed to be due to interaction between the wind and local topography. Prevailing wind directions in the Western Desert are also analyzed in terms of seasonal wind cir- culation patterns in North Africa. Because of the scarcity of data, it is recommended that automated meteorological stations be used to gather information cm local winds in the open desert, particularly in the southwestern part, which is important for analog correlations with Mars, INTKUUÜLTIOLSI As part of the eastern Sahara, the Western Desert is one of the driest places on Earth, The "aridity index" of much of this desert is 200, Which means tnat the incident solar energy is capable of eva- porating 2U0 times the amount of precipitation received (Henning and Fiohn, 1977).
    [Show full text]
  • Formation and Evolution of Yardangs Activated by Late Pleistocene Tectonic Movement in Dunhuang, Gansu Province of China
    Formation and evolution of yardangs activated by Late Pleistocene tectonic movement in Dunhuang, Gansu Province of China Yanjie Wang1,2, Fadong Wu1,∗, Xujiao Zhang1, Peng Zeng1, Pengfei Ma1, Yuping Song1 and Hao Chu1 1School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China. 2School of Tourism, Hebei University of Economics and Business, Shijiazhuang 050061, China. ∗Corresponding author. e-mail: [email protected] Developed in the Anxi-Dunhuang basin, the yardangs of Dunhuang (western China) are clearly affected by tectonic movement. Based on fieldwork, this study ascertained three levels of river terrace in the area for the first time. Through the analysis of river terraces formation and regional tectonic movement, the study ascertained that the river terraces were formed mainly by Late Pleistocene tectonic uplift, which had activated the evolution of yardangs in the study area. By electron spin resonance (ESR) dating and optically stimulated luminescence (OSL) dating, the starting time and periodicity of the evolution of the yardangs were determined. The river terraces designated T3, T2 and T1 began to evolve at 109.0∼98.5, 72.9∼66.84 and 53.2∼38.0 kaBP, respectively, which is the evidence of regional neotectonic movement. And, the formation of the yardangs was dominated by tectonic uplift during the prenatal stage and mainly by wind erosion in the following evolution, with relatively short stationary phases. This research focused on the determination of endogenic processes of yardangs formation, which would contribute to further understanding of yardangs formation from a geological perspective and promote further study of yardang landform.
    [Show full text]