The Ignition, Oxidation, and Combustion of Kerosene: a Review of Experimental and Kinetic Modeling

Total Page:16

File Type:pdf, Size:1020Kb

The Ignition, Oxidation, and Combustion of Kerosene: a Review of Experimental and Kinetic Modeling Progress in Energy and Combustion Science 32 (2006) 48–92 www.elsevier.com/locate/pecs The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling Philippe Dagaut *, Michel Cathonnet CNRS, Laboratoire de Combustion et Syste`mes Re´actifs (LCSR), UPR 4211, 1c, Avenue de la recherche scientifique, 45071 Orle´ans Cedex 2, France Received 24 March 2005; accepted 28 October 2005 Abstract For modeling the combustion of aviation fuels, consisting of very complex hydrocarbon mixtures, it is often necessary to use less complex surrogate mixtures. The various surrogates used to represent kerosene and the available kinetic data for the ignition, oxidation, and combustion of kerosene and surrogate mixtures are reviewed. Recent achievements in chemical kinetic modeling of kerosene combustion using model-fuels of variable complexity are also presented. q 2005 Elsevier Ltd. All rights reserved. Keywords: Ignition; Oxidation; Combustion; Kinetics; Kerosene; Surrogate; Modeling Contents 1. Introduction . ....................................................................... 48 2. Characteristic properties of conventional jet fuels ............................................... 49 3. Formulation of kerosene surrogate fuels ...................................................... 50 4. Experimental kinetic studies of the ignition, oxidation and combustion of kerosene and surrogates ........... 57 4.1. Kerosene ....................................................................... 57 4.2. Surrogates ...................................................................... 58 5. Literature survey of the chemical kinetic modeling of the combustion of Jet A-1/JP-8 .................... 71 6. New kinetic modeling of kerosene oxidation and combustion ...................................... 83 7. Reformulated jet-fuels ................................................................... 86 8. Concluding remarks .................................................................... 86 Acknowledgements ..................................................................... 89 Appendix A. ....................................................................... 89 References ........................................................................... 90 1. Introduction Until now, fossil fuels have contributed to over 80% of * Corresponding author. Tel.: C33 238 25 54 66; fax: C33 238 69 energy expenses, and among them, oil played the 60 04. dominant role. It is expected that its use will not decline E-mail address: dagaut@cnrs-orleans.fr (P. Dagaut). until the next two or three decades. The transportation 0360-1285/$ - see front matter q 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.pecs.2005.10.003 P. Dagaut, M. Cathonnet / Progress in Energy and Combustion Science 32 (2006) 48–92 49 Nomenclature FID flame ionization detector PRF primary reference fuels (n-heptane and GC gas chromatography iso-octane also called 1,2,4- JSR jet-stirred reactor (also called continu- trimethylpentane) ously stirred tank reactor, CSTR) SI engine spark ignition engine MS mass spectrometry t mean residence time in the jet-stirred Naphtene also called cycloalkane reactor P total pressure T temperature PAH poly-aromatic hydrocarbon TCD thermal conductivity detector ppmv part per million in volume (1 ppmv f equivalence ratio ({[fuel]/[O2]}/{[fuel]/ K6 corresponds to a mol fraction of 1!10 ) [O2]}atstoichiometry; fZ1 at stoichiometry sector, including aviation, an essential part of our modern 2. Characteristic properties of conventional jet fuels society, represents the largest part of the petroleum based fuels consumption. Its importance has continuously Since the early development of the turbojet engine, the grown at a very fast rate over the last century. Future characteristics of jet fuels have evolved [1].Initially,the global energy and environmental issues have imposed turbojet engines were thought to be relatively insensitive changes in the operating conditions of turbojet engines. to fuel properties. Therefore, the widely available As in other sectors, research is now oriented on saving illuminating kerosene produced for wick lamps was energy, in parallel with enhanced protection of our used. In the 1940s, ‘wide-cut’ fuel was used for environment (reduction of the emissions of pollutants and availability reasons. Due to its relative high-volatility green house gases) and fuel reformulation. The detailed and associated evaporation and safety problems, wide-cut modeling of the combustion of jet fuels is a useful tool to jet fuels (JP-4, Jet B) were replaced by kerosene-type fuel solve the problem of combustion control, as well as to in the 1970s (Jet A, Jet A-1, and JP-8). Nowadays, there reduce emissions and fuel consumption. Such a modeling are essentially three types of conventional jet fuels [2]:(i) represents a real challenge because practical jet fuels are a kerosene type, (ii) a high-flash point kerosene, and (iii) a complex mixtures of several hundreds of hydrocarbons broad cut. Most international civilian aviation companies including alkanes, cycloalkanes, aromatics and poly- use the kerosene type Jet A-1 whereas some military cyclic compounds. aviation fuels are very close to Jet A-1 (TR0 in France, In order to study the combustion behavior of AVTUR in the United Kingdom, and JP-8 in the United commercial jet fuels, mixtures with well defined and States of America), although they include different reproducible composition are required: we call them additives [1–3]. Actually, Jet A is used in the United ‘surrogates’ or ‘model-fuels’. For sake of simplicity, States and Jet A-1 is used in the rest of the world. The they should include a limited number of hydrocarbons important difference between Jet A and Jet A-1 concerns with a well-defined composition, and show a behavior the freezing point (K40 8C for Jet A and K47 8C for Jet similar to that of a commercial fuel. They are of A-1). All the jet fuels must meet general physical property extremely high interest since they can be utilized to specifications. Those for Jet A-1 (Appendix 1) were study the effect of chemical composition and fuel incorporated in a standard defined in 1994 as the Aviation properties on the combustion process. Application of Fuel Quality Requirement for Jointly Operated Systems surrogates to the modeling of the ignition, oxidation, (AFQRJOS) [2]. Although turbojet engines are far more and combustion of conventional jet fuels will be fuel-tolerant than SI engines, the increased operating discussed here, and the results of recent kinetic studies pressures and temperatures have rendered the modern on the oxidation of surrogate kerosene mixtures will be turbojet engines fuel-sensitive [2,4]. Therefore the presented. Finally, recent results concerning the specifications for jet fuels represent an optimal compro- reformulation of jets fuels in the context of reduced mise of properties for engine performances and safety oil availability will be presented. aspects during storage and distribution. 50 P. Dagaut, M. Cathonnet / Progress in Energy and Combustion Science 32 (2006) 48–92 Among the properties linked to the quality of C11H23. Further information can be found in previous combustion [2], specification requirements concern reports [12–14] whereas jet A-1 specifications are given volatility, viscosity and freezing point, density, heating in Appendix A. As most of the hydrocarbon mixtures value, smoke point and luminosity factor, aromatic used as a fuel, the composition of kerosene is subject to content, and thermal stability of the fuel (ASTM D variations of composition. The composition varies from 1655). Combustion in turbojet engines is characterized one source to another [15,16] and is subject to changes by the formation of soot particles which must be due to thermal instability. The specification test device minimized for several reasons: (i) soot can be harmful for jet fuel is the thermal oxidation test as described in for the engine because of carbon deposits and radiant ASTM D3241. The thermal stability of jet fuels is heat loss which can lead to hot spots or to high improved via the use of additives. Further information combustor wall temperature, (ii) soot emissions from can be found in [8,17,18]. jet engines affect high altitudes atmospheric chemistry, and (iii) soot favors radar detection of military aircrafts. 3. Formulation of kerosene surrogate fuels Fuels with high aromatics contents, especially poly- aromatics, produce more soot. This is why both the total Since specifications on kerosene only include aromatic content is limited to 22–25% and the general physical properties, many hydrocarbon mix- naphthalene content to 3% in volume. Practically, the tures can meet these specifications, although the aromatic content of JP-8 varies between 10 and 25% relative proportions of the various chemical families with a mean at 18% in volume [3]. However, the is constrained by the general physical properties. aromatic content of kerosene has increased since the Because the variations in composition may be large sixties [4] for economic reasons, and the quality of from purchase to purchase [15], a more definite kerosene is expected to deteriorate in the future with the chemical composition was found necessary for model- reducing availability of light crudes. ing and experimental studies. Mixtures of a limited Table 1 gives the main characteristics of JP-8 and Jet number of hydrocarbons have been proposed to A-1 reported by several authors [3,5–7], compared with represent
Loading...
Loading...
Loading...
Loading...
Loading...

40 pages remaining, click to load more.

Recommended publications
  • C9-14 Aliphatic [2-25% Aromatic] Hydrocarbon Solvents Category SIAP
    CoCAM 2, 17-19 April 2012 BIAC/ICCA SIDS INITIAL ASSESSMENT PROFILE Chemical C -C Aliphatic [2-25% aromatic] Hydrocarbon Solvents Category Category 9 14 Substance Name CAS Number Stoddard solvent 8052-41-3 Chemical Names Kerosine, petroleum, hydrodesulfurized 64742-81-0 and CAS Naphtha, petroleum, hydrodesulfurized heavy 64742-82-1 Registry Solvent naphtha, petroleum, medium aliphatic 64742-88-7 Numbers Note: Substances in this category are also commonly known as mineral spirits, white spirits, or Stoddard solvent. CAS Number Chemical Description † 8052-41-3 Includes C8 to C14 branched, linear, and cyclic paraffins and aromatics (6 to 18%), <50ppmV benzene † 64742-81-0 Includes C9 to C14 branched, linear, and cyclic paraffins and aromatics (10 to Structural 25%), <100 ppmV benzene Formula † and CAS 64742-82-1 Includes C8 to C13 branched, linear, and cyclic paraffins and aromatics (15 to 25%), <100 ppmV benzene Registry † Numbers 64742-88-7 Includes C8 to C13 branched, linear, and cyclic paraffins and aromatics (14 to 20%), <50 ppmV benzene Individual category member substances are comprised of aliphatic hydrocarbon molecules whose carbon numbers range between C9 and C14; approximately 80% of the aliphatic constituents for a given substance fall within the C9-C14 carbon range and <100 ppmV benzene. In some instances, the carbon range of a test substance is more precisely defined in the test protocol. In these instances, the specific carbon range (e.g. C8-C10, C9-C10, etc.) will be specified in the SIAP. * It should be noted that other substances defined by the same CAS RNs may have boiling ranges outside the range of 143-254° C and that these substances are not covered by the category.
    [Show full text]
  • Example of Tier I SPCC Plan
    Auto Service Station Facility Scenario Example Tier I Qualified Facility SPCC Plan Here is an example of an automotive service station facility and how the Step 1: Determine if the Gas owner determines he is covered by the SPCC rule and prepares an SPCC and Care Express needs an Plan. SPCC Plan. Description of Gas and Care Express Jack Smith, owner of the Gas and Care Express, believes he may have Gas and Care Express located in Malham, Pennsylvania is a self-service gasoline to develop, maintain, and implement station and automotive service shop offering basic automotive maintenance and a spill prevention plan under the repair services, including vehicle safety and emission inspections. The facility is SPCC rule. Let’s walk through the owned and operated by Jack Smith and is located at the intersection of Anywhere following scenario to determine if he and Sideways Streets. An empty lot sits adjacent to the back of the facility. A needs an SPCC Plan, and if so, then concrete storm drainage channel runs past one side of the empty lot and conveys we need to determine if he is eligible storm water into an unnamed creek about a 1/4-mile downstream from this location. to self‐certify his SPCC Plan and use The unnamed creek is a tributary of Muddy Creek, which is a tributary to the the Tier I SPCC Plan Template. Susquehanna River. There are four street storm culverts at the intersection where the facility is located. Storm water runoff collected by these culverts is conveyed by Is the facility or part of the facility the storm sewer into Muddy Creek at an outfall about 1 mile away.
    [Show full text]
  • Phase Equilibria of Supercritical Carbon Dioxide and Hydrocarbon Mixtures
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1992 Phase Equilibria of Supercritical Carbon Dioxide and Hydrocarbon Mixtures. Hyo-guk Lee Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Lee, Hyo-guk, "Phase Equilibria of Supercritical Carbon Dioxide and Hydrocarbon Mixtures." (1992). LSU Historical Dissertations and Theses. 5325. https://digitalcommons.lsu.edu/gradschool_disstheses/5325 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact gradetd@lsu.edu. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Internal Revenue Service, Treasury § 48.4081–2
    Internal Revenue Service, Treasury § 48.4081±2 practical and commercial fitness solely sentence in the definition of terminal by reason of its possible or rare use as are effective January 2, 1998. a fuel in the propulsion engine of a [T.D. 8659, 61 FR 10453, Mar. 14, 1996, as highway vehicle, train, or boat. amended by T.D. 8748, 63 FR 25, Jan. 2, 1998] (iii) Cross reference. For the tax on blended taxable fuel, see § 48.4081±3(g). § 48.4081±1T Taxable fuel; definitions For the back-up tax on certain uses of (temporary). liquids other than diesel fuel, see (a) [Reserved] § 48.4082±4. (b) Definitions. (3) Gasoline blendstocksÐ(i) In general. Kerosene means, after June 30, 1998Ð Except as provided in paragraph (1) The two grades of kerosene (No. 1± (c)(3)(ii) of this section, gasoline K and No. 2±K) described in ASTM blendstocks meansÐ Specification D 3699; and (A) Alkylate; (2) Kerosene-type jet fuel described in (B) Butane; ASTM Specification D 1655 and mili- tary specifications MIL±T±5624R and (C) Butene; MIL±T±83133D (Grades JP±5 and JP±8). (D) Catalytically cracked gasoline; For availability of ASTM and military (E) Coker gasoline; specification material, see § 48.4081± (F) Ethyl tertiary butyl ether 1(c)(2)(i). (ETBE); (G) Hexane; [T.D. 8774, 63 FR 35801, July 1, 1998] (H) Hydrocrackate; § 48.4081±2 Taxable fuel; tax on re- (I) Isomerate; moval at a terminal rack. (J) Methyl tertiary butyl ether (a) Overview. This section provides (MTBE); the general rule that all removals of (K) Mixed xylene (not including any taxable fuel at a terminal rack are sub- separated isomer of xylene); ject to tax and the position holder with (L) Natural gasoline; respect to the fuel is liable for the tax.
    [Show full text]
  • Fluid Handling
    FLUID HANDLING Pumps Fluid Siphon Pump Battery-Operated Polypropylene Multi-Use Fluid Transfer Pump SKU 568475 99 Liquid Transfer Pump Lever-Action Pump SKU 094647 99 24863 14 SKU 471071 99 SKU 688036 99 25713 9 • Transfers Fluids Easily 25712 14 24471 29 • Small and Lightweight • Use to Transfer Gas, Water, Oil and Other Non-Corrosive • Move Liquids Safely and Easily with • Ideal for Diesel, Kerosene, Liquids • Intake and Discharge This Convenient Handheld Pump Lubricants and Other Oils Transfer System • Hose Reaches 6 Ft. • Pumps Gas, Water, Oil and Other • Not for Gasoline, Water-Based with 1/2" Diameter • Pumps Air into Inflatables Non-Corrosive Liquids Chemicals or DEF • Includes: (2) 50" • Pumps Up to 6 Quarts of (127 cm) Long Hoses Liquid per Minute Polypropylene Hand Oil Pump Ryton® Rotary Polypropylene Lever-Action Pump with Lever-Action Pump Barrel Pump Rotary Drum Pump SKU 462495 99 DEF Stainless Steel Rod 24381 27 with Stainless COMPATIBLE SKU 462486 99 SKU 688035 99 SKU 688038 • Oil Pump for Use with Steel Rod 24382 29 24470 79 99 Oil-Based Fluids, Heating 24472 29 SKU 688037 • Fluid Transfer • Ideal for Pumping Diesel, Oils, Motor Oils, Heavy 99 Pump for Use with Oils, Kerosene, Water-Based • Ideal for Pumping and Light Oils, Diesel 24473 39 Diesel, Oils, Kerosene, Oil-Based Fluids, Chemicals, Bases and and Kerosene • Ideal for Pumping Heating Oils, Mild Acids Water-Based Chemicals, • Built-in 1-1/2" and 2" Bung Diesel, Oils, Kerosene, Bases and Mild Acids Motor Oils, ATF, • Not for Gasoline or DEF for Use on 16 to 55 Gallon Water-Based Chemicals, Diesel and • Not for Gasoline or DEF Drums with Either Opening Bases and Acids Including DEF Kerosene • Not for Gasoline • Not for Gasoline • Not for Gasoline Lever-Action Manual Gear Lube Manual Rotary Pump with Hose for 55 Gallon Drums* BONUS Barrel Pump Dispenser SKU 265089 99 5 Qt.
    [Show full text]
  • General Tax Information Bulletin #300 Page 2
    INFORMATION BULLETIN #300 GENERAL TAX JUNE 2021 (Replaces Bulletin #300 dated June 2020) Effective Date: July 1, 2021 SUBJECT: Sales of Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG) REFERENCES: IC 6-2.5-5-51; IC 6-6-2.5-1; IC 6-6-2.5-16.5; IC 6-6-2.5-22; IC 6-6-2.5- 22.5; IC 6-6-2.5-28; IC 6-6-4.1-1; IC 6-6-4.1-4; IC 6-6-4.1-4.5. DISCLAIMER: Commissioner’s directives are intended to provide nontechnical assistance to the general public. Every attempt is made to provide information that is consistent with the appropriate statutes, rules, and court decisions. Any information that is not consistent with the law, regulations, or court decisions is not binding on either the department or the taxpayer. Therefore, the information provided herein should serve only as a foundation for further investigation and study of the current law and procedures related to the subject matter covered herein. SUMMARY OF CHANGES The bulletin was updated to provide the new special fuel tax rate effective July 1, 2021. I. DEFINITIONS “Natural gas” means compressed or liquid natural gas. “Natural gas product” means: (1) A liquid natural gas (LNG) or compressed natural gas (CNG) product; or (2) A combination of liquefied petroleum gas and a compressed natural gas product; used in an internal combustion engine or a motor to propel any form of vehicle, machine, or mechanical contrivance. “Alternative fuel” means a liquefied petroleum gas, not including a biodiesel fuel or biodiesel blend, used in an internal combustion engine or a motor to propel any form of vehicle, machine, or mechanical contrivance.
    [Show full text]
  • Waste Motor Oil (WMO) to Diesel Fuel Project Blaine M
    Southern Illinois University Carbondale OpenSIUC Presentations Department of Automotive Technology 3-7-2019 Waste Motor Oil (WMO) to Diesel Fuel Project Blaine M. Heisner Southern Illinois University Carbondale, bheisner@siu.edu Follow this and additional works at: https://opensiuc.lib.siu.edu/auto_pres PowerPoint slides from a technical presentation at the Illinois College Automotive Instructors Association Spring 2019 conference. Recommended Citation Heisner, Blaine M. "Waste Motor Oil (WMO) to Diesel Fuel Project." (Mar 2019). This Article is brought to you for free and open access by the Department of Automotive Technology at OpenSIUC. It has been accepted for inclusion in Presentations by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu. Waste Motor Oil (WMO) to Diesel Fuel Project -Update Spring 2019- SIUC Automotive Technology Department Blaine Heisner AJ McNay Jake Lichter Colton Karas Ryan Mukherjee WMO? (Waste Motor Oil!) • What is in WMO? • Total amount of WMO generated • Petroleum mainly… • 1.3B gallons annually in U.S. • Crankcase oil, transmission fluid, • Only 60% of oil sold is collected power steering fluid, brake fluid, axle grease, gear oil, compressor oil • However… • What happens to WMO • Dumped • Metal, dirt, leaves, additives, coolant, brake clean, solvent, dead • Burned in open fires (brush piles) animals, fuel, chew spit, water, • Collected with a fee (or payment) benzene, etc… • Dropped off at a collection area • Industrial burners (energy gen.) • WMO Generators • Re-refined into new products • Repair shops, dealerships, public and • Lube, fuel, asphalt, etc… private fleets, personal residences, schools, trucking companies, farms Cost/Value of WMO • “The recent softness in crude oil markets, along with the associated declines in fuel pricing, have decreased the value of our recycled fuel oil (RFO) and other products.
    [Show full text]
  • What's the Difference Between Gasoline, Kerosene, Diesel, Etc?
    What's the difference between gasoline, kerosene, diesel, etc? Browse the article What's the difference between gasoline, kerosene, diesel, etc? The "crude oil" pumped out of the ground is a black liquid called petroleum. This liquid contains aliphatic hydrocarbons, or hydrocarbons composed of nothing but hydrogen and carbon. The carbon atoms link together in chains of different lengths. It turns out that hydrocarbon molecules of different lengths have different properties and behaviors. For example, a chain with just one carbon atom in it (CH4) is the lightest chain, known as methane. Methane is a gas so light that it floats like helium. As the chains get longer, they get heavier. The first four chains -- CH4 (methane), C2H6 (ethane), C3H8 (propane) and C4H10 (butane) -- are all gases, and they boil at -161, -88, -46 and -1 degrees F, respectively (-107, -67, -43 and -18 degrees C). The chains up through C18H32 or so are all liquids at room temperature, and the chains above C19 are all solids at room temperature. So what's the real chemical difference between gasoline, kerosene and diesel? It has to do with their boiling points. Carbon Chains in Petroleum Products The different chain lengths have progressively higher boiling points, so they can be separated out by distillation. This is what happens in an oil refinery -- crude oil is heated and the different chains are pulled out by their vaporization temperatures. (See How Oil Refining Works for details.) The chains in the C5, C6 and C7 range are all very light, easily vaporized, clear liquids called naphthas.
    [Show full text]
  • Kerosene Toxicological Overview
    Kerosene Toxicological overview Key Points Kinetics and metabolism • As kerosene is a mixture of chemicals, there is no definitive ADME (absorption, distribution, metabolism and excretion) data • Limited data from metabolism studies suggest that kerosene is removed from circulation by the liver and lungs Health effects of acute exposure • The major route of exposure is by inhalation of liquid (aspiration) • Kerosene vapours may be mildly irritating to the respiratory system and spray applications of kerosene may provoke signs of pulmonary irritation such as coughing and dyspnoea • Acute dermal exposure may result in local irritation, but it is not considered to be a skin sensitiser • Acute exposure to kerosene may result in CNS effects including irritability, restlessness, ataxia, drowsiness, convulsions, coma and death Health effects of chronic exposure • The most common health effect associated with chronic kerosene exposure is dermatitis, usually associated with inappropriate use of personal protective equipment • Chronic exposure may also cause non-specific CNS effects such as nervousness, loss of appetite and nausea • Kerosene does not have a measurable effect on human reproduction or development • IARC concluded that there was inadequate evidence to classify kerosene as a human carcinogen Prepared by R P Chilcott CHAPD HQ, HPA 2007 Version 2 KEROSENE – TOXICOLOGICAL OVERVIEW Toxicological Overview Kerosene is a liquid mixture of hydrocarbons (chain length C9 – 16) produced by the distillation of crude oil. The preferred Chemical Abstracts spelling is “kerosine”. The (UK) technical term for kerosene is “C2 Fuel Oil” (Annex I), as it is derived from the “kerosene” fraction of distilled crude oil. Older, flue-less appliances use “paraffin” (C1) fuel.
    [Show full text]
  • BUBBLE FORMATION in SUPERSATURATED HYDROCARBON MIXTURES Petroleum Reservoirs, the Mineral and Water Surfaces with for Each Crystal Averaging About 4.5 Sq Cm
    T.P. 3441 BUBBLE FORMATION IN SUPERSATURATED HYDRO­ CARBON MIXTURES HARVEY T. KENNEDY, A AND M COlLEGE OF TEXAS, COlLEGE STATION, TEX., MEMBER AIME, AND CHARLES R. OLSON, OHIO OIL CO., SHREVEPORT, LA., JUNIOR MEMBER AIME Downloaded from http://onepetro.org/jpt/article-pdf/4/11/271/2238408/spe-232-g.pdf by guest on 29 September 2021 ABSTRACT tude, may be calculated for any rate of pressure decline imposed on the reservoir by production. The bearing of the In many investigations of the performance of petroleum res­ number and distribution of bubbles on reservoir performance ervoirs the assumption is made that the liquid, if below its is discussed. bubble-point pressure, is at all times in equilibrium with gas_ On the other hand, observations by numerous investigators have indicated that gas-liquid systems including hydrocarbon systems, may exhibit supersaturation to the extent of many INTRODUCTION hundred psi in the laboratory. Up to the present, there has been no reliable data on which to judge the actual extent of A liquid system is supersaturated with gas when the amount supersaturation under conditions approaching those existing of gas dissolved exceeds that corresponding to equilibrium at in petroleum reservoirs. the existing pressure and temperature. The degree of super­ The work reported here deals with observations and meas­ saturation may be conveniently expressed as the difference urements on mixtures of methane and kerosene in the presence between the bubble-point of the mixture and the prevailing of silica and calcite crystals. Bubbles were observed to form pressure. Thus, if a mixture having a bubble-point of 1,000 on crystal-hydrocarbon surfaces in preference to the glass­ psi at a given temperature exists in single liquid phase at hydrocarbon interface or to the body of the liquid.
    [Show full text]
  • Stoddard Solvent 105 6. Analytical Methods 6.2
    STODDARD SOLVENT 105 6. ANALYTICAL METHODS 6.2 ENVIRONMENTAL SAMPLES As with biological materials, detection of Stoddard solvent in environmental samples is based on the detection of component hydrocarbons. See Table 6-2 for a summary of the analytical methods used to determine Stoddard solvent hydrocarbons in environmental samples. The primary method for detecting volatile components of Stoddard solvent in air is GC using a flame ionization detector (FID) (NIOSH 1984; Otson et al. 1983). Stoddard solvent in air may be determined by absorption to an appropriate column such as charcoal, desorption in a solvent (carbon disulfide is recommended), and subsequent quantification. Although the precision of this method is good (greater than 10% relative standard deviation when the recovery is greater than 80%), in general, recovery tends to be rather poor (18-80%) because of the slow volatilization of Stoddard solvent (Otson et al. 1983). No analytical methods specific for Stoddard solvent in water or soil samples were located; however, determination of Stoddard solvent may be assumed to be similar to the detection of comparable hydrocarbon mixtures. Detection of Stoddard solvent in water is dependent on the identification and quantification of the specific hydrocarbon components of the solvent. The primary method, GC either alone or in combination with MS, may be used for the identification of the major hydrocarbon components, i.e., n-alkanes, branched alkanes, cycloalkanes, and alkylbenzenes. Separation of the aliphatic and aromatic fractions may be achieved by liquid-solid column chromatography followed by dilution of the eluates with carbon disulfide. Aqueous samples may be extracted with trichlorotrifluoroethane, while solid samples may be extracted by Soxhlet extraction or sonication methods (Air Force 1989).
    [Show full text]
  • Investigation of Water Droplets, Kerosene and Ethanol Deformation in the Air
    EPJ Web of Conferences 76, 01038 (2014) DOI: 10.1051/epjconf/20147601038 C Owned by the authors, published by EDP Sciences, 2014 Investigation of water droplets, kerosene and ethanol deformation in the air Roman Volkov, Alena Zhdanova, and Pavel Strizhaka National Research Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia Abstract. Experimental investigation of liquid droplets deformation features during motion through the air with velocities up to 5 m/s was executed. Typical liquids (water, kerosene, ethanol) were observed. More than ten successive “strain cycles” were investigated during the droplets motions of the 1 m distance thought the air. Characteristics times of droplet changes from form to form, and possible “deformation modes” were determined. 1. Introduction Results of numerical researches [1, 2] have shown that the factor of liquid droplets form influence on integrated characteristics of their movement through the high-temperature gas area is defining. Continuous variation of movement resistance coefficient (c) in time should be considered to draw near the model processes to real ones [1, 2]. The nature of this variation and its dependence on external and internal factors has not been defined fully. It has been identified in experimental and theoretical works [3–6], that the motion of droplets in gas areas and liquids is the specific sequence of “strain cycles”. The “strain cycle” means the time interval td, when the droplet consistently twice takes the form close to the size, the position of the symmetry axis and other features during its motion. Six characteristic configurations of water droplets with glycerin admixtures at their free falling thought the air for the first “strain cycle” were marked in [4].
    [Show full text]