Filo Arthropoda Superclasse Trilobitomorpha Classe Trilobita

Total Page:16

File Type:pdf, Size:1020Kb

Filo Arthropoda Superclasse Trilobitomorpha Classe Trilobita 8.2. IDENTIFICAÇÃO DE FÓSSEIS DE TRILOBITA Fig. 8.1 - Agnostus Filo Arthropoda Superclasse Trilobitomorpha Classe Trilobita Subclasse Miomera Ordem Agnostida Agnostus BRONGNIART, 1822 Fig. 8.1 Agnostus sp. Extraído de BONDARENKO & MIKHAILOVA (1984: 344). Carapaça muito pequena, até 10 mm de comprimento, isopígica. Cefalão ovalado, desprovido de olhos e de sutura facial, apresentando bordadura evidente. Glabela estreia e longa, com um estrangulamento profundo (sulco glabelar) próximo do extremo anterior. Torace constituído por dois segmentos. Pigídio com bordadura evidente, apresentando um par de espinhos curtos postero-laterais, dotado de ráquis longa, cónica, subdividida em três segmentos, pouco afilada para o Fig. 8.2 - Peronopsis extremo posterior. Paleoecologia: Organismos epibentónicos vágeis a endobentónicos (?), detritívoros (?). Ambientes mari- nhos bentónicos, pouco profundos, de salinidade normal. Distribuição estratigráfica: Câmbrico. Peronopsis HAWLE & CORDA, 1847 Fig. 8.2 Peronopsis gaspensis Rasetti. Adaptado de MOORE et al. (1952: 498). Carapaça muito pequena, até 10 mm de comprimento, isopígica. Cefalão semicircular, desprovido de olhos e de sutura facial, apresentando bordadura evidente. Glabela estreita e longa, com um estrangulamento próximo do extremo anterior. Torace constituído por dois segmentos. Pigídio com bordadura evidente, dotado de ráquis longa, não-segmentada, afilada posteriormente. Paleoecologia: Organismos epibentónicos vágeis a endobentónicos (?), detritívoros (?). Ambientes mari- nhos neríticos pouco profundos, de salinidade normal. Distribuição estratigráfica: Câmbrico. Subclasse Polymera Ordem Redlichiida Paradoxides BRONGNIART, 1822 Fig. 8.3 Paradoxides davidis Salter. Extraído de COX (1964: est. 2). Carapaça grande, podendo atingir cerca de 50 cm de comprimento, acentuadamente micropígica. Cefalão grande, com olhos bem definidos, holocróicos, em forma de crescente e com lóbulos palpebrais proeminentes, e faces móveis (librígenas) amplas, apresentando longos Fig. 8.3 - Paradoxides espinhos genais. Glabela grande, lisa, expandindo-se Departamento de GEOLOGIA TRILOBITA anteriormente, formando uma frente ampla e arredondada. Sulcos glabelares, normalmente 2 ou 4 pares, bem definidos, podendo unir-se na zona central da glabela. Torace com 16-21 segmentos com zonas pleurais mais amplas que a ráquis e apresentando-se muito afiladas, espinhosas. Pigídio muito pequeno, espatulado, com ráquis segmentada. Paleoecologia: Organismos epibentónicos vágeis, detritívoros (?). Ambientes marinhos bentónicos, pouco profundos, de salinidade normal. Distribuição estratigráfica: Câmbrico médio. Ordem Corynexochida Ectillaenus SALTER, 1867 Fig. 8.4 - Ectillaenus Fig. 8.4 Ectillenus katzeri (Barrande). De RICHTER (1989: 254). Carapaça média a grande (até 30 cm), isopígica, com cefalão e pigídio, praticamente, da mesma forma. Cefalão subtriangular arredondado, liso, com ângulos genais boleados, apresentando glabela mal definida, E. giganteus Burmeister, 1843 curta e lisa, com relevo baixo, não-limitada do lado anterior e desprovida de sulcos glabelares. Olhos pequenos, próximos do bordo do cefalão, por vezes de difícil observação. Sutura facial opistopária. Librígenas estreitas e subtriangulares. Torace constituido por 10 segmentos. Pigídio semicircular, praticamente liso, com ráquis quase imperceptível, lisa e com fronteira posterior indefinida. Paleoecologia: Organismos epibentónicos vágeis a endobentónicos, detritívoros (?). Ambientes marinhos bentónicos, pouco profundos, de salinidade normal. Distribuição estratigráfica: Ordovícico. Ordem Phacopida Fig. 8.5 - Calymene Calymene BRONGNIART, 1822 Fig. 8.5 Calymene blumenbachii. Extraído de TASCH (1973: 520). Carapaça de dimensões médias, micropígica. Cefalão semicircular, com ângulos genais arredondados. Glabela campaniforme, bastante proeminente, convexa, Fig. 8.6 - Dalmanites estreitando anteriormente, apresentando 3-4 lobos glabelares, sendo o par L1 o mais desenvolvido; o L2 atravessa o sulco dorsal, ao encontro de uma saliência na face fixa (fixígena). Olhos pequenos, holocróicos. Sutura facial gonatopária. Torace com cerca de 12-13 segmentos, com extremos pleurais arredondados. Pigídio alargado, subtriangular a semicircular, costilhado, apresentando ráquis segmentada. Paleoecologia: Ver Paradoxides, acima. Distribuição estratigráfica: Silúrico a Devónico. Observações: Os exemplares de Calymenidae portugueses são atribuídos ao género Neseuretus Hicks (e.g., Neseuretus avus = N. tristani), próximo de Calymene. Eodalmanitina HENRY, 1965 Fig. 8.6 Dalmanites myops (König), espécie de género aparentado, próximo de Eodalmanitina. Extraído de COX (1964: est. 28). Fig. 8.7 Eodalmanitina destombesi Henry, 1966. Ordovícico de Valongo. 8 cm. Carapaça média (até 8 cm), micropígica. Cefalão algo Fig. 8.7 - Eodalmanitina ogival, com glabela claviforme, alargando anteriormente destombesi (com lóbulo frontal, Lf, muito desenvolvido), com sulcos glabelares bem marcados: SO, S1 e S2 equidistantes, 56 TRILOBITA S2 nunca atingindo o sulco dorsal. Pontas genais bem desenvolvidas, longas e finas (raramente se conservam). Olhos bem desenvolvidos, grandes, esquizocróicos. Sutura facial propária. Torace com cerca de 11 segmentos. Pigídio subtriangular, apresentando ponta caudal, ou caudícula, e ráquis pigidial com 8-12 anéis. Paleoecologia: Organismos epibentónicos vágeis, detritívoros (?). Ambientes marinhos bentónicos, pouco profundos, de salinidade normal. Distribuição estratigráfica: Ordovícico médio. Phacops EMMRICH, 1836 Fig. 8.8 Phacops fecundus. Extraído de TASCH (1973: 520). Fig. 8.8 - Phacops Carapaça média a grande (até 20 cm), isopígica a micropígica. Cefalão semicircular, com ângulos genais arredondados, apresentando glabela muito inflada e alargando para diante, ornamentada com granulações evidentes. Sulco glabelar S1 podendo atravessar a glabela, formando anel pré-occipital; S2 e seguintes mal definidos ou ausentes. Olhos bem desenvolvidos, grandes, esquizocróicos. Sutura facial propária. Torace com cerca de 11 segmentos, com extremos pleurais arredondados. Pigídio semicircular, com oito ou menos pleuras e com ráquis pigidial ostentando 9-11 anéis. Paleoecologia: Organismos epibentónicos vágeis, detritívoros (?). Ambientes marinhos bentónicos, pouco profundos, de salinidade normal. Distribuição estratigráfica: Devónico. Encrinurus EMMRICH & CORDA, 1844 Fig. 8.9 Encrinurus punctatus (Wahlenberg). Extraído de COX (1964: est. 29). Carapaça pequena a média (até 8 cm), micropígica. Cefalão subtriangular, com pontas genais curtas e afiladas. Glabela inflada e alargando para diante, Fig. 8.9 - Encrinurus ornamentada com fortes granulações, ostentando três pares de sulcos glabelares muito curtos, normalmente camuflados pela forte ornamentação da glabela. Olhos bem desenvolvidos, holocróicos, por vezes pedunculados, posicionados junto do L2 ou L3. Sutura facial propária. Torace com cerca de 10-12 segmentos, com extremos pleurais algo arredondados. Pigídio triangular, algo alongado, com oito ou menos pares de costilhas pleurais e com ráquis pigidial ostentando 9-11 anéis. Paleoecologia: Organismos epibentónicos vágeis, detritívoros (?). Ambientes marinhos bentónicos, pouco profundos, de salinidade normal. Distribuição estratigráfica: Ordovícico a Devónico inferior. Placoparia HAWLE & CORDA, 1847 Fig. 8.10 Placoparia cambriensis Hicks. Extraído de COX (1964: est. 8). Carapaça pequena (até 4 cm), acentuadamente micropígica. Cefalão semicircular. Glabela com lados subparalelos, alargando ligeiramente para diante, Fig. 8.10 - Placoparia desprovida de área pré-glabelar. Sutura glabelar S3 oblíqua, atingindo o sulco dorsal no canto anterior da glabela, S1 e S2 subperpendiculares ao sulco dorsal. 57 TRILOBITA Sutura facial opistopária. Olhos ausentes. Torace constituído por 11-12 segmentos, apresentando a banda posterior de cada pleura inflada. Pigídio muito pequeno, ostentando ráquis com quatro anéis axiais, mais uma peça terminal subtriangular, e igual número de costilhas pigidiais infladas, com extremos salientes, mas arredondados, conferindo-lhe aspecto algo “aracnóide”. Paleoecologia: Organismos epibentónicos vágeis, detritívoros (?). Ambientes marinhos bentónicos, pouco profundos, de salinidade normal. Distribuição estratigráfica: Ordovícico. Deiphon BARRANDE, 1852 Fig. 8.11 Deiphon sp. Extraído de BONDARENKO & MIKHAILOVA (1984: 358). Carapaça micropígica, pequena a média (até 4 cm), com aspecto “sui generis”, muito espinhosa e com ornamentação finamente granulosa. Cefalão constituído, praticamente, por uma glabela muito inflada, quase esférica, não segmentada, e por faces reduzidas a longos espinhos encurvados. Olhos pequenos, instalados no bordo anterior das faces, junto à glabela. Torace constituído por nove segmentos com expansões pleurais longas e espinhosas, encurvadas lateralmente. Pigídio ostentando dois pares de espinhos, sendo os posteriores muito longos, expandidos lateralmente. Paleoecologia: Segundo alguns autores estas trilobites seriam organismos pelágicos nectónicos. Ambientes marinhos pelágicos, neríticos profundos a oceânicos, de salinidade normal. Fig. 8.11 - Deiphon Distribuição estratigráfica: Silúrico. BIBLIOGRAFIA COX, L.R. 1964. British Palaeozoic Fossils. British Museum (Natural History), Londres, 4ª edição, 1983, 203 pp. BONDARENKO, O.B. & MIKHAILOVA, I.A. 1984. Kratkii Opredelitel’ Iskopaemykh Bespozvonotchnykh. Nedra, Moscovo, 2ª edição, 536 pp. MOORE, R.C.; LALICKER, C.G. & FISHER, A.G. 1952. Invertebrate Fossils. McGraw-Hill Book Comp. Inc., New York, 766 pp. RICHTER, A.E. 1981. Manual del coleccionista de fósiles. Ediciones Omega, Barcelona, edição de 1989, 460 pp. TASCH, P. 1973. Paleontology of the Invertebrates. Data retrieval from the fossil record. John Wiley & Sons, New York, 2ª edição, 1980, 975 pp. 2015/16 NOTAS / OBSERVAÇÕES: 58 .
Recommended publications
  • Morphology and Developmental Traits of the Trilobite Changaspis Elongata from the Cambrian Series 2 of Guizhou, South China
    Morphology and developmental traits of the trilobite Changaspis elongata from the Cambrian Series 2 of Guizhou, South China GUANG-YING DU, JIN PENG, DE-ZHI WANG, QIU-JUN WANG, YI-FAN WANG, and HUI ZHANG Du, G.-Y., Peng, J., Wang, D.-Z., Wang, Q.-J., Wang, Y.-F., and Zhang, H. 2019. Morphology and developmental traits of the trilobite Changaspis elongata from the Cambrian Series 2 of Guizhou, South China. Acta Palaeontologica Polonica 64 (4): 797–813. The morphology and ontogeny of the trilobite Changaspis elongata based on 216 specimens collected from the Lazizhai section of the Balang Formation (Stage 4, Series 2 of the Cambrian) in Guizhou Province, South China are described. The relatively continuous ontogenetic series reveals morphological changes, and shows that the species has seventeen thoracic segments in the holaspid period, instead of the sixteen as previously suggested. The development of the pygid- ial segments shows that their number gradually decreases during ontogeny. A new dataset of well-preserved specimens offers a unique opportunity to investigate developmental traits after segment addition is completed. The ontogenetic size progressions for the lengths of cephalon and trunk show overall compliance with Dyar’s rule. As a result of different average growth rates for the lengths of cephalon, trunk and pygidium, the length of the thorax relative to the body shows a gradually increasing trend; however, the cephalon and pygidium follow the opposite trend. Morphometric analysis across fourteen post-embryonic stages reveals growth gradients with increasing values for each thoracic segment from anterior to posterior. The reconstruction of the development traits shows visualization of the changes in relative growth and segmentation for the different body parts.
    [Show full text]
  • Western North Greenland (Laurentia)
    BULLETIN OF THE GEOLOGICAL SOCIETY OF DENMARK · VOL. 69 · 2021 Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Miaolingian Series), western North Greenland (Laurentia) JOHN S. PEEL Peel, J.S. 2021. Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Mi- aolingian Series), western North Greenland (Laurentia). Bulletin of the Geological Society of Denmark, Vol. 69, pp. 1–33. ISSN 2245-7070. https://doi.org/10.37570/bgsd-2021-69-01 Trilobites dominantly of middle Cambrian (Miaolingian Series, Wuliuan Stage) Geological Society of Denmark age are described from the Telt Bugt Formation of Daugaard-Jensen Land, western https://2dgf.dk North Greenland (Laurentia), which is a correlative of the Cape Wood Formation of Inglefield Land and Ellesmere Island, Nunavut. Four biozones are recognised in Received 6 July 2020 Daugaard-Jensen Land, representing the Delamaran and Topazan regional stages Accepted in revised form of the western USA. The basal Plagiura–Poliella Biozone, with Mexicella cf. robusta, 16 December 2020 Kochiella, Fieldaspis? and Plagiura?, straddles the Cambrian Series 2–Miaolingian Series Published online 20 January 2021 boundary. It is overlain by the Mexicella mexicana Biozone, recognised for the first time in Greenland, with rare specimens of Caborcella arrojosensis. The Glossopleura walcotti © 2021 the authors. Re-use of material is Biozone, with Glossopleura, Clavaspidella and Polypleuraspis, dominates the succes- permitted, provided this work is cited. sion in eastern Daugaard-Jensen Land but is seemingly not represented in the type Creative Commons License CC BY: section in western outcrops, likely reflecting the drastic thinning of the formation https://creativecommons.org/licenses/by/4.0/ towards the north-west.
    [Show full text]
  • 001-012 Primeras Páginas
    PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9.
    [Show full text]
  • Introduction to the Trilobites: Morphology, Ecology, Macroevolution and More by Michelle M
    Introduction to the Trilobites: Morphology, Ecology, Macroevolution and More By Michelle M. Casey1, Perry Kennard2, and Bruce S. Lieberman1, 3 1Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, 2Earth Science Teacher, Southwest Middle School, USD497, and 3Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 Middle level laboratory exercise for Earth or General Science; supported provided by National Science Foundation (NSF) grants DEB-1256993 and EF-1206757. Learning Goals and Pedagogy This lab is designed for middle level General Science or Earth Science classes. The learning goals for this lab are the following: 1) to familiarize students with the anatomy and terminology relating to trilobites; 2) to give students experience identifying morphologic structures on real fossil specimens 3) to highlight major events or trends in the evolutionary history and ecology of the Trilobita; and 4) to expose students to the study of macroevolution in the fossil record using trilobites as a case study. Introduction to the Trilobites The Trilobites are an extinct subphylum of the Arthropoda (the most diverse phylum on earth with nearly a million species described). Arthropoda also contains all fossil and living crustaceans, spiders, and insects as well as several other extinct groups. The trilobites were an extremely important and diverse type of marine invertebrates that lived during the Paleozoic Era. They only lived in the oceans but occurred in all types of marine environments, and ranged in size from less than a centimeter to almost a meter across. They were once one of the most successful of all animal groups and in certain fossil deposits, especially in the Cambrian, Ordovician, and Devonian periods, they are extremely abundant.
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • The Evolution of Trilobite Body Patterning
    ANRV309-EA35-14 ARI 20 March 2007 15:54 The Evolution of Trilobite Body Patterning Nigel C. Hughes Department of Earth Sciences, University of California, Riverside, California 92521; email: [email protected] Annu. Rev. Earth Planet. Sci. 2007. 35:401–34 Key Words First published online as a Review in Advance on Trilobita, trilobitomorph, segmentation, Cambrian, Ordovician, January 29, 2007 diversification, body plan The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: The good fossil record of trilobite exoskeletal anatomy and on- 10.1146/annurev.earth.35.031306.140258 togeny, coupled with information on their nonbiomineralized tis- Copyright c 2007 by Annual Reviews. sues, permits analysis of how the trilobite body was organized and All rights reserved developed, and the various evolutionary modifications of such pat- 0084-6597/07/0530-0401$20.00 terning within the group. In several respects trilobite development and form appears comparable with that which may have charac- terized the ancestor of most or all euarthropods, giving studies of trilobite body organization special relevance in the light of recent advances in the understanding of arthropod evolution and devel- opment. The Cambrian diversification of trilobites displayed mod- Annu. Rev. Earth Planet. Sci. 2007.35:401-434. Downloaded from arjournals.annualreviews.org ifications in the patterning of the trunk region comparable with by UNIVERSITY OF CALIFORNIA - RIVERSIDE LIBRARY on 05/02/07. For personal use only. those seen among the closest relatives of Trilobita. In contrast, the Ordovician diversification of trilobites, although contributing greatly to the overall diversity within the clade, did so within a nar- rower range of trunk conditions.
    [Show full text]
  • Early and Middle Cambrian Trilobites from Antarctica
    Early and Middle Cambrian Trilobites From Antarctica GEOLOGICAL SURVEY PROFESSIONAL PAPER 456-D Early and Middle Cambrian Trilobites From Antarctica By ALLISON R. PALMER and COLIN G. GATEHOUSE CONTRIBUTIONS TO THE GEOLOGY OF ANTARCTICA GEOLOGICAL SURVEY PROFESSIONAL PAPER 456-D Bio stratigraphy and regional significance of nine trilobite faunules from Antarctic outcrops and moraines; 28 species representing 21 genera are described UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1972 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-190734 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 70 cents (paper cover) Stock Number 2401-2071 CONTENTS Page Page Abstract_ _ ________________________ Dl Physical stratigraphy______________________________ D6 I&troduction. _______________________ 1 Regional correlation within Antarctica ________________ 7 Biostratigraphy _____________________ 3 Systematic paleontology._____-_______-____-_-_-----_ 9 Early Cambrian faunules.________ 4 Summary of classification of Antarctic Early and Australaspis magnus faunule_ 4 Chorbusulina wilkesi faunule _ _ 5 Middle Cambrian trilobites. ___________________ 9 Chorbusulina subdita faunule _ _ 5 Agnostida__ _ _________-____-_--____-----__---_ 9 Early Middle Cambrian f aunules __ 5 Redlichiida. __-_--------------------------_---- 12 Xystridura mutilinia faunule- _ 5 Corynexochida._________--________-_-_---_----_
    [Show full text]
  • Arthropod Pattern Theory and Cambrian Trilobites
    Bijdragen tot de Dierkunde, 64 (4) 193-213 (1995) SPB Academie Publishing bv, The Hague Arthropod pattern theory and Cambrian trilobites Frederick A. Sundberg Research Associate, Invertebrate Paleontology Section, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007, USA Keywords: Arthropod pattern theory, Cambrian, trilobites, segment distributions 4 Abstract ou 6). La limite thorax/pygidium se trouve généralementau niveau du node 2 (duplomères 11—13) et du node 3 (duplomères les les 18—20) pour Corynexochides et respectivement pour Pty- An analysis of duplomere (= segment) distribution within the chopariides.Cette limite se trouve dans le champ 4 (duplomères cephalon,thorax, and pygidium of Cambrian trilobites was un- 21—n) dans le cas des Olenellides et des Redlichiides. L’extrémité dertaken to determine if the Arthropod Pattern Theory (APT) du corps se trouve généralementau niveau du node 3 chez les proposed by Schram & Emerson (1991) applies to Cambrian Corynexochides, et au niveau du champ 4 chez les Olenellides, trilobites. The boundary of the cephalon/thorax occurs within les Redlichiides et les Ptychopariides. D’autre part, les épines 1 4 the predicted duplomerenode (duplomeres or 6). The bound- macropleurales, qui pourraient indiquer l’emplacement des ary between the thorax and pygidium generally occurs within gonopores ou de l’anus, sont généralementsituées au niveau des node 2 (duplomeres 11—13) and node 3 (duplomeres 18—20) for duplomères pronostiqués. La limite prothorax/opisthothorax corynexochids and ptychopariids, respectively. This boundary des Olenellides est située dans le node 3 ou près de celui-ci. Ces occurs within field 4 (duplomeres21—n) for olenellids and red- résultats indiquent que nombre et distribution des duplomères lichiids.
    [Show full text]
  • Th TRILO the Back to the Past Museum Guide to TRILO BITES
    With regard to human interest in fossils, trilobites may rank second only to dinosaurs. Having studied trilobites most of my life, the English version of The Back to the Past Museum Guide to TRILOBITES by Enrico Bonino and Carlo Kier is a pleasant treat. I am captivated by the abundant color images of more than 600 diverse species of trilobites, mostly from the authors’ own collections. Carlo Kier The Back to the Past Museum Guide to Specimens amply represent famous trilobite localities around the world and typify forms from most of the Enrico Bonino Enrico 250-million-year history of trilobites. Numerous specimens are masterpieces of modern professional preparation. Richard A. Robison Professor Emeritus University of Kansas TRILOBITES Enrico Bonino was born in the Province of Bergamo in 1966 and received his degree in Geology from the Depart- ment of Earth Sciences at the University of Genoa. He currently lives in Belgium where he works as a cartographer specialized in the use of satellite imaging and geographic information systems (GIS). His proficiency in the use of digital-image processing, a healthy dose of artistic talent, and a good knowledge of desktop publishing software have provided him with the skills he needed to create graphics, including dozens of posters and illustrations, for all of the displays at the Back to the Past Museum in Cancún. In addition to his passion for trilobites, Enrico is particularly inter- TRILOBITES ested in the life forms that developed during the Precambrian. Carlo Kier was born in Milan in 1961. He holds a degree in law and is currently the director of the Azul Hotel chain.
    [Show full text]
  • An Inventory of Trilobites from National Park Service Areas
    Sullivan, R.M. and Lucas, S.G., eds., 2016, Fossil Record 5. New Mexico Museum of Natural History and Science Bulletin 74. 179 AN INVENTORY OF TRILOBITES FROM NATIONAL PARK SERVICE AREAS MEGAN R. NORR¹, VINCENT L. SANTUCCI1 and JUSTIN S. TWEET2 1National Park Service. 1201 Eye Street NW, Washington, D.C. 20005; -email: [email protected]; 2Tweet Paleo-Consulting. 9149 79th St. S. Cottage Grove. MN 55016; Abstract—Trilobites represent an extinct group of Paleozoic marine invertebrate fossils that have great scientific interest and public appeal. Trilobites exhibit wide taxonomic diversity and are contained within nine orders of the Class Trilobita. A wealth of scientific literature exists regarding trilobites, their morphology, biostratigraphy, indicators of paleoenvironments, behavior, and other research themes. An inventory of National Park Service areas reveals that fossilized remains of trilobites are documented from within at least 33 NPS units, including Death Valley National Park, Grand Canyon National Park, Yellowstone National Park, and Yukon-Charley Rivers National Preserve. More than 120 trilobite hototype specimens are known from National Park Service areas. INTRODUCTION Of the 262 National Park Service areas identified with paleontological resources, 33 of those units have documented trilobite fossils (Fig. 1). More than 120 holotype specimens of trilobites have been found within National Park Service (NPS) units. Once thriving during the Paleozoic Era (between ~520 and 250 million years ago) and becoming extinct at the end of the Permian Period, trilobites were prone to fossilization due to their hard exoskeletons and the sedimentary marine environments they inhabited. While parks such as Death Valley National Park and Yukon-Charley Rivers National Preserve have reported a great abundance of fossilized trilobites, many other national parks also contain a diverse trilobite fauna.
    [Show full text]
  • Posterior Border
    Palaeontology Practical 8 Phylum Arthropoda – Class Trilobata Arthropods • Chitinous exoskeleton • Bilaterally symmetrical • Articulated segmented bodies that are partitioned in three • Paired jointed appendages for movement and feeding • Periodic moulting (ecdysis) • Antennae and/or multiple eyes • 75% of all living animal species • Includes insects, crustaceans, spiders, extinct trilobites and eurypterids • Coelomates, possibly related to annelids • Developed nervous and circulatory systems • Advanced feeding, many have jaw structures • The most successful invertebrate group • Advanced in terms of feeding and locomotion • Able to invade different environments and modes of life • Thus, marine and terrestrial • Good geological record (hard exoskeleton) from the Lower Cambrian Trilobites • Trilobites are the oldest group of arthropods. • They first appear in rocks of Lower Cambrian and died out in the Late Permian. • They were marine, mainly benthic and had • extremely variable morphologies and lifestyles. • They have a distinctive tri lobed • morphology (hence their name) • Over 1500 genera are known and several thousand species • Usually small, between 5-8 cm but some forms could get up to 70 cm General morphology • Segmented bodies with chitinous exoskeletons and joined, paired limbs • The body is divided longitudinally into three regions: 1. The cephalon 2. The thorax 3. The pygidium • The exoskeleton covers both the dorsal and ventral side of the body • Consists of a two-layered cuticle of chitin • Usually it is hardened by the impregnation of calcium carbonate The cephalon • the head which consists of a single plate, made up of several fused segments. • sense organs are found on the head • there are also certain lines of weakness, known as cephalic sutures, which look like cracks on the surface but apparently facilitated ecdysis • They are important for taxonomic determinations • shape pentagonal to semicircular with transverse posterior edges.
    [Show full text]
  • Introduction to the Trilobites: Morphology, Macroevolution and More by Michelle M
    Introduction to the Trilobites: Morphology, Macroevolution and More By Michelle M. Casey1 and Bruce S. Lieberman1,2, 1Biodiversity Institute and 2Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 Undergraduate laboratory exercise for sophomore/junior level paleontology course Learning Goals and Pedagogy This lab is intended for an upper level paleontology course containing sophomores and juniors who have already taken historical geology or its equivalent; however it may be suitable for introductory biology or geology students familiar with geological time, phylogenies, and trace fossils. This lab will be particularly helpful to those institutions that lack a large teaching collection by providing color photographs of museum specimens. Students may find previous exposure to phylogenetic methods and terminology helpful in completing this laboratory exercise. The learning goals for this lab are the following: 1) to familiarize students with the anatomy and terminology relating to trilobites; 2) to give students experience identifying morphologic structures on real fossil specimens, not just diagrammatic representations; 3) to highlight major events or trends in the evolutionary history and ecology of Trilobita; and 4) to expose students to the study of macroevolution in the fossil record using trilobites as a case study. Introduction to the Trilobites The Trilobites are an extinct subphylum of the Arthropoda (the most diverse phylum on earth with nearly a million species described). Arthropoda also contains all fossil and living crustaceans, spiders, and insects as well as several other solely extinct groups. The trilobites were an extremely important and diverse type of marine invertebrates that lived during the Paleozoic Era. They were exclusively marine but occurred in all types of marine environments, and ranged in size from less than a centimeter to almost a meter.
    [Show full text]